Skip to main content Contents Index
Prev Up Next \(\newcommand{\val}{Val\text{00E9}ry}
\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\cA}{{\mathcal{A}}}
\newcommand{\cB}{{\mathcal{B}}}
\newcommand{\cC}{{\mathcal{C}}}
\newcommand{\cD}{{\mathcal{D}}}
\newcommand{\cE}{{\mathcal{E}}}
\newcommand{\cF}{{\mathcal{F}}}
\newcommand{\cG}{{\mathcal{G}}}
\newcommand{\cH}{{\mathcal{H}}}
\newcommand{\cI}{{\mathcal{I}}}
\newcommand{\cJ}{{\mathcal{J}}}
\newcommand{\cL}{{\mathcal{L}}}
\newcommand{\cM}{{\mathcal{M}}}
\newcommand{\Pow}{{\mathbb{P}}}
\newcommand{\cP}{{\mathcal{P}}}
\newcommand{\cR}{{\mathcal{R}}}
\newcommand{\cS}{{\mathcal{S}}}
\newcommand{\cT}{{\mathcal{T}}}
\newcommand{\cU}{{\mathcal{U}}}
\newcommand{\cV}{{\mathcal{V}}}
\newcommand{\cW}{{\mathcal{W}}}
\newcommand{\cX}{{\mathcal{X}}}
\newcommand{\bze}{{\bf 0}}
\newcommand{\bA}{{\bf A}}
\newcommand{\ba}{{\bf a}}
\newcommand{\bha}{{\bf \hat{a}}}
\newcommand{\bB}{{\bf B}}
\newcommand{\bob}{{\bf b}}
\newcommand{\bhb}{{\bf \hat{b}}}
\newcommand{\bC}{{\bf C}}
\newcommand{\bc}{{\bf c}}
\newcommand{\bhc}{{\bf \hat{c}}}
\newcommand{\bD}{{\bf D}}
\newcommand{\bod}{{\bf d}}
\newcommand{\be}{{\bf \hat{e}}}
\newcommand{\bef}{{\bf \hat{f}}}
\newcommand{\bof}{{\bf f}}
\newcommand{\force}{{\bf f}}
\newcommand{\bF}{{\bf F}}
\newcommand{\tbF}{\tilde{\bf F}}
\newcommand{\bG}{{\bf G}}
\newcommand{\bog}{{\bf g}}
\newcommand{\bg}{{\bf g}}
\newcommand{\bH}{{\bf H}}
\newcommand{\bh}{{\bf h}}
\newcommand{\bI}{{\bf I}}
\newcommand{\bi}{{\boldsymbol{\hat{\imath}}}}
\newcommand{\bj}{{\boldsymbol{\hat{\jmath}}}}
\newcommand{\bk}{{\bf \hat{k}}}
\newcommand{\bK}{{\bf \hat{K}}}
\newcommand{\bL}{{\bf L}}
\newcommand{\bl}{\mathbfit{l}}
\newcommand{\bM}{{\bf M}}
\newcommand{\bn}{{\bf \hat{n}}}
\newcommand{\bq}{{\bf q}}
\newcommand{\conjQ}{\overline{Q}}
\newcommand{\conjP}{\bar{P}}
\newcommand{\bp}{{\bf p}}
\newcommand{\br}{{\bf r}}
\newcommand{\bs}{{\bf s}}
\newcommand{\bS}{{\bf S}}
\newcommand{\bR}{{\bf R}}
\newcommand{\bT}{{\bf T}}
\newcommand{\bt}{{\bf \hat{t}}}
\newcommand{\bu}{{\bf \hat{u}}}
\newcommand{\buu}{{\bf {u}}}
\newcommand{\bU}{{\bf U}}
\newcommand{\vel}{{\bf v}}
\newcommand{\bV}{{\bf V}}
\newcommand{\bv}{{\bf \hat{v}}}
\newcommand{\bvv}{{\bf {v}}}
\newcommand{\vv}{{\bf v}^*}
\newcommand{\bww}{{\bf {w}}}
\newcommand{\pvel}{{\bf w}}
\newcommand{\bW}{{\bf W}}
\newcommand{\bw}{{\bf \hat{w}}}
\newcommand{\bx}{{\bf \hat{x}}}
\newcommand{\bxx}{{\bf x}}
\newcommand{\bX}{{\bf X}}
\newcommand{\bY}{{\bf Y}}
\newcommand{\by}{{\bf \hat{y}}}
\newcommand{\byy}{{\bf y}}
\newcommand{\bz}{{\bf \hat{z}}}
\newcommand{\bom}{\boldsymbol{\omega}}
