Skip to main content Contents Index
Prev Up Next \(\newcommand{\val}{Val\text{00E9}ry}
\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\cA}{{\mathcal{A}}}
\newcommand{\cB}{{\mathcal{B}}}
\newcommand{\cC}{{\mathcal{C}}}
\newcommand{\cD}{{\mathcal{D}}}
\newcommand{\cE}{{\mathcal{E}}}
\newcommand{\cF}{{\mathcal{F}}}
\newcommand{\cG}{{\mathcal{G}}}
\newcommand{\cH}{{\mathcal{H}}}
\newcommand{\cI}{{\mathcal{I}}}
\newcommand{\cJ}{{\mathcal{J}}}
\newcommand{\cL}{{\mathcal{L}}}
\newcommand{\cM}{{\mathcal{M}}}
\newcommand{\Pow}{{\mathbb{P}}}
\newcommand{\cP}{{\mathcal{P}}}
\newcommand{\cR}{{\mathcal{R}}}
\newcommand{\cS}{{\mathcal{S}}}
\newcommand{\cT}{{\mathcal{T}}}
\newcommand{\cU}{{\mathcal{U}}}
\newcommand{\cV}{{\mathcal{V}}}
\newcommand{\cW}{{\mathcal{W}}}
\newcommand{\cX}{{\mathcal{X}}}
\newcommand{\bze}{{\bf 0}}
\newcommand{\bA}{{\bf A}}
\newcommand{\ba}{{\bf a}}
\newcommand{\bha}{{\bf \hat{a}}}
\newcommand{\bB}{{\bf B}}
\newcommand{\bob}{{\bf b}}
\newcommand{\bhb}{{\bf \hat{b}}}
\newcommand{\bC}{{\bf C}}
\newcommand{\bc}{{\bf c}}
\newcommand{\bhc}{{\bf \hat{c}}}
\newcommand{\bD}{{\bf D}}
\newcommand{\bod}{{\bf d}}
\newcommand{\be}{{\bf \hat{e}}}
\newcommand{\bef}{{\bf \hat{f}}}
\newcommand{\bof}{{\bf f}}
\newcommand{\force}{{\bf f}}
\newcommand{\bF}{{\bf F}}
\newcommand{\tbF}{\tilde{\bf F}}
\newcommand{\bG}{{\bf G}}
\newcommand{\bog}{{\bf g}}
\newcommand{\bg}{{\bf g}}
\newcommand{\bH}{{\bf H}}
\newcommand{\bh}{{\bf h}}
\newcommand{\bI}{{\bf I}}
\newcommand{\bi}{{\boldsymbol{\hat{\imath}}}}
\newcommand{\bj}{{\boldsymbol{\hat{\jmath}}}}
\newcommand{\bk}{{\bf \hat{k}}}
\newcommand{\bK}{{\bf \hat{K}}}
\newcommand{\bL}{{\bf L}}
\newcommand{\bl}{\mathbfit{l}}
\newcommand{\bM}{{\bf M}}
\newcommand{\bn}{{\bf \hat{n}}}
\newcommand{\bq}{{\bf q}}
\newcommand{\conjQ}{\overline{Q}}
\newcommand{\conjP}{\bar{P}}
\newcommand{\bp}{{\bf p}}
\newcommand{\br}{{\bf r}}
\newcommand{\bs}{{\bf s}}
\newcommand{\bS}{{\bf S}}
\newcommand{\bR}{{\bf R}}
\newcommand{\bT}{{\bf T}}
\newcommand{\bt}{{\bf \hat{t}}}
\newcommand{\bu}{{\bf \hat{u}}}
\newcommand{\buu}{{\bf {u}}}
\newcommand{\bU}{{\bf U}}
\newcommand{\vel}{{\bf v}}
\newcommand{\bV}{{\bf V}}
\newcommand{\bv}{{\bf \hat{v}}}
\newcommand{\bvv}{{\bf {v}}}
\newcommand{\vv}{{\bf v}^*}
\newcommand{\bww}{{\bf {w}}}
\newcommand{\pvel}{{\bf w}}
\newcommand{\bW}{{\bf W}}
\newcommand{\bw}{{\bf \hat{w}}}
\newcommand{\bx}{{\bf \hat{x}}}
\newcommand{\bxx}{{\bf x}}
\newcommand{\bX}{{\bf X}}
\newcommand{\bY}{{\bf Y}}
\newcommand{\by}{{\bf \hat{y}}}
\newcommand{\byy}{{\bf y}}
\newcommand{\bz}{{\bf \hat{z}}}
\newcommand{\bom}{\boldsymbol{\omega}}
\newcommand{\bde}{\mathbf{\delta}}
\newcommand{\bOm}{\boldsymbol{\Omega}}
\newcommand{\bal}{\boldsymbol{\alpha}}
\newcommand{\bomFE}{{\boldsymbol{\omega}}_{\cF/\cE}}
\newcommand{\bomBA}{{\boldsymbol{\omega}}_{\cB/\cA}}
\newcommand{\bGa}{\boldsymbol{\Gamma}}
