The three unit quaternions associated with \(\cR_{\psi , \be_3}\text{,}\) \(\cR_{\te , \bu_1}\) and \(\cR_{\phi , \bhb_3}\) are
\begin{equation*}
Q_\psi = \cos\frac{\psi}{2} + \sin\frac{\psi}{2} \be_3, \quad
Q_\te = \cos\frac{\te}{2} + \sin\frac{\te}{2} \bu_1,\quad
Q_\phi = \cos\frac{\phi}{2} + \sin\frac{\phi}{2} \bhb_3
\end{equation*}
In order to find the product \(Q_\phi Q_\te Q_\psi\text{,}\) the three quaternions must be expressed on the same basis. It is most convenient to use basis \((\bu_1 ,\bu_2,\be_3)\text{,}\) then we must express \(Q_\phi\) as
\begin{equation*}
Q_\phi = \cos\frac{\phi}{2} + \sin\frac{\phi}{2} (\cos\te \be_3 -\sin\te \bu_2)
\end{equation*}
First, we find the product
\(Q_\te Q_\psi\) using
(1.6.2)
\begin{align*}
Q_\te Q_\psi \amp = (\cos\frac{\te}{2} + \sin\frac{\te}{2} \bu_1)(\cos\frac{\psi}{2} + \sin\frac{\psi}{2} \be_3)\\
\amp = \cos\frac{\psi}{2}\cos\frac{\te}{2} + \cos\frac{\psi}{2}\sin\frac{\te}{2} \bu_1 -
\sin\frac{\psi}{2}\sin\frac{\te}{2} \bu_2 + \sin\frac{\psi}{2}\cos\frac{\te}{2} \be_3
\end{align*}
Then we find the product \(Q_\phi Q_\te Q_\psi\)
\begin{align*}
Q_\phi Q_\te Q_\psi \amp = c_{\phi /2} c_{\psi/2}c_{\te/2} - s_{\psi/2} s_{\phi/2} s_\te s_{\te/2} - s_{\psi/2} s_{\psi/2} c_\te c_{\te/2} \\
\amp \qquad +(c_{\psi/2}s_{\te/2} c_{\psi/2} - s_{\psi/2}s_{\phi/2} s_\te c_{\te/2} + s_{\psi/2} s_{\psi/2} c_\te s_{\te/2})\bu_1 \\
\amp \qquad -(s_{\psi/2}s_{\te/2} c_{\phi/2} + c_{\psi/2}s_{\phi/2} s_\te c_{\te/2} - c_{\psi/2} s_{\phi/2} c_\te s_{\te/2})\bu_2 \\
\amp \qquad +(s_{\psi/2}c_{\te/2} c_{\phi/2} + c_{\psi/2}s_{\phi/2} c_\te c_{\te/2} + c_{\psi/2} s_{\phi/2} s_\te s_{\te/2})\be_3
\end{align*}
using the notation \(c_\te = \cos\te\text{,}\) \(s_\te = \sin\te\text{,}\) etc. After simplifications, this gives
\begin{equation*}
Q_\phi Q_\te Q_\psi = c_{\te/2} c_{(\psi+\phi)/2} + s_{\te/2} c_{(\psi+\phi)/2} \bu_1 - s_{\te/2} s_{(\psi+\phi)/2} \bu_2 +
c_{\te/2} s_{(\psi+\phi)/2} \be_3
\end{equation*}
We can then express \(Q_\phi Q_\te Q_\psi\) on basis \((\be_1,\be_2,\be_3)\) to find
\begin{align*}
Q_\phi Q_\te Q_\psi \amp = \cos\frac{\te}{2} \cos \left(\frac{\psi+\phi}{2}\right)
+\sin\frac{\te}{2} \cos \left(\frac{\psi-\phi}{2}\right) \be_1
+ \sin\frac{\te}{2} \sin \left(\frac{\psi-\phi}{2}\right) \be_2 \\
\amp \qquad +\cos\frac{\te}{2} \sin \left(\frac{\psi+\phi}{2}\right) \be_3
\end{align*}
We can equate \(Q_\phi Q_\te Q_\psi\) to unit quaternion \(\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2} \widehat{\bU}\) where angle \(\alpha\) and unit vector \(\widehat{\bU}\) are given by
\begin{equation*}
\cos\frac{\alpha}{2} =\cos\frac{\te}{2} \cos \left(\frac{\psi+\phi}{2}\right)
\end{equation*}
\begin{equation*}
\sin\frac{\alpha}{2} \widehat{\bU} =\sin\frac{\te}{2} \cos \left(\frac{\psi-\phi}{2}\right) \be_1
+ \sin\frac{\te}{2} \sin \left(\frac{\psi-\phi}{2}\right) \be_2
+\cos\frac{\te}{2} \sin \left(\frac{\psi+\phi}{2}\right) \be_3
\end{equation*}
The sequence of three rotations \(\cR_{\psi , \be_3}\text{,}\) \(\cR_{\te , \bu_1}\) and \(\cR_{\phi , \bhb_3}\) is then equivalent to the rotation \(\cR_{\alpha ,\widehat{\bU}}\text{.}\)