Theorem 13.2.1. Lagrange Kinematic Formula.
Given a system \(\Sigma\) whose position is parametrized by \((n+1)\) variables \((\bq, t)\text{,}\) the acceleration of an arbitrary point \(P\) of the system satisfies
\begin{equation}
\ba_P \cdot \frac{\partial \br_{OP}}{\partial q_i} = \left[\frac{d}{dt}\left(\frac{\partial}{\partial \dq_i}\right) - \frac{\partial}{\partial q_i} \right] \frac{\vel_P^2}{2}\tag{13.2.1}
\end{equation}
where the variables \((\bq, \dbq, t)\) satisfy assumption (13.1.2).