\newcommand{\btau}{\hat{\boldsymbol{\tau}}}
\newcommand{\rot}{\boldsymbol{\tau}}
\newcommand{\grad}{\boldsymbol{\nabla}}
\newcommand{\iner}{{\cal I}_B}
\newcommand{\inerG}{{\cal I}_G}
\newcommand{\Earth}{\text{Earth}}
\newcommand{\Arrow}{\mbox {$\longrightarrow$}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\al}{\alpha}
\newcommand{\ep}{\epsilon}
\newcommand{\ga}{\gamma}
\newcommand{\te}{\theta}
\newcommand{\la}{\lambda}
\newcommand{\om}{\omega}
\newcommand{\Om}{\Omega}
\newcommand{\ro}{\rho}
\newcommand{\Si}{\Sigma}
\newcommand{\pSi}{{\partial \Sigma}}
\newcommand{\bSi}{{\bar{\Sigma}}}
\newcommand{\si}{\sigma}
\newcommand{\dl}{\dot{l}}
\newcommand{\ddl}{\ddot{l}}
\newcommand{\dep}{\dot{\ep}}
\newcommand{\ddep}{\ddot{\ep}}
\newcommand{\ddbe}{\ddot{\beta}}
\newcommand{\dbe}{\dot{\beta}}
\newcommand{\dal}{\dot{\alpha}}
\newcommand{\ddal}{\ddot{\alpha}}
\newcommand{\ddga}{\ddot{\gamma}}
\newcommand{\dphi}{\dot{\phi}}
\newcommand{\ddphi}{\ddot{\phi}}
\newcommand{\dpsi}{\dot{\psi}}
\newcommand{\ddpsi}{\ddot{\psi}}
\newcommand{\dte}{\dot{\te}}
\newcommand{\ddte}{\ddot{\te}}
\newcommand{\dom}{\dot{\om}}
\newcommand{\dx}{\dot{x}}
\newcommand{\ddx}{\ddot{x}}
\newcommand{\dX}{\dot{X}}
\newcommand{\ddX}{\ddot{X}}
\newcommand{\dy}{\dot{y}}
\newcommand{\ddy}{\ddot{y}}
\newcommand{\dY}{\dot{Y}}
\newcommand{\ddY}{\ddot{Y}}
\newcommand{\dz}{\dot{z}}
\newcommand{\dZ}{\dot{Z}}
\newcommand{\ddz}{\ddot{z}}
\newcommand{\ddZ}{\ddot{Z}}
\newcommand{\Dp}{\dot{p}}
\newcommand{\ddr}{\ddot{r}}
\newcommand{\dr}{\dot{r}}
\newcommand{\dq}{\dot{q}}
\newcommand{\dQ}{\dot{Q}}
\newcommand{\tq}{\tilde{q}}
\newcommand{\ddq}{\ddot{q}}
\newcommand{\dbq}{\dot{{\bf q}}}
\newcommand{\ddbq}{\ddot{{\bf q}}}
\newcommand{\dds}{\ddot{s}}
\newcommand{\ds}{\dot{s}}
\newcommand{\dro}{\dot{\ro}}
\newcommand{\ddro}{\ddot{\ro}}
\newcommand{\dv}{\dot{v}}
\newcommand{\du}{\dot{u}}
\newcommand{\bSi}{\overline{\Sigma}}
\newcommand{\coB}{\overline{{\cal B}}}
\newcommand{\kin}{\mathbb{K}}
\newcommand{\qQ}{{\mathbb{Q}}}
\newcommand{\pot}{{\mathbb{U}}}
\newcommand{\hal}{{\mathbb{H}}}
\newcommand{\lag}{{\mathbb{L}}}
\newcommand{\gib}{{\mathbb{S}}}
\newcommand{\energ}{{\mathbb{E}}}
\newcommand{\danger}{\text{⚠}}
\newcommand{\ddanger}{\text{⚠}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 10.4 Frictionless Joints
The contact action screw which results from the connection of two rigid bodies \(\cB_1\) and \(\cB_2\) by a frictionless joint can be simplified due to the fact that the local contact force is directed along the local unit normal vector \(\bn_{12}\) to the surfaces in contact
\begin{equation}
\bof_{1 \to 2} ^c (Q) = N_{1 \to 2} (Q) \bn_{12} (Q)\tag{10.4.1}
\end{equation}
at any point
\(Q\) of the contacting surfaces. We list below the expressions of the action screw
\(\{ \cA^c_{1 \to 2} \}\) for the six lower kinematic pairs described in
Chapter 7 .
