Skip to main content

Problems 1.8 Problems

1.

Which of the two matrices
\begin{equation*} \begin{pmatrix} -1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \\ \end{pmatrix} \qquad \frac{1}{25} \begin{pmatrix} 9 \amp 12 \amp -20 \\ 12 \amp 16 \amp 15 \\ 20 \amp -15 \amp 0 \\ \end{pmatrix} \end{equation*}
represents a rotation?

2.

Find symmetric and skew-symmetric parts of the matrix of rotation \(\cR_{\frac{\pi}{3}, \bu}\) with \(\bu = (\be_1 + \be_2 +\be_3)/\sqrt{3}\text{.}\)

3.

If the given matrix is a rotation matrix, find its equivalent angle/axis representation in each case:
\begin{equation*} \begin{pmatrix} 0 \amp 0 \amp 1 \\ 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ \end{pmatrix} \qquad \frac{1}{25} \begin{pmatrix} 9 \amp 12 \amp -20 \\ 12 \amp 16 \amp 15 \\ 20 \amp -15 \amp 0 \\ \end{pmatrix} \end{equation*}
\begin{equation*} \frac{1}{3} \begin{pmatrix} -1 \amp2 \amp 2 \\ 2 \amp -1 \amp 2 \\ 2 \amp 2 \amp -1 \\ \end{pmatrix} \end{equation*}
Solution.
To find the equivalent angle/axis of a rotation \(\cR\text{,}\) we find the vectors which are invariant by the rotation, that is, satisfying \(\cR(\bV) = \bV\text{.}\) If this set is of dimension 1, we can identify one of two possible unit vectors \(\pm \bu\text{:}\) this gives the equivalent axis. To find the equivalent angle \(\al\text{,}\) we use \(2\cos\al + 1 = \text{trace}(\cR)\) (the so-called trace of \(\cR\)). To find angle \(\al\) uniquely, corresponding to the chosen \(\bu\text{,}\) we use
\begin{equation*} \sin\al = (\bv, \cR(\bv), \bu) \end{equation*}
where \(\bv\) is a unit vector normal to \(\bu\text{.}\)
Case 1: the matrix is a rotation. Setting the equality \(\cR(\bV) = \bV\) gives the equations
\begin{equation*} x_3 = x_1, \qquad x_1 = x_2, \qquad x_2 = x_3 \end{equation*}
This represents a 1-dimensional subspace of \(\mathbb{R}^3\) spanned by unit vector \(\bu = (\be_1 + \be_2 + \be_3)/\sqrt{3}\text{.}\) Choosing the unit vector \(\bv = (\be_1 - \be_2)/\sqrt{2}\) (which is normal to \(\bu\)) we find
\begin{equation*} 2 \cos\al +1 = 0, \qquad \sin\al = (\bv, \cR(\bv), \bu) = \frac{\sqrt{3}}{2} \end{equation*}
giving the unique angle \(\alpha = \frac{2\pi}{3}\) in interval \([0, 2\pi) \text{.}\)
Case 2: The matrix is a rotation. Solving \(\cR(\bV) = \bV\) gives \(\bu = (3\be_1 + 4 \be_2)/5\text{.}\) Choose \(\bv = \be_3\) and find \(\cos\al = 0\) and \(\sin \al =-1\text{:}\) \(\al = 3\pi/2\text{.}\)
Case 3: Proceed as in previous cases to find \(\cR = \cR_{\al, \bu}\) with \(\al = \pi \) and \(\bu = (\be_1 + \be_2 + \be_3)/ \sqrt{3}\text{.}\)
\(\blacksquare\)

4.

