university, college and ME homepages
Dr. Lian-Ping (Huanlin) Wang

 
 

Refereed Journal Publications


2021
  • [142] Wang GC, Ma YF, Peng C, Liu TS, Wang L-P, 2021, Estimation of the dissipation rate of turbulent kinetic energy: a review. Chem. Eng. Sci., 229, 116133. doi: 10.1016/j.ces.2020.116133

  •  
  • [141] Chen T, Wang L-P, Lai J, Chen SY, 2021, Inverse design of mesoscopic models for compressible flow using the Chapman-Enskog analysis Advances in Aerodynamics, 3:5. doi: 10.1186/s42774-020-00059-2

  •  
  • [140] Wen X, Wang L-P, Guo ZL, Zhakebayev DB, 2021, Laminar to turbulent flow transition inside the boundary layer adjacent to isothermal wall of natural convection flow in a cubical cavity. Int. J. Heat Mass Transfer, 167, 120822. doi: 10.1016/j.ijheatmasstransfer.2020.120822

2020
  • [139] Wang XJ, Wan MP, Yang Y, Wang L-P, Chen SY, 2020, Reynolds number dependence of heavy particles clustering in homogeneous isotropic turbulence Phys. Rev. Fluids, 5, 124603. doi: 10.1103/PhysRevFluids.5.124603

  •  
  • [138] Chen T, Wen X, Wang L-P, Guo ZL, Wang JC, Chen SY, 2020, Simulation of three-dimensional compressible decaying isotropic turbulence using a redesigned discrete unified gas kinetic scheme. Phys. Fluids, 32, 125104. doi: https://doi.org/10.1063/5.0029424

  •  
  • [137] Zheng WJ, Shen CY, Wang L-P, Jin Y, 2020, An Empirical Soil Water Retention Model Based on Probability Laws for Pore Size Distribution Vadose Zone J., 19: e20065. doi: 10.1002/vzj2.20065

  •  
  • [136] Li X, Dong ZQ, Yu P, Niu X-D, Wang L-P, Li D-C, and Yamaguchi H, 2020, Numerical investigation of magnetic multiphase flow by the fractional-step-based multiphase lattice Boltzmann method. Phys. Fluids, 32, 083309. doi: https://doi.org/10.1063/5.0020903

  •  
  • [135] Ahangar EK, Kharmiani SF, Khakhian SD, Wang L-P, 2020, A lattice Boltzmann study of rarefied gaseous flow with convective heat transfer in backward facing micro-step. Phys. Fluids, 32, 062005. doi: https://doi.org/10.1063/5.0008325

  •  
  • [134] Pordanjani AH, Vahedi SM, Aghakhani S, Afrand M, Mahian O, Wang L-P, 2020, Multivariate Optimization and sensitivity analyses of relevant parameters on efficiency of scraped surface heat exchanger. Applied Thermal Engr., 178: 115445. doi: 10.1016/j.applthermaleng.2020.115445

  •  
  • [133] Rosa B, Pozorski J, and Wang L-P, 2020, Effects of turbulence modulation and gravity on particle collision statistics. Int. J. Multiphase Flow, 129: 103334. doi: 10.1016/j.ijmultiphaseflow.2020.103334

  •  
  • [JC5] Michaelides S, Reeks M, Sommerfeld M, Wang L-P., 2020, In Memoriam: Dave Stock—Teacher and Pioneer Researcher in Multiphase Flow. ASME J. Fluids Engr., 040101.

  •  
  • [132] Peng C, Ayala OM, Wang L-P, 2020, A force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement. Phys. Rev. E., 101: 053305. doi: 10.1103/PhysRevE.101.053305

  •  
  • [131] Peng C, Ayala OM, Wang L-P, 2020, Flow modulation by a few fixed spherical particles in a turbulent channel flow. J. Fluid Mech., 884, A15. doi: 10.1017/jfm.2019.933

  •  
  • [130] Wan DD, Yi X, Wang L-P, Sun X, Chen SY, Wang GC, 2020, Study of collisions between particles and unloaded bubbles with point-particle model embedded in the direct numerical simulation of turbulent flows. Minerals Engineering, 146, 106137. doi: 10.1016/j.mineng.2019.106137.

