Skip to main content

Section 9.7 Kinetic Energy of a Rigid Body

With the assumptions of Section 9.6, we seek to evaluate the kinetic energy \(\kin_{\cB}= \half \int_{\cB} \vel^{2}_{P} dm\) of a rigid body \(\cB\) relative to referential \(\cE\text{.}\)
We can find the velocity of any point \(P\) of the body from that of point \(B\in\cB\text{:}\)
\begin{equation*} \vel_{P} = \vel_{B\in\cB} + \bom_{\cB} \times \br_{BP} \end{equation*}
Then, we find
\begin{equation*} \kin_{\cB }= \half m \vel^{2}_{B\in\cB} + \vel_{B\in\cB} \cdot \int_{\cB} \bom_{\cB } \times \br_{BP} \, dm + \half \int_{\cB} \, ( \bom_{\cB} \times \br_{BP} )^{2} \, dm \end{equation*}
The second term \(\int_{\cB} \bom_{\cB} \times \br_{BP} \, dm\) is simply \(\bom_{\cB} \times m \br_{BG}\text{.}\) The third term \(\int_{\cB} \, ( \bom_{\cB } \times \br_{BP})^{2} \,dm\) can be simplified by recalling the identity
\begin{equation*} (\bu\times\bv)^{2}= \bu \cdot (\bv\times(\bu\times\bv)) . \end{equation*}
Hence
\begin{equation*} \int_{\cB} \, ( \bom_{\cB} \times \br_{BP} )^{2} \, dm = \int_{\cB} \bom_{\cB}\cdot \left( \br_{BP}\times(\bom_{\cB} \times \br_{BP}) \right) \, dm = \bom_{\cB} \cdot \iner (\bom_{\cB}) \end{equation*}
We have derived the following result:
Simplifications can be obtained in formula (9.7.1) in two special cases:
  • Case 1: If point \(B\) is fixed in \(\cE\) at all time, or if \(B\) is an instantaneous center of rotation, then \(\vel_{B\in\cB} = \bze\) and (9.7.1) simplifies to
    \begin{equation} \kin_{\cB}= \half \bom_{\cB} \cdot \iner (\bom_{\cB})\tag{9.7.2} \end{equation}
  • Case 2: If point \(B\) is chosen to be mass center \(G\text{,}\) then (9.7.1) simplifies to
    \begin{equation} \kin_{\cB}= \half m \vel^{2}_{G}+ \half \bom_{\cB} \cdot \inerG (\bom_{\cB})\tag{9.7.3} \end{equation}
Finally, we give below a theorem which is useful for the practical determination of the kinetic energy of a rigid body and its time-rate of change:

Proof.

To prove (9.7.4), we first find the product \(\{ \cV_{\cB /\cE} \} \cdot \{ \cH_{\cB /\cE} \}\) by resolving both screws about mass center \(G\) of body \(\cB\text{:}\)
\begin{equation*} \{ \cV_{\cB /\cE} \} \cdot \{ \cH_{\cB /\cE} \}= \bom_\cB\cdot \bH_G + \vel_G \cdot m\vel_G \end{equation*}
With \(\bH_G = \cI_G (\bom)\text{,}\) we recognize \(2\kin_{\cB}\) given by (9.7.3). As for (9.7.5), we take the time-derivative of \(\kin_{\cB}\) to find
\begin{align*} {d\over dt}\kin_{\cB / \cE} \amp = \int_{\cB} \vel_P\cdot \ba_P dm = \int_\cB (\vel_G+ \bom_\cB \times \br_{GP}) \cdot \ba_P dm\\ \amp = \vel_G \cdot \int_\cB \ba_P dm + \bom_\cB \cdot \int_\cB \br_{GP}\times \ba_P dm\\ \amp = \vel_G \cdot m \ba_G + \bom_\cB \cdot \bD_G \end{align*}
This last expression is recognized as \(\{ \cV_{\cB /\cE} \} \cdot \{ \cD_{\cB /\cE} \}\text{.}\)