Given three real scalars \(a\text{,}\) \(b\text{,}\) and \(c\text{,}\) consider the following matrix
\begin{equation*} [A]_E = \begin{pmatrix} a \amp b \amp c \\ c \amp a \amp b \\ b \amp c \amp a \\ \end{pmatrix} \end{equation*}
  1. Show that \([A]_E\) is a rotation matrix if and only if \(a\text{,}\) \(b\) and \(c\) are the roots of the polynomial \(p(x)= x^3 - x^2 +k\text{,}\) with \(0 \leq k \leq 4/27\text{.}\)
  2. Describe the axis of this rotation.
Solution.
  1. On the basis \((\be_1 , \be_2 , \be_3)\text{,}\) the three column vectors of matrix \([A]_E\) are
    \begin{gather*} \bc_1 = a\be_1 + c \be_2 + b \be_3\\ \bc_2 = b\be_1 + a \be_2 + c \be_3\\ \bc_3 = c\be_1 + b \be_2 + a \be_3 \end{gather*}
    We need to impose that these 3 vectors have magnitude 1 and are mutually perpendicular: this yields 2 equations
    \begin{equation*} a^2 + b^2 + c^2 =1, \qquad ab+ ac+ bc = 0 \qquad{[1-2]} \end{equation*}
    To be a rotation, we also need to impose that \(\det[A_E]= 1\text{:}\) this gives
    \begin{equation*} a^3 +b^3 + c^3 -3abc =1\qquad{[3]} \end{equation*}
    We also know the following identities between any 3 real parameters \((a,b,c)\text{:}\)
    \begin{equation*} (a+b+c)^2 = (a^2 + b^2 + c^2) + 2(ab+ ac+ bc) \end{equation*}
    \begin{equation*} (a+b+c)^3 = (a^3+b^3+c^3)+ 3(a+b+c)(ab+ac+bc) - 3abc \end{equation*}
    If we take into account [1-3], we find that these identities give
    \begin{equation*} (a+b+c)^2 = 1 \end{equation*}
    and
    \begin{equation*} (a+b+c)^3 = 1 \end{equation*}
    So it becomes clear that a necessary and sufficient condition for \([A]_E\) to be a rotation matrix is that the following 2 conditions are imposed:
    \begin{equation*} \boxed{ a + b + c =1, \qquad ab+ ac+ bc = 0 } \qquad{[4-5]} \end{equation*}
    Any three real values \((a,b,c)\) can always be found as the root of a polynomial of the type
    \begin{equation*} P(x)= (x-a)(x-b)(x-c) \end{equation*}
    which can also be written as
    \begin{equation*} P(x)= x^3 - (a+b+c) x^2 + (ab+ ac+ bc) x - abc \end{equation*}
    If we impose [4-5], this polynomial becomes
    \begin{equation*} P(x) = x^3 -x^2 +k \end{equation*}
    where \(k= -abc\) is a real parameter. Not any value of \(k\) is acceptable since \(P(x)\) must have 3 real roots (possibly multiple). By finding \(P'(x) = 3x^2 -2x\) we find that \(P\) has a maximum at \(x=0\) and a minimum at \(x=2/3\text{.}\) For 3 real roots to occur, we need to impose \(P(0)=k \geq 0\) and \(P(2/3)= k- 4/27 \leq 0\text{.}\) This gives the necessary and sufficient condition
    \begin{equation*} \boxed{0 \leq k \leq 4/27}\text{.} \end{equation*}
  2. To find the axis, we solve \(\cR (\bV) = \bV\) which gives the equations
    \begin{gather*} (a-1)x_1 + b x_2 + c x_3 = 0\\ c x_1 + (a-1) x_2 + b x_3 =0\\ bx_1 + cx_2 + (a-1) x_3 = 0 \end{gather*}
    Two linear independent equations can be obtained
    \begin{gather*} (b(a-1)-c^2)x_1 + (b^2 -c(a-1))x_2 =0\\ (b(a-1)-c^2)x_2 + (b^2 -c(a-1))x_3 =0 \end{gather*}
    We substitute \(a-1 = -b-c\) in the last equations
    \begin{equation*} (-b^2 -c^2 -bc) x_1 + (b^2 +c^2 +bc) x_2 =0 \end{equation*}
    which gives \(x_1 = x_2\) if \(b^2+c^2 +bc \neq 0\text{.}\) Likewise we obtain \(x_2=x_3\text{.}\) We conclude that the axis of \(\cR\) is directed along \(\bu = (\be_1 + \be_2 + \be_3)/\sqrt{3}\text{.}\)
    To find the angle we use \(2 \cos\al +1 = \text{trace}(\cR) = 3a\text{.}\) We use unit vector \(\bv = (\be_1 - \be_2)/\sqrt{2}\) we find
    \begin{equation*} \sin\al = (\bv, \cR(\bv), \bu) = \frac{1}{2\sqrt{3}} (3c-3b) = \frac{\sqrt{3}}{2} (c-b) \end{equation*}
    In conclusion, angle \(\al\) satisfies
    \begin{equation*} \boxed{ \cos\al = \frac{3a-1}{2}, \quad \sin\al=\frac{\sqrt{3}}{2} (c-b) } \end{equation*}
    Example 1: choose \(a=0\text{,}\) \(b=0\) and \(c=1\text{.}\) The conditions [4-5] are satisfied and angle \(\al\) is given by
    \begin{equation*} \cos\al = -1/2, \quad \sin\al = \frac{\sqrt{3}}{2} \end{equation*}
    The solution is \(\al= 2\pi/3\text{.}\)
    Example 2: choose \(a=-1\text{,}\) \(b=c=2\text{.}\) Again conditions [4-5] are satisfied and we find \(\al=\pi\text{.}\)
\(\blacksquare\)