\newcommand{\bde}{\mathbf{\delta}}
\newcommand{\bOm}{\boldsymbol{\Omega}}
\newcommand{\bal}{\boldsymbol{\alpha}}
\newcommand{\bomFE}{{\boldsymbol{\omega}}_{\cF/\cE}}
\newcommand{\bomBA}{{\boldsymbol{\omega}}_{\cB/\cA}}
\newcommand{\bGa}{\boldsymbol{\Gamma}}
\newcommand{\btau}{\hat{\boldsymbol{\tau}}}
\newcommand{\rot}{\boldsymbol{\tau}}
\newcommand{\grad}{\boldsymbol{\nabla}}
\newcommand{\iner}{{\cal I}_B}
\newcommand{\inerG}{{\cal I}_G}
\newcommand{\Earth}{\text{Earth}}
\newcommand{\Arrow}{\mbox {$\longrightarrow$}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\al}{\alpha}
\newcommand{\ep}{\epsilon}
\newcommand{\ga}{\gamma}
\newcommand{\te}{\theta}
\newcommand{\la}{\lambda}
\newcommand{\om}{\omega}
\newcommand{\Om}{\Omega}
\newcommand{\ro}{\rho}
\newcommand{\Si}{\Sigma}
\newcommand{\pSi}{{\partial \Sigma}}
\newcommand{\bSi}{{\bar{\Sigma}}}
\newcommand{\si}{\sigma}
\newcommand{\dl}{\dot{l}}
\newcommand{\ddl}{\ddot{l}}
\newcommand{\dep}{\dot{\ep}}
\newcommand{\ddep}{\ddot{\ep}}
\newcommand{\ddbe}{\ddot{\beta}}
\newcommand{\dbe}{\dot{\beta}}
\newcommand{\dal}{\dot{\alpha}}
\newcommand{\ddal}{\ddot{\alpha}}
\newcommand{\ddga}{\ddot{\gamma}}
\newcommand{\dphi}{\dot{\phi}}
\newcommand{\ddphi}{\ddot{\phi}}
\newcommand{\dpsi}{\dot{\psi}}
\newcommand{\ddpsi}{\ddot{\psi}}
\newcommand{\dte}{\dot{\te}}
\newcommand{\ddte}{\ddot{\te}}
\newcommand{\dom}{\dot{\om}}
\newcommand{\dx}{\dot{x}}
\newcommand{\ddx}{\ddot{x}}
\newcommand{\dX}{\dot{X}}
\newcommand{\ddX}{\ddot{X}}
\newcommand{\dy}{\dot{y}}
\newcommand{\ddy}{\ddot{y}}
\newcommand{\dY}{\dot{Y}}
\newcommand{\ddY}{\ddot{Y}}
\newcommand{\dz}{\dot{z}}
\newcommand{\dZ}{\dot{Z}}
\newcommand{\ddz}{\ddot{z}}
\newcommand{\ddZ}{\ddot{Z}}
\newcommand{\Dp}{\dot{p}}
\newcommand{\ddr}{\ddot{r}}
\newcommand{\dr}{\dot{r}}
\newcommand{\dq}{\dot{q}}
\newcommand{\dQ}{\dot{Q}}
\newcommand{\tq}{\tilde{q}}
\newcommand{\ddq}{\ddot{q}}
\newcommand{\dbq}{\dot{{\bf q}}}
\newcommand{\ddbq}{\ddot{{\bf q}}}
\newcommand{\dds}{\ddot{s}}
\newcommand{\ds}{\dot{s}}
\newcommand{\dro}{\dot{\ro}}
\newcommand{\ddro}{\ddot{\ro}}
\newcommand{\dv}{\dot{v}}
\newcommand{\du}{\dot{u}}
\newcommand{\bSi}{\overline{\Sigma}}
\newcommand{\coB}{\overline{{\cal B}}}
\newcommand{\kin}{\mathbb{K}}
\newcommand{\qQ}{{\mathbb{Q}}}
\newcommand{\pot}{{\mathbb{U}}}
\newcommand{\hal}{{\mathbb{H}}}
\newcommand{\lag}{{\mathbb{L}}}
\newcommand{\gib}{{\mathbb{S}}}
\newcommand{\energ}{{\mathbb{E}}}
\newcommand{\danger}{\text{⚠}}
\newcommand{\ddanger}{\text{⚠}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 3.5 Angular Acceleration
Definition 3.5.1 . Angular acceleration of a rigid body.
