Skip to main content

Section 12.4 Potential Energy

We generalize in this section the notion of potential energy to the case of material systems subjected to mechanical actions. Consider two material systems \(\Sigma_1\) and \(\Sigma_2\) in motion relative to a referential \(\cE\text{.}\)

Subsection 12.4.1 Potential Energy Associated with External Actions

Definition 12.4.1. Potential Energy (External Action).

Material system \(\Sigma_2\) is said to possess a potential energy due to the action \(\{\cA_{\Si_1 \to \Si_2}\}\) relative to referential \(\cE\) if the corresponding power \(\Pow_{\Sigma _1 \rightarrow \Sigma _2 / \cE}\) can be written in the following form:
\begin{equation} \Pow _{ \Sigma _1 \rightarrow \Sigma _2 / \cE} = - \frac{d}{dt} \pot_{ \Sigma _1 \rightarrow \Sigma _2 / \cE}\tag{12.4.1} \end{equation}
The action \(\left\{ \cA_{\Sigma _1 \rightarrow \Sigma _2} \right\}\) is then said to derive from potential energy \(\pot_{ \Sigma _1 \rightarrow \Sigma _2 / \cE}\) relative to referential \(\cE\) (within an arbitrary additive constant).
Note that an action \(\{\cA_{\Si_1 \to \Si_2}\}\) may derive from a potential \(\pot_{ \Sigma _1 \rightarrow \Sigma _2 / \cE}\) relative to a referential \(\cE\text{,}\) but not relative to another referential \(\cF\text{.}\)

Example 12.4.2.

Assuming that the Earth’s gravitational field can be modeled by a constant gravitational acceleration \(\bog\text{,}\) show that the corresponding potential energy \(\pot^g _{\text{Earth} \rightarrow \Sigma/ \cE}\) can be expressed as:
\begin{equation*} \pot^g_{ \text{Earth} \rightarrow \Sigma / \cE} = - m_\Sigma \, {\bf g} \cdot {\bf r}_{OG_{\Sigma}} \end{equation*}
relative to a referential \(\cE\) (of origin \(O\)) attached to Earth.
Solution.
If the local force \(\bF^g_{\text{Earth} \rightarrow \Sigma} (P)\) at every point \(P\) of \(\Si\) takes the expression \(\rho (P) \bog\) (where \(\rho\) is the mass density), then the power \(\Pow^g _{\text{Earth} \rightarrow \Sigma/ \cE}\) is given by
\begin{equation*} \Pow^g _{\text{Earth} \rightarrow \Sigma/ \cE} = \int_\Si \rho (P) \bog \cdot \vel_{P/\cE} dV = \int_\Si \frac{d}{dt} (\bog \cdot \br_{OP}) dm = \frac{d}{dt} (m_\Si \bog \cdot \br_{OG_\Si}) \end{equation*}
leading to the expression \(\pot^g_{ \text{Earth} \rightarrow \Sigma / \cE} = - m_\Sigma \, {\bf g} \cdot {\bf r}_{OG_{\Sigma}}\text{.}\)

Example 12.4.3.

Figure 12.4.4 shows a wheel 1 of center \(C\) and radius \(R\) which rolls along the axis \((O,\bx_0)\) of a referential 0\((O,\bx_0,\by_0,\bz_0)\text{.}\) A rigid body 2 is constrained to slide along a groove of 1 along the line \((C,\bz_1)\text{.}\) The position of this system is defined by the variables \(x(t) = \br_{OC}\cdot \bx_0\text{,}\) angle \(\theta (t) = (\bz_0 , \bz_1)\) and \(l(t) = \br_{CA}\cdot \bz_1\) where \(A\) is a point attached to 2. Body 2 is subjected to the following action
\begin{equation*} \{\cA_{1\to 2}^{\text{s}}\} = \begin{Bmatrix} -k (l-l_0) \bz_1 \\ \bze \end{Bmatrix} _A \end{equation*}
due to the presence of a massless helicoidal spring mounted between 1 and 2 along line \((C,\bz_1)\) (\(k\) and \(l_0\) are constants).
Figure 12.4.4.
  1. Show that action \(\{\cA_{1\to 2}^{\text{s}}\}\) derive from a potential \(\pot^{\text{s}}_{1 \rightarrow 2/ 1}\text{.}\)
  2. Show that the power \(\Pow^{\text{s}}_{1 \rightarrow 2/ 0}\) cannot be determined from a potential \(\pot^{\text{s}}_{1 \rightarrow 2/ 0}\text{.}\)
Solution.
a. We can easily determine the power \(\Pow^{\text{s}}_{1 \rightarrow 2/ 1}\) as follows:
\begin{align*} \Pow^{\text{s}}_{1 \rightarrow 2/ 1} \amp = \{\cA_{1\to 2}^{\text{s}}\} \cdot \{\cV_{2/1}\}\\ \amp = \begin{Bmatrix} -k (l-l_0) \bz_1 \\\\ \bze \end{Bmatrix} _A \cdot \begin{Bmatrix} \bze \\\\ \dot{l} \bz_1 \end{Bmatrix} _A\\ \amp = -k (l-l_0) \dot{l} = -\frac{d}{dt}\Big( \frac{k}{2}(l-l_0)^2 \Big) \end{align*}
which shows that potential \(\pot^{\text{s}}_{1 \rightarrow 2/ 1}\) exists and is given by
\begin{equation*} \pot^{\text{s}}_{1 \rightarrow 2/ 1} = \frac{k}{2}(l-l_0)^2 \end{equation*}
b. We proceed as in the previous case to find power \(\Pow^{\text{s}}_{1 \rightarrow 2/ 0}\text{:}\)
\begin{align*} \Pow^{\text{s}}_{1 \rightarrow 2/ 0} \amp = \{\cA_{1\to 2}^{\text{s}}\} \cdot \{\cV_{2/0}\}\\ \amp = \begin{Bmatrix} -k (l-l_0) \bz_1 \\ \bze \end{Bmatrix} _A \cdot \begin{Bmatrix} \dte \by_0 \\ \dx \bx_0 + \dot{l} \bz_1 + l \frac{d\bz_1}{dt} \end{Bmatrix} _A\\ \amp = -k (l-l_0)(\dx \sin\theta+ \dot{l}) = -k(l-l_0) \dx\sin\te-\frac{d}{dt}\Big( \frac{k}{2}(l-l_0)^2 \Big) \end{align*}
using the fact that \(\bz_1 \cdot d\bz_1/dt =0\text{.}\) We see that in this case we cannot define a potential \(\pot^{\text{s}}_{1 \rightarrow 2/ 0}\text{.}\)