5.

Consider the equivalent rotation \(\cR_{\al,\bu}\) corresponding to rotation \(\cR_{BE}\) which maps a basis of \(\cE\) to a basis of \(\cB\text{.}\) When the equivalent angle \(\alpha\) is close to \(\pi\text{,}\) show that the equations
\begin{equation*} u_k^2 = \frac{c_{kk} - \cos\al}{1-\cos\al}, \quad k=1,2,3 \end{equation*}
can be used to determine \(\bu =u_1\be_1 + u_2 \be_2 + u_3 \be_3\text{,}\) with \(c_{ij}= \be_i\cdot \bhb_j\text{.}\)

6.

Consider the equivalent rotation \(\cR_{\al,\bu}\) which maps basis \((\be_1,\be_2,\be_3)\) of \(\cE\) to basis \((\bhb_1 ,\bhb_2 ,\bhb_3)\) of body \(\cB\text{.}\) Let \((\bha_1, \bha_2, \bha_3)\) be an auxiliary basis.
  1. Show that the skew-symmetric operator \(\cU: \; \bV \mapsto \bu\times \bV\) satisfies
    \begin{equation*} 2\sin\al \; \cU = \cR_{AB}\circ \cR_{EA}^T - \cR_{EA}\circ \cR_{AB}^T \end{equation*}
  2. Deduce that the equivalent axis and angle satisfy
    \begin{equation*} 2\sin\alpha \; \bu = \be_1 \times \bhb_1 + \be_2 \times \bhb_2+ \be_3 \times \bhb_3 \end{equation*}

7.

Find the mapping of \(\bV =x \be_1+y\be_2 +z\be_3\) by the rotation of angle \(\al =2\pi/3\) about \((\be_1+\be_2+\be_3)\text{.}\) Describe the mapping of the unit cube by this rotation.

8.

Prove the identity
\begin{equation*} \bU \times (\bV\times \bW) = (\bU\cdot \bW) \bV - (\bU\cdot \bV) \bW \end{equation*}
given 3 vectors \(\bU, \bV\) and \(\bW\) by a quaternion calculus.

9.

Consider the quaternion \(Q= \frac{1}{2} +\frac{1}{2}\be_1 +\frac{1}{2} \be_2 +\frac{1}{2} \be_3\text{.}\)
  1. Find \(Q+\conjQ\) and \(Q\conjQ\text{:}\) deduce \(Q^2\text{.}\)
  2. Find \(Q^2 -Q+1\text{:}\) deduce \(Q^3\text{.}\)

10.

Given two real numbers \(q_0\) and \(q_1\text{,}\)
  1. find the quaternions \(Q\) which satisfy \(Q \be_1 = \be_1 (q_0+ q_1 \be_1)\text{.}\) Deduce the value of \(Q_\te \be_1 \conjQ_\te\) for \(Q_\te = \cos\frac{\te}{2} + \be_1 \sin\frac{\te}{2}\text{.}\)
  2. find the quaternions \(Q\) which satisfy \(Q \be_2 = \be_2 (q_0+ q_1 \be_1)\text{.}\) Deduce the value of \(Q_\te \be_2 \conjQ_\te\) for \(Q_\te = \cos\frac{\te}{2} + \be_1 \sin\frac{\te}{2}\text{.}\)

11.

Show that the multiplication of quaternions is associative, that is, \(Q_1 (Q_2 Q_3) = (Q_1 Q_2) Q_3\) for any three quaternions \(Q_1\text{,}\) \(Q_2\) and \(Q_3\text{.}\)

12.