  •  
  • [129] Wang JC, Wan MP, Chen S, Xie CY, Zheng QM, Wang L-P, Chen SY, 2020, Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence. J. Fluid Mech., 881, A11. doi: 10.1017/jfm.2019.867

2019
  • [128] Chen T, Liu, TS, Wang L-P, Chen SY, 2019, Relations between skin friction and other surface quantities in viscous flows, Physics of Fluids, 31, 107101. doi: 10.1063/1.5120454

  •  
  • [127] Peng C, Ayala LF, Ayala OM, Wang L-P, 2019, Isotropy and spurious currents in pseudo-potential multiphase lattice Boltzmann models. Computers and Fluids, 191: 104257. doi: 10.1016/j.compfluid.2019.104257

  •  
  • [126] Chen KY, Wan MP, Wang L-P, Chen SY, 2019, Subgrid scale structure and fluxes of turbulence underneath a surface wave. J. Fluid Mech., 878: 768-795. doi: 10.1017/jfm.2019.658

  •  
  • [125] Peng C, Ayala OM, Brandle de Motta JC, Wang L-P, 2019, A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part II, turbulent flows. Computers and Fluids, 192, 104251. doi: 10.1016/j.compfluid.2019.104251

  •  
  • [124] Peng C, Ayala OM, Wang L-P, 2019, A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows. Computers and Fluids, 192, 104233. doi: 10.1016/j.compfluid.2019.06.032

  •  
  • [123] Peng C, Ayala OM, Wang L-P, 2019, A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech., 875: 1096-1144. doi: 10.1017/jfm.2019.509

  •  
  • [122] Wang GC, Wan DD, Peng C, Liu K, Wang L-P, 2019, LBM study of aggregation of mono-sized spherical particles in homogeneous isotropic turbulence, Chem. Engr. Sci. 201: 201-211. doi: 10.1016/j.ces.2019.03.004

  •  
  • [121] Wang JC, Wan MP, Chen S, Xie CY, Wang L-P, Chen SY, 2019, Cascades of temperature and entropy fluctuations in compressible turbulence, J. Fluid Mech. 867: 195-215. doi:10.1017/jfm.2019.116

  •  
  • [120] Li LR, Shi YP, Zhang SQ, Wang L-P, Xia ZH, 2019, On the comparison between lattice Boltzmann methods and spectral methods for DNS of incompressible turbulent channel flows on small domain size, Adv. Applied Math & Mech. 11: 598-607. DOI: 10.4208/aamm.2018.s04

  •  
  • [119] Brandle de Motta JC, Costa P, Derksen JJ , Peng C, Wang L-P, Breugem W-P, Estivalezes JL, Vincent S, Climent E, Fede P, Barbaresco P, Renon N, 2019, Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows, Computer & Fluids, 179:1-14. DOI: 10.1016/j.compfluid.2018.10.016

  •  
  • [118] Peng C, Wang L-P, 2019, Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally-buoyant particles at low flow Reynolds number. Acta Mechanica, 230:517-539. DOI: 10.1007/s00707-018-2268-2

  •  
  • [117] Witte MK, Chuang PY, Ayala O, Wang L-P, Feingold G, 2019, Comparison of observed and simulated drop size distributions from large eddy simulations with bin microphysics. Monthly Weather Review, 147: 477-493. DOI: 10.1175/MWR-D-18-0242.1

  •  
  • [116] Wang L-P, Min HD, Peng C, Geneva N, Guo ZL, 2019, A lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice. Computers and Mathematics with Applications, 78:1053–1075. doi: 10.1016/j.camwa.2016.06.017

  •  
  • [115] Peng C, Guo ZL, Wang L-P, 2019, A lattice-BGK model for the Navier-Stokes equations based on a rectangular grid. Computers and Mathematics with Applications, 78:1076–1094. doi: 10.1016/j.camwa.2016.05.007

  •  
  • [114] Min HD, Peng C, Guo ZL, Wang L-P, 2019, An inverse design analysis of mesoscopic implementation of non-uniform forcing in MRT lattice Boltzmann models. Computers and Mathematics with Applications, 78:1095–1114. doi: 10.1016/j.camwa.2016.04.040

2018
  • [113] Tao S, Zhang HL, Guo ZL, Wang L-P, 2018, A combined immersed boundary and discrete unified gas kinetic scheme for particle-laden flows. J. Comp. Phys., 375: 498-518. doi 10.1016/j.jcp.2018.08.047

  •  
  • [112] Tao S, Zhang HL, Guo ZL, Wang L-P, 2018, Numerical investigation of dilute aerosol particle transport and deposition in oscillating multi-cylinder obstructions Adv. Powder Tech., 29: 2003-2018. DOI: 10.1016/j.apt.2018.05.007

  •  
  • [111] Li C, Wang L-P, 2018, An immersed boundary - discrete unified gas kinetic scheme for simulationing natural convection involving curved surfaces. Int J. Heat and Mass Transfer, 126: 1059-1070. DOI: 10.1016/j.ijheatmasstransfer.2018.04.166

  •  
  • [110] Peng C, Geneva N, Guo ZL, Wang L-P, 2018, Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method. J. Comp. Phys., 357: 16-42. DOI: 10.1016/j.jcp.2017.11.040

2017
  • [JC4] Understanding Particle-fluid interaction dynamics in turbulent flow, A featured article about Dr. Wang's research. Scientia, 113 (2017): 50-54, doi: 10.26320/SCIENTIA43

  •  
  • [109] Peng C, Guo ZL, Wang L-P, 2017, A lattice Boltzmann model capable of mesoscopic vorticity computation. Phys. Rev. E., 96: 053304. DOI: 10.1103/PhysRevE.96.053304.