Subsection 12.4.2 Potential Energy of Interaction

Definition 12.4.5. Potential Energy of Interaction.

Two interacting material systems \(\Si_1\) and \(\Si_2\) are said to possess a potential energy of interaction if the corresponding power of interaction \(\Pow _{ \Sigma _1 \leftrightarrow \Sigma _2}\) can be expressed in the form
\begin{equation} \Pow _{ \Sigma _1 \leftrightarrow \Sigma _2} = - \frac{d}{dt}\pot_{\Sigma _1 \leftrightarrow \Sigma_2} \tag{12.4.2} \end{equation}
The interaction between \(\Si_1\) and \(\Si_2\) is then said to derive from potential energy \(\pot_{ \Sigma _1 \leftrightarrow \Sigma _2}\text{.}\)
Note that as power \(\Pow _{ \Sigma _1 \leftrightarrow \Sigma _2}\text{,}\) potential \(\pot_{ \Sigma _1 \leftrightarrow \Sigma _2}\) is independent of the referential \(\cE\) relative to which both material systems are observed.

Example 12.4.6.

Show that the potential energy associated with the gravitational interactions between \(\Sigma_1\) and \(\Sigma_2\) is given by:
\begin{equation*} \pot^g_{\Sigma _1 \leftrightarrow \Sigma _2} = - G \int_{\Sigma _1}\int_{\Sigma _2} \frac{dm(P_1) dm(P_2)} {\left| {\bf r}_{P_1 P_2} \right|} . \end{equation*}
Solution.
According to definition (12.3.2) we can express \(\Pow _{ \Sigma _1 \leftrightarrow \Sigma _2}\) as the sum \(\Pow^g _{ \Sigma _1 \rightarrow \Sigma _2/ \cE}+\Pow^g _{ \Sigma _2 \rightarrow \Sigma _1/ \cE}\) relative to some arbitrary referential \(\cE\text{:}\)
\begin{equation*} \Pow^g _{ \Sigma _1 \leftrightarrow \Sigma _2} = \int_{\Si_2} \bF^g_{1\to 2} (P_2) \cdot \vel_{P_2 / \cE} dV(P_2) + \int_{\Si_1} \bF^g_{2\to 1} (P_1) \cdot \vel_{P_1 / \cE} dV(P_1) \end{equation*}
with
\begin{equation*} \bF^g_{1\to 2} (P_2) = - G \rho (P_2) \int_{\Si_1}\frac {\br_{P_1 P_2}}{|\br_{P_1 P_2}|^3} dm(P_1) \end{equation*}
and
\begin{equation*} \bF^g_{2\to 1} (P_1) = - G \rho (P_1) \int_{\Si_2}\frac {\br_{P_2 P_1}}{|\br_{P_1 P_2}|^3} dm(P_2) \end{equation*}
leading to
\begin{align*} \Pow^g _{ \Sigma _1 \leftrightarrow \Sigma _2} \amp = -G \int_{\Si_1}\int_{\Si_2} \frac {\br_{P_1 P_2}}{|\br_{P_1 P_2}|^3} \cdot (\vel_{P_2 / \cE} -\vel_{P_1 /\cE}) dm(P_1)dm(P_2)\\ \amp = -G \int_{\Si_1}\int_{\Si_2} \frac {\br_{P_1 P_2}}{|\br_{P_1 P_2}|^3} \cdot \frac{d\br_{P_1 P_2}}{dt} dm(P_1)dm(P_2) \end{align*}
As expected the integrand is independent of the choice of referential \(\cE\) and can be expressed as
\begin{equation*} \frac {\br_{P_1 P_2}}{|\br_{P_1 P_2}|^3} \cdot \frac{d}{dt} \br_{P_1 P_2} = - \frac{d}{dt} \left( {1\over |\br_{P_1 P_2}|} \right) \end{equation*}
leading to the expression
\begin{equation*} \Pow _{ \Sigma _1 \leftrightarrow \Sigma _2} = \frac{d}{dt} \int_{\Si_1}\int_{\Si_2} G {dm(P_1)dm(P_2) \over |\br_{P_1 P_2}|} \end{equation*}
This gives the result sought.