Find the quaternions \(Q\) which satisfy \(QQ_0 = Q_0 Q\) for all \(Q_0 \in \mathbb{H}\text{.}\)

13.

We define quaternion \(e^{Q}\) as the formal expansion \(1+ Q + \tfrac{1}{2} Q^2 + \cdots+ \frac{Q^n}{n!} + \cdots\text{.}\) Given a pure unit quaternion \(0+\bu\) and a real number \(\te\text{,}\) show that
\begin{equation*} e^{\te \bu} = \cos\te + \sin\te \bu \end{equation*}
Conclude that any unit quaternion can be put in the form \(e^{\te \bu}\text{.}\) Is \(e^{\te \bu} e^{\phi \bv}\) equal to \(e^{\te\bu+\phi\bv}\text{?}\)
Solution.
To show that \(e^{\te \bu} = \cos\te + \sin\te \bu\) we need to find the powers of quaternion \(0+\bu\text{:}\)
\begin{equation*} (0+\bu)^2 = -1 \end{equation*}
\begin{equation*} (0+\bu)^3= -\bu \end{equation*}
\begin{equation*} (0+\bu)^4 = 1 \end{equation*}
and more generally
\begin{equation*} (0+\bu)^{2n} = (-1)^n , \qquad (0+\bu)^{2n+1} = (-1)^n \bu \end{equation*}
This gives
\begin{equation*} e^{\te u} = 1+ \te \bu - \frac{\te^2}{2!} - \frac{\te^3}{3!} \bu + \cdots = (1 - \frac{\te^2}{2!}+ \frac{\te^4}{3!}+ \cdots) + (\te - \frac{\te^3}{3!} + \cdots ) \bu \end{equation*}
We recognize the Taylor series of \(\cos\te\) and \(\sin\te\text{:}\)
\begin{equation*} e^{\te u} = \cos\te + \sin\te \bu \end{equation*}
To show whether \(e^{\te \bu} e^{\phi \bv}\) is equal to \(e^{\te \bu + \phi \bv}\text{,}\) we could
  1. find out if these 2 quaternions agree at all orders of \(\te\) and \(\phi\) (they are not equal at order 2),
  2. consider the particular case \(\te=\phi\) and \(\bu= \bv\) and show that the corresponding quaternions are not equal,
  3. or simply realize that \(e^{\te \bu} e^{\phi \bv} \neq e^{\phi \bv} e^{\te \bu}\text{,}\) in contradiction with \(e^{\te \bu + \phi \bv} = e^{\phi \bv+ \te \bu}\text{.}\)
We conclude that \(e^{\te \bu} e^{\phi \bv}\) is not equal to \(e^{\te \bu + \phi \bv}\text{.}\)

14.

Show that the set \(S^3\) of unit quaternions forms a group under the multiplication rule, that is,
  1. if \(P, Q \in S^3\text{,}\) then \(PQ \in S^3\) (closure),
  2. for all \(P,Q,R \in S^3\text{,}\) \(P (QR)= (PQ)R\) (associativity),
  3. \(1 \in S^3\) and for all \(Q \in S^3\text{,}\) \(1Q= Q1\) (identity element),
  4. For each \(Q \in S^3\) there exists \(Q^{-1} \in S^3\) such that \(Q Q^{-1} = Q^{-1} Q = 1\) (inverse).

15.

Show that for all non-zero quaternion \(Q\) there exist a unique a positive real number \(\la\) and a unique unit quaternion \(R\) such that \(Q= \la R\text{.}\)

16.

Given two quaternions \(Q= q_0 + \bq\) and \(Q'=q'_0 + \bq'\text{,}\) consider the bilinear form \(\langle Q, Q' \rangle = q_0 q_0' + \bq\cdot \bq'\text{.}\)
  1. Show that \(\langle . , . \rangle\) defines a scalar product in \(\mathbb{H}\text{.}\)
  2. Given two quaternions \(Q\) and \(R\text{,}\) show that the following three statements are equivalent:
    (i) \(Q\) and \(R\) are orthogonal, that is, \(\langle Q, R \rangle = 0\)
    (ii) \(Q\bar{R}\) is a pure quaternion,
    (iii) \(Q\bar{R} + R\bar{Q}= 0\text{.}\)

17.