  •  
  • [108] Lin ZW, Yu ZS, Shao XM, Wang L-P, 2017, Effects of finite-size neutrally buoyant particles on the turbulent flows in a square duct. Phys. Fluids, 29, 103304. DOI: 10.1063/1.5002663

  •  
  • [107] Witte MK, Ayala O, Wang L-P, Bott A, and Chuang PY, 2017, Estimating collision-coalescence rates from in situ observations of marine stratocumulus. Quarterly J. Roy. Meteorol. Soc., 143: 2755-2763. DOI: 10.1002/qj.3124

  •  
  • [106] Yu ZS, Lin ZW, Shao XM, Wang L-P, 2017, Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and the finite-size particles. Phys. Rev. E., 96, 033102. doi: 10.1103/PhysRevE.96.033102

  •  
  • [105] Geneva N, Peng C, Li XM, Wang L-P, 2017, A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method. Parallel Computing, 67: 20-37. doi: 10.1016/j.parco.2017.07.005

  •  
  • [104] Tao S, Guo ZL, Wang L-P, 2017, Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid. Powder Technology, 315: 126-138. doi: 10.1016/j.powtec.2017.03.039

  •  
  • [103] Bo YT, Wang P, Guo ZL, Wang L-P, 2017, DUGKS simulations of three-dimensional Taylor-Green vortex flow and turbulent channel flow. Computers & Fluids, 155: 9-21. doi: 10.1016/j.compfluid.2017.03.007

  •  
  • [102] Peng C, Geneva N, Guo ZL, Wang L-P, 2017, Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method. Phys. Rev. E., 95, 013301. doi: 10.1103/PhysRevE.95.013301

  •  
  • [101] Lin, ZW, Shao XM, Yu ZS, Wang L-P, 2017, Effects of finite-size heavy particles on the turbulent flows in a square duct. Journal of Hydrodynamics Ser. B., 29(2): 272-282.

2016
  • [100] Wang P, Wang L-P, Guo ZL, 2016, Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for DNS of decaying turbulent flows. Phys. Rev. E., 94, 043304. doi: 10.1103/PhysRevE.94.043304

  •  
  • [99] Peng C, Min HD, Guo ZL, Wang L-P, 2016, A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid. J. Comp. Phys., 326: 893-912. doi: 10.1016/j.jcp.2016.09.031.

  •  
  • [98] Chen SY, Peng C, Teng YH, Wang L-P, Zhang K, 2016, Improving lattice Boltzmann simulation of moving particles in a viscous flow using local grid refinement. Computers and Fluids, 136: 228-246. doi: 10.1016/j.compfluid.2016.06.009

  •  
  • [97] Rosa B, Parishani H, Ayala O, Wang L-P, 2016, Settling velocity of small inertial particles in homogeneous isotropic turbulence from high-resolution DNS. Int. J. Multiphase Flow, 83: 217-231. doi: 10.1016/j.ijmultiphaseflow.2016.04.005

  •  
  • [96] Yu ZS, Lin ZW, Shao XM, Wang L-P, 2016, A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow, Engr. Appl. Comput. Fluid Mech., 10(1), 160-170, DOI: 10.1080/19942060.2015.1092268

  •  
  • [95] Wang L-P, Peng C, Guo ZL, Yu ZS, 2016, Flow modulation by finite-size neutrally buoyant particles in a turbulent channel flow. ASME J. Fluids Engr., 138: 041103. doi: 10.1115/1.4031691.

  •  
  • [94] Wang L-P, Ardila OGC, Ayala O, Gao H, Peng C, 2016, Study of Local Turbulence Profiles Relative to the Particle Surface in Particle-Laden Turbulent Flows. ASME J. Fluids Engr., 138: 041203, doi: 10.1115/1.4031692.