Subsection 10.4.1 Frictionless Pivot
Recall that a
pivot is a one-degree-of-freedom joint which permits a rotation about a common axis
\(\Delta \equiv (O_1 , \bz_1 ) = (O_2 , \bz_2)\) of
\(\cB_1\) and
\(\cB_2\text{.}\) The corresponding kinematic screw is given by
\begin{equation}
\{ \cV _{2 / 1} \} =
\left\{
\begin{array}{c}
\bom_{2/1} = \om_z \bz_1 \\
\bze
\end{array}
\right\}_{A\in \Delta}\tag{10.4.2}
\end{equation}
Then, assuming frictionless contact, the corresponding action contact screw \(\{ \cA^c_{1 \to 2} \}\) satisfies
\begin{equation}
\bM^c_{A, 1 \to 2} \cdot \bz_1 = 0\tag{10.4.3}
\end{equation}
for any point
\(A\) of axis
\(\Delta\) as was shown in
Example 10.3.18 . All other components of the action screw are in general non-zero:
\begin{equation*}
\{ \cA_{1 \to 2}^c \} =
\left\{
\begin{array}{c}
R_x \bx_1 +R_y \by_1 +R_z \bz_1 \\
M_{Ax} \bx_1 +M_{Ay} \by_1
\end{array}
\right\}_{A\in \Delta}
\end{equation*}
Figure 10.4.1.
Subsection 10.4.2 Frictionless Slider
In a
slider , a prismatic surface of
\(\cB_2\) coincides with a prismatic surface of
\(\cB_1\) thus restricting the motion to a rectilinear translation along a direction
\(\bx_1 = \bx_2\) common to
\(\cB_1\) and
\(\cB_2\text{.}\)
Figure 10.4.3.
This is a one-degree-of-freedom joint, characterized by the following kinematic screw
\begin{equation}
\{ \cV _{2 / 1 } \} =
\left\{
\begin{array}{c}
\bze \\
v_{2x} \bx_1
\end{array}
\right\}\tag{10.4.4}
\end{equation}
Then, assuming frictionless contact, the corresponding contact action screw \(\{\cA^c_{ 1 \to 2} \}\) satisfies
\begin{equation}
\bR^c_{1 \to 2} \cdot \bx_1 = 0\tag{10.4.5}
\end{equation}
All other components of the action screw are non-zero:
\begin{equation*}
\{ \cA_{1 \to 2}^c \} =
\left\{
\begin{array}{c}
R_y \by_1 +R_z \bz_1 \\
M_{Ax} \bx_1 +M_{Ay} \by_1 +M_{Az}\bz_1
\end{array}
\right\}_A
\end{equation*}
Again one can verify again that \(\{ \cV _{2 / 1} \} \cdot \{ \cA_{1 \to 2}^c \} =0\text{.}\)
Subsection 10.4.3 Frictionless Slider-Pivot
A
slider-pivot is a two-degree-of-freedom joint which permits both a rotation about and a translation along an axis
\(\Delta (O_1 , \bz_1 )\text{.}\)
\begin{equation}
\{ \cV _{2 / 1} \} =
\left\{
\begin{array}{c}
\om_z \bz_1 \\
v_{2z}\bz_1
\end{array}
\right\}_{A \in \Delta}\tag{10.4.6}
\end{equation}
Then, assuming frictionless contact, the corresponding contact action screw \(\{ \cA_{1 \to 2}^c \}\) satisfies
\begin{equation}
\bR^c_{1 \to 2} \cdot \bz_1 = 0, \qquad
\bM^c_{A, 1 \to 2} \cdot \bz_1 = 0\tag{10.4.7}
\end{equation}
for all points \(A\) of axis \(\Delta\text{.}\) All other components of the action screw are non-zero
\begin{equation*}
\{ \cA_{1 \to 2}^c \} =
\left\{
\begin{array}{c}
R_x \bx_1 +R_y \by_1 \\
M_{Ax} \bx_1 +M_{Ay}\by_1