The angular acceleration of rigid body \(\cB\) relative to referential (or rigid body) \(\cA\text{,}\) denoted by \(\bal_{\cB/\cA}\text{,}\) is defined as
\begin{equation}
\bal_{\cB/\cA} = \left( {d\over dt} \bom _{\cB / \cA} \right)_{\cA}\tag{3.5.1}
\end{equation}
\(\ddanger\) Note that the loop identity for angular velocities does not extend to angular accelerations, that is
\begin{equation*}
\bal_{\cA/\cB}+ \bal_{\cB/\cC} +\bal_{\cC/\cA} \neq \bze
\end{equation*}
for general motions between
\(\cA\text{,}\) \(\cB\text{,}\) and
\(\cC\text{.}\) See
Exercise 3.7.1 .
It is also possible to express angular acceleration
\(\bal_{\cB/\cA}\) in terms of unit quaternion
\(Q_{\cB/\cA}\) and its second derivative: by differentiating
(3.4.1) we find that
\(\bal_{\cB/\cA}\) is given by
\begin{equation}
\bal_{\cB/\cA} = 2 \, \text{Vect}( \frac{d^2 Q_{\cB/\cA} }{dt^2}\, \conjQ_{\cB/\cA} )\tag{3.5.2}
\end{equation}
where \(\text{Vect}(Q)\) denotes the vector part of quaternion \(Q\text{.}\)
Proof.
We take the time-derivative of
(3.4.1) to obtain
\begin{equation*}
\bal_{\cB/ \cA} = 2 \,\frac{d^2Q}{dt^2} \conjQ + 2\,\frac{dQ}{dt}\frac{d\conjQ}{dt}
\end{equation*}
We then need to show that quaternion \(R= \frac{dQ}{dt}\frac{d\conjQ}{dt}\) is a scalar: we find \(R= - \frac{dQ}{dt}\conjQ\frac{dQ}{dt}\conjQ\text{.}\) It is easily shown that \(\overline{R}= R\text{.}\)
Example 3.5.3 .
Find
\(\bal_{\cC / \cE}\) for the gyroscopic system of
Example 3.2.15 . Compare
\(\bal_{\cC / \cE}\) with
\(\bal_{\cC / \cB}+\bal_{\cB / \cA} +\bal_{\cA / \cE}\text{.}\)
Solution .
With \(\bom_{\cC /\cE} = \dot{\al} \be_{3}
+\dot{\beta} \bha_{1}+\dot{\ga} \bhb_{2}\text{,}\) we find
\begin{align*}
\bal_{\cC / \cE} \amp = \ddot{\al} \be_{3}
+\ddot{\beta} \bha_{1} + \dot{\beta} \bom_{\cA/ \cE}\times \bha_{1}
+\ddot{\ga} \bhb_{2} + \dot{\ga} \bom_{\cB / \cE} \times \bhb_{2} \\
\amp = \ddot{\al} \be_{3} +\ddot{\beta} \bha_{1} +
\dot{\beta} \dot{\al}\bha_{2} +\ddot{\ga} \bhb_{2} + \dot{\ga}(\dot{\beta}
\bhb_{3}
- \dot{\al}\cos\beta \bha_{1})
\end{align*}
One can easily verify that \(\bal_{\cC /\cE}\) is not equal to the sum \(\bal_{\cC / \cB}+\bal_{\cB / \cA} +\bal_{\cA / \cE}\text{,}\) since \(\bal_{\cC / \cB} = \ddot{\ga} \,\bhb_{2} ,\quad
\bal_{\cB / \cA} =\ddot{\beta} \,\bha_{1}\text{,}\) and \(\quad \bal_{\cA / \cE} = \ddot{\al} \,\be_{3}\text{.}\)