  •  
  • [93] Wang L-P, Peng C, Guo ZL, YU ZS, 2016, Lattice Boltzmann simulation of particle-laden turbulent channel flow. Computers and Fluids, 124: 226-236. doi:10.1016/j.compuid.2015.07.008

  •  
  • [92] Peng C, Teng, YH, Hwang B, Guo ZL, Wang L-P, 2016, Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Computers and Mathematics with Applications, 72: 349-374. doi: 10.1016/j.camwa.2015.08.027

  •  
  • [91] Zong Y, Peng C, Guo ZL, and Wang L-P, 2016, Designing correct fluid dynamics on a rectangular grid using MRT lattice Boltzmann approach. Computers and Mathematics with Application, 72, 288-310. doi: 10.1016/j.camwa.2015.05.021

2015
  • [90] Parishani H, Ayala O, Rosa B, Wang L-P, and Grabowski WW, 2015, Effects of gravity on the acceleration and pair statistics of inertial particles in homogeneous isotropic turbulence. Physics of Fluids, 27: 033304. doi: 10.1063/1.4915121

  •  
  • [89] B Rosa, H Parishani, O Ayala, and L-P Wang, 2015, Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles. Physics of Fluids, 27: 015105. doi: 10.1063/1.4906334

  •  
  • [88] Wang L, Wang L-P, Guo ZL, Mi JC, 2015, Volume-averaged macroscopic equation for fluid flow in moving porous media. Int. J of Heat and Mass Transfer, 82: 357-368. doi: 10.1016/j.ijheatmasstransfer.2014.11.056

  •  
  • [87] Grabowski WW, Wang L-P, and Prabha TV, 2015, Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large-eddy simulation model with bin microphysics. Atmos. Chem. Phys., 15: 913-926, doi:10.5194/acp-15-913-2015.

2014
  • [86] Ayala O, Parishani H, Liu C, Rosa B, and Wang L-P, 2014, DNS of hydrodynamically interacting droplets in turbulent clouds: parallel implementation and scalability analysis using 2D domain decomposition. Computer Physics Communications, 185: 3269-3290. doi: 10.1016/j.cpc.2014.09.005

  •  
  • [85] Lee JH, Noh Y, Raasch S, Riechelmann T, Wang, L-P, 2014, Investigation of droplet dynamics in a convective cloud using a Lagrangian cloud model, Meteorology and Atmospheric Physics, 124:1-21. doi 10.1007/s00703-014-0311-y

  •  
  • [84] Wang L-P, Ayala O, Gao H, Andersen C, Mathews K. 2014, Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput. & Math. with Applications, 67: 363-380. doi: 10.1016/j.camwa.2013.04.001

2013
  • [83] Xie ML, He Q, Wang WX, Wang L-P, 2013, An exact solution of interception efficiency over a circular-arc fiber collector, Computers and Fluids, 88: 354-362. doi: 10.1016/j.compfluid.2013.09.025

  •  
  • [82] Lazouskaya V, Wang L-P, Or D, Wang G, Caplan JL, Jin Y, 2013, Colloid mobilization by fluid displacement fronts in channels, J Colloid & Interface Sci, 406: 44-50. doi: 10.1016/j.jcis.2013.05.078

  •  
  • [81] Wyszogrodzki AA, Grabowski WW, Wang L-P, and Ayala O, 2013, Turbulent collision-coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 8471-8487. doi:10.5194/acp-13-8471-2013

  •  
  • [80] Rosa B, Parishani H, Ayala O, Grabowski, WW, Wang L-P, 2013, Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New J. Phys., 15:045032. doi:10.1088/1367-2630/15/4/045032

  •  
  • [79] Torres CE, Parishani H, Ayala O, Rossi L, Wang L-P, 2013, Analysis and parallel implementation of a forced N-body problem. J. Comp. Phys., 245:235-258. doi: 10.1016/j.jcp.2013.03.008

  •  
  • [78] Xie ML and Wang L-P, 2013, Asymptotic solution of population balance equation based on TEMOM model. Chem. Eng. Sci., 94:79-83. doi: /10.1016/j.ces.2013.02.025

  •  
  • [77] Ayala O, Wang L-P, 2013, Parallel implementation and scalability analysis of 3D fast Fourier transform using 2D domain decomposition. Parallel Computing, 39:58-77. doi: 10.1016/j.parco.2012.12.002

  •  
  • [76] Liu X, Lu WB, Ayala, OM, Wang L-P, Karlsson, AM, Yang QS, Chou T-W, 2013, Microstructural revolution of carbon nanotube fibers: deformation and strength mechanism, Nanoscale, 5:2002-2008. doi:10.1039/c3nr32681k.

  •  
  • [75] Gao H, Li H, Wang L-P, 2013, Lattice Boltzmann Simulation of Turbulent Flow Laden with Finite-Size Particles, Computers & Mathematics with Applications, 65:194-210. doi:10.1016/j.camwa.2011.06.028.