In referential \(\cE (O,\be_1, \be_2,\be_3)\text{,}\) consider the rotations \(\cR_{\al,\be_1}\text{,}\) \(\cR_{\beta,\be_2}\) and \(\cR_{\ga,\be_3}\text{.}\)
  1. Find the equivalent angle and axis of rotation \(\cR_{\al,\be_1} \circ \cR_{\beta,\be_2}\text{.}\)
  2. Find the quaternion associated with rotation \(\cR_{\al,\be_1} \circ \cR_{\beta,\be_2} \circ \cR_{\ga,\be_3}\text{.}\)

18.

Let \(Q = q_0 + q_1 \be_1 +q_2 \be_2 + q_3 \be_3\) be a quaternion. Define the 4x4 matrix \([\cM]\) as follows
\begin{equation*} [\cM] = \begin{pmatrix} q_0 \amp -q_1 \amp -q_2 \amp-q_3 \\ q_1 \amp q_0 \amp -q_3 \amp q_2\\ q_2 \amp q_3 \amp q_0 \amp -q_1 \\ q_3 \amp -q_2 \amp q_1 \amp q_0 \end{pmatrix} \end{equation*}
  1. Show that \(Q=1\) corresponds to the diagonal matrix \([\cM] = \text{diag}(1,1,1,1)\text{.}\)
  2. Show that the conjugate \(\conjQ\) of \(Q\) corresponds to \([\cM]^T\text{,}\) and that the inverse \(Q^{-1}\) of \(Q\) corresponds to \([\cM]^{-1}= \frac{1}{|Q|^2}[\cM]^T\text{.}\)
  3. Show that if \(Q\) is a unit quaternion, then \([\cM]^{-1} = [\cM]^T\text{.}\)
  4. Show that if \(Q_3 = Q_1 Q_2\) corresponds to \([\cM_3]= [\cM_1][\cM_2]\text{.}\)
Solution.
Let \(Q = q_0 + q_1 \be_1 +q_2 \be_2 + q_3 \be_3\) be a quaternion. Define the 4x4 matrix \([\cM]\) as follows
\begin{equation*} [\cM] = \begin{pmatrix} q_0 \amp -q_1 \amp -q_2 \amp -q_3 \\ q_1 \amp q_0 \amp -q_3 \amp q_2\\ q_2 \amp q_3 \amp q_0 \amp -q_1 \\ q_3 \amp -q_2 \amp q_1 \amp q_0 \end{pmatrix} \end{equation*}
  1. \(Q=1\) corresponds to the identity matrix \(M_{ij}= \delta_{ij}\text{.}\)
  2. The conjugate \(\conjQ\) of \(Q\) is the quaternion \(q_0 - q_1 \be_1 -q_2 \be_2 - q_3 \be_3\) and it corresponds to the transpose of \([\cM]\text{.}\)
    The inverse \(Q^{-1}\) of \(Q\) is given by
    \begin{equation*} Q^{-1} = \frac{\conjQ}{|Q|^2} \end{equation*}
    corresponds to matrix \(\frac{1}{|Q|^2} [\cM]^T\) which is in fact the inverse \([\cM]^{-1}\) of \([\cM]\text{.}\)
  3. If \(Q\) is a unit quaternion, then \(|Q|=1\) and \(Q^{-1}\) corresponds to matrix \([\cM]^{-1} = [\cM]^T\text{.}\)
  4. If \(Q = (q_0 + \bq)(r_0 + \br)\text{,}\) then
    \begin{align*} Q \amp = q_0 r_0 - \bq\cdot \br + q_0 \br+ r_0 \bq + \bq\times \br\\ \amp = (q_0 r_0 - q_1 r_1 -q_2 r_2 -q_3 r_3) + q_0 (r_1 \be_1 +r_2 \be_2 + r_3 \be_3) + r_0 (q_1 \be_1 +q_2 \be_2 + q_3 \be_3)\\ \amp \quad + (q_2 r_3 -q_3 r_2)\be_1 + (q_3 r_1 -q_1 r_3) \be_2 + (q_1 r_2 -q_2 r_1)\be_3 \end{align*}
    corresponds to the matrix
    \begin{equation*} \begin{pmatrix} Q_0 \amp -Q_1 \amp -Q_2 \amp -Q_3 \\ Q_1 \amp Q_0 \amp -Q_3 \amp Q_2\\ Q_2 \amp Q_3 \amp Q_0 \amp -Q_1 \\ Q_3 \amp -Q_2 \amp Q_1 \amp Q_0 \end{pmatrix} \end{equation*}
    with
    \begin{equation*} Q_0= q_0 r_0 - q_1 r_1 -q_2 r_2 -q_3 r_3 \end{equation*}
    \begin{equation*} Q_1 = q_0 r_1+ r_0 q_1 + (q_2 r_3 -q_3 r_2) \end{equation*}
    \begin{equation*} Q_2 = q_0 r_2+ r_0 q_2 + (q_3 r_1 -q_1 r_3) \end{equation*}
    \begin{equation*} Q_3 = q_0 r_3+ r_0 q_3 + (q_1 r_2 -q_2 r_1) \end{equation*}
    which can be shown to be equal to the product
    \begin{equation*} \begin{pmatrix} q_0 \amp -q_1 \amp -q_2 \amp -q_3 \\ q_1 \amp q_0 \amp -q_3 \amp q_2\\ q_2 \amp q_3 \amp q_0 \amp -q_1 \\ q_3 \amp -q_2 \amp q_1 \amp q_0 \end{pmatrix} \begin{pmatrix} r_0 \amp -r_1 \amp -r_2 \amp -r_3 \\ r_1 \amp r_0 \amp -r_3 \amp r_2\\ r_2 \amp r_3 \amp r_0 \amp -r_1 \\ r_3 \amp -r_2 \amp r_1 \amp r_0 \end{pmatrix} \end{equation*}
\(\blacksquare\)