\end{array}
\right\}_{A \in \Delta}
\end{equation*}
Subsection 10.4.4 Frictionless Helical Joint
A
helical joint is a slider-pivot joint in which the rotational about and translational motion along axis
\(\Delta (O_1, \bz_1)\) are constrained to each other by the relation
\(v_{2z} = (p / 2\pi) \om_z\) (where
\(p\) is a constant). Thus, this is a one-degree-of-freedom joint, and the corresponding kinematic screw can be written as
\begin{equation}
\{ \cV _{2 / 1} \} =
\left\{
\begin{array}{c}
\om_z \bz_1 \\
{p\over 2\pi} \om_z \bz_1
\end{array}
\right\}_{A \in \Delta}\tag{10.4.8}
\end{equation}
Then, assuming frictionless contact, the corresponding contact action screw \(\{ \cA_{1 \to 2}^c \}\) satisfies
\begin{equation}
\frac{p}{2\pi} \bR^c_{1 \to 2} \cdot \bz_1 +
\bM^c_{A, 1 \to 2} \cdot \bz_1 = 0\tag{10.4.9}
\end{equation}
for any point \(A\) of axis \(\Delta\text{.}\) This can be found by imposing \(\{ \cV _{2 / 1} \} \cdot \{ \cA^c_{1 \to 2} \} =0\text{.}\)
Figure 10.4.5.
Subsection 10.4.5 Frictionless Spherical Joint
In a
spherical joint , a single point
\(O_2\) of
\(\cB_2\) remains fixed relative to
\(\cB_1\text{.}\) This is a three-degree-of-freedom joint with corresponding kinematic screw
\begin{equation}
\{ \cV _{2 / 1 } \} =
\left\{
\begin{array}{c}
\bom_{2/1} \\
\bze
\end{array}
\right\}_{O_2}\tag{10.4.10}
\end{equation}
Figure 10.4.6.
Then, assuming frictionless contact, the corresponding contact action screw \(\{ \cA^c_{1 \to 2} \}\) satisfies
\begin{equation}
\bM^c_{O_2, 1 \to 2} = \bze\tag{10.4.11}
\end{equation}
All other components of the action screw are non-zero:
\begin{equation*}
\{ \cA_{1 \to 2}^c \} =
\left\{
\begin{array}{c}
R_x \bx_2 + R_y \by_2 +R_z \bz_2 \\
\bze
\end{array}
\right\}_{O_2}
\end{equation*}
Subsection 10.4.6 Planar Frictionless Joint
In a
planar joint between
\(\cB_1\) and
\(\cB_2\text{,}\) a plane
\((O_2 , \bx_2, \by_2)\) of
\(\cB_2\) coincides with a plane
\((O_1 , \bx_1, \by_1)\) of
\(\cB_1\text{.}\) A planar joint is a three-degree-of-freedom joint with corresponding kinematic screw
\begin{equation}
\{ \cV _{2 /1 } \} =
\left\{
\begin{array}{ccc}
\om_z \bz_1 \\
v_{O_2 x} \bx_1 + v_{O_2 y} \by_1
\end{array}
\right\}_{O_2}\tag{10.4.12}
\end{equation}
The corresponding contact action screw \(\{ \cA^c_{1 \to 2} \}\text{,}\) assuming frictionless contact, satisfies
\begin{equation}
\bR^c_{1 \to 2} \cdot \bx_1 = 0, \qquad
\bR^c_{1 \to 2} \cdot \by_1 = 0, \qquad
\bM^c_{A, 1 \to 2} \cdot \bz_1 = \bze\tag{10.4.13}
\end{equation}
about any point \(A\text{.}\) All other components of the action screw are non-zero:
\begin{equation*}
\{ \cA_{1 \to 2}^c \} =
\left\{
\begin{array}{c}
R_z \bz_1 \\
M_{Ax} \bx_2 +M_{Ay}\by_2
\end{array}
\right\}_{A}
\end{equation*}
Figure 10.4.7.