  •  
  • [74] Grabowski WW, Wang L-P. 2013. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. (an invited review paper), 45:293-324. doi:10.1146/annurev-fluid-011212-140750

2012
  • [73] Shen CY, Wang F, Li BG, Jin Y, Wang L-P, Huang YF, 2012, Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces, Langmuir, Langmuir, 28:14681-14692. doi: 10.1021/la303163c.

  •  
  • [72] Wang JC, Shi Y, Wang L-P, Xiao Z, He X, and Chen S, 2012 Effect of compressibility on the small scale structures in isotropic turbulence. J. Fluid Mechanics, 713:588-631. doi:0.1017/jfm.2012.474

  •  
  • [71] Zheng W, Wang L-P, Or D, Lazouskaya V, and Jin Y 2012 The role of mixed boundaries on flow in open capillary channels with curved air-water interfaces. Langmuir, 28:12753-12761. doi: 10.1021/la302833p

  •  
  • [70] Xie ML, Yu MZ, and Wang L-P. 2012 A TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation. J. Aerosol Sci,, 54:32-48. doi: 10.1016/j.jaerosci.2012.07.004

  •  
  • [69] Wang C, Bobba AD, Attinti R, Shen CY, Lazouskaya V, Wang L-P, Jin Y, 2012 Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect of Concentration and Particle Size. Environ. Sci. Technol., 46:7151-7158. doi: 10.1021/es300314n.

  •  
  • [68] Wang JC, Shi Y, Wang L-P, Xiao Z, He X, and Chen S, 2012 Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett., 108:214505. doi: 10.1103/PhysRevLett.108.214505.

  •  
  • [67] Wang WX, Xie ML, Wang L-P. 2012. An exact solution of interception efficiency over an elliptic fiber collector. Aerosol Sci. & Tech., 46:843-851, doi:10.1080/02786826.2012.671559.

  •  
  • [C8] Rosa B, Parishani H, Ayala O, Wang, L-P, Grabowski WW. 2012. High-resolution simulation of turbulent collision of cloud droplets. PPAM2011-PartII, Lecture Notes in Computer Science 7204:401-410. doi: 10.1007/978-3-642-31500-8_41.

  •  
  • [JC3] Michaelides S, Reeks M, Schwarzkopf JD, Stock D, Wang L-P. 2012. Clayton Crowe - the legacy of a teacher and pioneer researcher in multiphase flow. ASME J. Fluids Engineering, 134:078001. Also in Int. J. Multiphase Flow: 42:III. doi:10.1016/S0301-9322(12)00058-4

  •  
  • [66] Devenish BJ, Bartello P, Brenguier J-L, Collins LR, Grabowski WW, IJzermans RHA, Malinowski SP, Reeks MW, Vassilicos JC, Wang L-P, Warhaft Z, 2012, Droplet growth in warm turbulent clouds (a review paper), Q. J. R. Meteorol. Soc., 138:1401-1429. doi:10.1002/qj.1897.

  •  
  • [65] Masarapu C, Wang L-P, Li X, Wei BQ. 2012. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure. Adv. Energy Mater., 2:546-552, doi: 10.1002/aenm.201100529.

  •  
  • [64] Qiu CQ, Han J, Gao H, Wang L-P, Jin Y. 2012. Pore-scale numerical and experimental investigation of colloid retention at the secondary energy minimum. Vadose Zone J., 11(1), doi:10.2136/vzj2011.0071.

  •  
  • [63] C.Y. Shen, L.-P. Wang, B. Li, Y.F. Huang, Y. Jin, 2012, Role of surface roughness in chemical detachment of colloids deposited at primary energy minima, Vadose Zone J., 11(1), doi:10.2136/vzj2011.0057.

2011
  • [62] J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. He, and S. Chen, 2011, Effect of shocklets on the velocity gradients in highly-compressible isotropic turbulence. Phys. Fluids, 23, 125103. doi: 10.1063/1.3664124.

  •  
  • [C7] B. Rosa, H. Parishani, O. Ayala, L.-P. Wang and W. W. Grabowski, 2011, Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation, J. Phys.: Conf. Ser. 318, 072016. doi:10.1088/1742-6596/318/7/072016.

  •  
  • [C6] L.-P. Wang, O. Ayala, H. Parishani, W. W. Grabowski, A. A. Wyszogrodzki, Z. Piotrowski, G. R. Gao, C. Kambhamettu, X. Li, L. Rossi, D. Orozco and C. Torres, 2011, Towards an integrated multiscale simulation of turbulent clouds on PetaScale computers, J. Phys.: Conf. Ser. 318, 072021. doi:10.1088/1742-6596/318/7/072021.