19.

In basis \((\be_1,\be_2,\be_3)\) of referential \(\cE\) a rigid body is subject to the displacement \(P\in \cB \mapsto P'\) described by the equations
\begin{equation*} x'_1 = x_3, \qquad x'_2 = x_1, \qquad x_3 ' = x_2 \end{equation*}
Show that this displacement is a rotation about \(O\text{.}\) Find its equivalent angle and direction.

20.

In basis \((\be_1,\be_2,\be_3)\) of referential \(\cE\) a rigid body is subject to the displacement \(P\in \cB \mapsto P'\) described by the equations
\begin{align*} x'_1 \amp= -\frac{2}{3}x_1 - \frac{1}{3}x_2+ \frac{2}{3}x_3 +1 \\ x'_2 \amp= \frac{2}{3}x_1 - \frac{2}{3}x_2+ \frac{1}{3}x_3 +1 \\ x_3' \amp= \frac{1}{3}x_1 + \frac{2}{3}x_2+ \frac{2}{3}x_3 +3 \end{align*}
Show that this is a valid displacement and find the corresponding screw parameters (screw axis, angle and pitch).

21.

Repeat Exercise 1.8.20 for the following transformation
\begin{align*} x'_1 \amp= \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{\sqrt{2}}{2} x_3 + \frac{-3+\sqrt{2}}{2} \\ x'_2 \amp= \frac{1}{2}x_1 + \frac{1}{2}x_2+ \frac{\sqrt{2}}{2} x_3 - \frac{1+\sqrt{2}}{2} \\ x_3' \amp= \frac{\sqrt{2}}{2} x_1 + \frac{\sqrt{2}}{2} x_2+ x_3 + + \frac{\sqrt{2}}{2} \end{align*}

22.

Show that it is not possible to find a displacement of the unit sphere which keeps its center fixed and displaces every point of its surface.

23.

Figure 1.8.1 shows two configurations of a rigid body in the shape of a unit cube, where \(A\) is mapped into \(A_1\text{,}\) \(B\) into \(B_1\text{,}\) etc. Consider the rotation which maps basis \((\bi,\bj,\bk)\) into \((\bi_1,\bj_1,\bk_1)\text{.}\)
  1. Find its matrix representation on basis \((\bi,\bj,\bk)\text{,}\) then on basis \((\bi_1,\bj_1,\bk_1)\text{.}\)
  2. Find its equivalent representation \(\cR_{\alpha, \bu}\) and the corresponding unit quaternion.
  3. Find the screw parameters (screw axis, angle and pitch) of the displacement which takes the body from the initial configuration to its final configuration.
Figure 1.8.1.