  •  
  • [61] A.A. Wyszogrodzki, W.W. Grabowski, L.-P. Wang, 2011, Activation of cloud droplets in bin-microphysics simulation of shallow convection, Acta Geophysica , 59 (6), 1168-1183, doi: 10.2478/s11600-011-0052-y.

  •  
  • [C5] R. Mv, H. Parishani, O. Ayala, L.-P. Wang, C. Kambhamettu, 2011, CollisionExplorer: A tool for visualizing droplet collisions in a turbulent flow. Int. Symp. on Visual Computing (ISVC) 2011, G. Bebis et al. (Eds.), Part II, LNCS 6939, pp. 669-680, Springer-Verlag Berlin Heidelberg.
     
  • [60] B. Rosa, L.-P. Wang, M.R. Maxey, and W.W. Grabowski, 2011, An accurate model for aerodynamic interactions of cloud droplets, J. Comp. Phys., 230, 8109-8133. doi:10.1016/j.jcp.2011.07.012.

  •  
  • [59] V. Lazouskaya, L.-P. Wang, H. Gao, X. Shi, K. Czymmek, and Y. Jin 2011, Pore-scale investigation of colloid retention and mobilization in presence of dynamic air-water interface. Vadose Zone J., doi:10.2136/vzj2011.0003.

  •  
  • [58] W.W. Grabowski, M. Andrejczuk, L.-P. Wang, 2011, Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmospheric Research, 99, 290-301. doi:10.1016/j.atmosres.2010.10.020

2010
  • [JC2] G.D. Jin, J. Zhang, G.-W. He and L.-P. Wang, 2010, Assessment of large-eddy simulation in capturing preferential concentration of heavy particles in isotropic turbulent flows. Physica Scripta, T142, 014061.

  •  
  • [57] G.D. Jin, G.-W. He, L.-P. Wang, 2010, Large eddy simulation of collisional statistics of inertial particles in isotropic turbulence. Phys. Fluids., 22, 055106.

  •  
  • [56] J. Wang, L.-P. Wang, Z. Xiao, Y. Shi, S. Chen, 2010, A hybrid numerical simulation of isotropic compressible turbulence. J. Comp. Phys., 229, 5257-5279.

  •  
  • [55] G.D. Jin, G.-W. He, L.-P. Wang, J. Zhang, 2010, Subgrid scale fluid velocity timescale seen by inertial particles in large-eddy simulation of particle-laden turbulence. Int. J. Multiphase Flow, 36, 432-437.

  •  
  • [C4] Bogdan Rosa and Lian-Ping Wang, 2010, Parallel implementation of particle tracking and collision in a turbulent flow. Lecture Notes in Computer Science, vol. 6068, pp. 388-397.

  •  
  • [54] Y. Peng, W. Liao, L.S. Luo, and L.-P. Wang, 2010, Comparison of the lattice Boltzmann and Pseudo-Spectral methods for decaying turbulence: low-order statistics. Computers and Fluids, 39, 568-591.

  •  
  • [53] Hui Gao, Charmaine Q. Qiu, Dimin Fan, Yan Jin, Lian-Ping Wang, 2010, Three-dimensional microscale flow simulation and colloid transport mod eling in saturated soil porous media, Computers & Mathematics with Applications, 59, 2271 - 2289.

  •  
  • [52] G.X. Shi, H. Gao, V.I. Lazouskaya, Q. Kang, Y. Jin, L.-P.Wang, 2010, Viscous flow and colloid transport near air-water interface in a microchannel, Computers & Mathematics with Applications, 59, 2290-2304.

2009
  • [51] L.-P. Wang and B. Rosa, 2009, A spurious evolution of turbulence originated from round-off error in pseudo-spectral simulation. Computers and Fluids, 38, 1943 - 1949.

  •  
  • [50] W.W. Grabowski and L.-P. Wang, 2009, "Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel. Atmos. Chem. Phys., 9, 2335-2353.

  •  
  • [49] L.-P. Wang, B. Rosa, H. Gao, G.W. He, G.D. Jin, 2009, "Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond", Int. J. Multiphase Flow, Vol. 35, pp. 854-867.

  •  
  • [48] W.C. Hsieh, H. Jonsson, L.-P. Wang, G. Buzorius, R.C. Flagan, J.H. Seinfeld, and A. Nenes, 2009, On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. Journal of Geophysical Research, Vol. 114, D07201, doi:10.1029/2008JD010502.

  •  
  • [47] L.-P. Wang and W.W. Grabowski 2009 The role of air turbulence in warm rain initiation. Atmospheric Science Letters, vol. 10, pp. 1-8.

  •  
  • [C3] Valentin. Neascu, Lian-Ping Wang and Suresh G. Advani, "Lattice Boltzmann Method And Saturation of Fiber Tows," SAMPE: Baltimore, Maryland, May 18-21, 2009.

2008

2007
  • [39] L.-P. Wang, Y. Xue, and W.W. Grabowski, 2007 A bin integral method for solving the kinetic collection equation. Journal of Computational Physics, Vol. 226, 59-88.

  •  
  • [38] O. Ayala, W.W. Grabowski, and L.-P. Wang, 2007 A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. Journal of Computational Physics, Vol. 225, 51-73.

  •  
  • [37] L.-P. Wang, O. Ayala, and W.W. Grabowski, 2007 Effects of aerodynamic interactions on the motion of heavy particles in a bidisperse suspension, Journal of Turbulence, Vol. 8.1. 1-28. doi: 10.1080/14685240701233426.

2006
  • [36] L.-P. Wang and B. Afsharpoya, 2006 Modeling fluid flow in fuel cells using the lattice Boltzmann approach. Mathematics and Computers in Simulation, Vol. 72, pages 242-248.

  •  
  • [35] L.-P. Wang, Y. Xue, O. Ayala, and W.W. Grabowski, 2006 Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets, Atmospheric Research , Vol. 82: pages 416-432. doi:10.1016/j.atmosres.2005.12.011. .

  •  
  • [JC1] L.-P. Wang, O. Ayala, Y. Xue, and W.W. Grabowski, 2006 Comments on "Droplets to Drops by Turbulent Coagulation", J. of the Atmospheric Sciences , Vol. 63, No. 9, pages 2397-2401.

  •  
  • [C2] L.-P. Wang, B. Afsharpoya, 2006 Modeling fluid transport in PEM fuel cells using the lattice-Boltzmann approach, Advances in Fluid Mechanics, Vol VI (ed. M. Rahman and C.A. Brebbia), pp. 287-296, WIT Press, Southampton, UK.

  •  
  • [34] L.-P. Wang, C.N. Franklin, O. Ayala, W.W. Grabowski, 2006 On probability distributions of angle-of-approach and relative velocity for colliding droplets in a turbulent flow, J. of the Atmospheric Sciences, Vol. 63 (3), pages 881 - 900.

2005
  • [33] L.-P. Wang, O. Ayala, S.E. Kasprzak, and W.W. Grabowski, 2005 Theoretical formulation of collision rate and collision efficiency of hydrodynamically-interacting cloud droplets in turbulent atmosphere, J. of the Atmospheric Sciences, Vol. 62, No. 7, Part 2, pages 2433-2450.

  •  
  • [32] L.-P. Wang, O. Ayala, Y. Xue, 2005 Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel, Physics of Fluids, Vol 17, No. 6, Art. No. 067103.

  •  
  • [31] L.-P. Wang, O. Ayala, and W.W. Grabowski, 2005 Improved formulations of the superposition method, J. of the Atmospheric Sciences, Vol. 62, No. 4, pages 1255-1266.

2002
  • [30] He G.W., R. Rubinstein, and L.-P. Wang, 2002, Effects of subgrid-scale modeling on time correlations in large eddy simulation, Physics of Fluids, Vol. 14, No. 7, pp 2186-2193.

  •  
  • [C1] L.-S. Luo, D. Qi, and L. P. Wang, 2002, Applications of the lattice Boltzmann method to complex and turbulent flows, in Lecture Notes in Computational Science and Engineering Vol 21, (edited by M. Breuer, F. Durst, and C. Zenger), pp. 123-130 (2002).

2001
  • [29] DeSpirito J. and Wang L.P., ``Linear Instability of Two-Way Coupled Particle-Laden Jet.'' International Journal of Multiphase Flow, Vol. 27, pp1179-1198, 2001.

  •  
  • [28] Dmitruk P., L.-P. Wang, W.H. Matthaeus, R. Zhang, and D. Seckel 2001, Scalable parallel FFT for spectral simulations on a Beowulf cluster, Parallel Computing Vol 27 No. 14: pp. 1921-1936.

  •  
  • [27] Zhou Y., Wexler A.S., and Wang L.P., Modelling turbulent collision of bidisperse inertial particles. Journal of Fluid Mechanics, Vol. 433, pp77-104, 2001.

2000
  • [26] Ulitsky M., Ghenai C., Gokalp I., Wang L.P. and Collins L., A Comparison of a Spectral EDQNM Model for Premixed Turbulent Flame Propagation to DNS and Experiments. Combustion Theory and Modelling, Vol. 4, No. 3., pp241-264, 2000.

  •  
  • [25] Wang L.P., Wexler A.S., and Zhou Y., 2000, Statistical Mechanical Descriptions of Turbulent Coagulation of Inertial Particles. Journal of Fluid Mechanics, 415: 117-153.

1999
  • [24] Tong X.-L. and Wang L.P., Two-Way Coupled Particle-Laden Mixing Layer: Part 1. Linear Instability. International Journal of Multiphase Flow, Vol. 25, pp. 575-598, 1999.

  •  
  • [23] Wang L.P., Chen S. and Brasseur J.G., Examination of Hypotheses in Kolmogorov Refined Turbulence Theory through High-Resolution Simulations. Part 2. Passive Scalar Field. Journal of Fluid Mechanics, Vol. 400, pp. 163-197, 1999.

1998
  • [22] Wang L.P., Wexler A.S. and Zhou Y., Statistical Mechanical Descriptions of Turbulent Coagulation. Physics of Fluids, Vol. 10, pp. 2647-2651, 1998.

  •  
  • [21] Shome B., Wang L.P., Santare M.H., Prasad A.K., and Szeri A.Z., 1998, Modeling of Airflow in the Nasopharynx with Application to Sleep Apnea. ASME J. Biomechanical Engineering 120:416-422.

  •  
  • [20] Wang Q., Squires K.D. and Wang L.P., 1998, The effect of nonuniform seeding on particle dispersion in two-dimensional mixing layers. Phys. Fluids 10:1700-1714.

  •  
  • [19] Y. Zhou, A. S. Wexler, and Wang L.P., 1998, On the collision rate of small particles in isotropic turbulence. Part 2. Finite inertia case. Phys. Fluids 10:1206-1216.

  •  
  • [18] Wang L.P., Wexler A.S., and Zhou Y., 1998, On the collision rate of small particles in isotropic turbulence. Part 1. Zero-inertia case. Phys. Fluids 10:266-276.

1997
  • [17] Maxey, M.R., B.K. Patel, E.J. Chang, L.-P. Wang, 1997, Simulation of dispersed turbulent multiphase flow. Fluid Dynamics Research 20:143-156.

  •  
  • [16] Martinez D.O., Chen S., Doolen G.D., Wang L.P., and Zhou Y., Energy spectrum in the Dissipation Range of Fluid Turbulence. J. Plasma Physics Vol. 57, pp. 195-201, 1997.

1996
  • [15] Herr S., Wang L.P. and Collins L.R., EDQNM model of a Passive Scalar with a Uniform Mean Gradient. Phys. Fluids 8:1588-1608, 1996.

  •  
  • [14] Maxey M.R., Chang E.J. and Wang L.P., Interactions of particles and microbubbles with turbulence. Experimental Thermal and Fluid Science 12:417-425, 1996.

  •  
  • [13] Wang L.P., Chen S., Brasseur J.G. and Wyngaard J.C., Examination of Hypotheses in Kolmogorov Refined Turbulence Theory through High-Resolution Simulations. Part 1. Velocity Field. J. Fluid Mech. 309:113-156, 1996.

1995
  • [12] Chen S., Doolen G.D., Kraichnan R.H., and Wang L.P., Is the Kolmogorov Refined Similarity Relation Dynamic or Kinematic? Physics Review Letters 74:1755-1758, 1995.

1994
  • [11]M.R. Maxey, E.J. Chang, and L.-P. Wang, Simulation of interactions between microbubbles and turbulent flows, Applied Mechanics Reviews, 47 (2), S70-S74, 1994.

  •  
  • [10] Wang, L.-P. and Stock D.E., ``Numerical Simulation of Heavy Particle Dispersion: II. Scale Ratio and Flow Decay Considerations. ASME J. of Fluids Engineering 116:154-163, 1994.

1993
  • [9] Wang L.-P. and Stock D.E., Dispersion of Heavy Particles by Turbulent Motion, J. Atmos. Sci. 50:1897-1913, 1993.

  •  
  • [8] Wang L.-P. and Maxey M.R., Settling Velocity and Concentration Distribution of Heavy Particles in a Forced Isotropic and Homogeneous Turbulence, Journal of Fluid Mechanics 256:27-68, 1993.

  •  
  • [7] Wang L.-P. and Maxey M.R., The Motion of Microbubbles in Isotropic Turbulence. Applied Scientific Research 51:291-296, 1993.

1992
  • [6] Wang L.-P., Dispersion of Particles Injected Non-Uniformly in a Mixing Layer, Physics of Fluids A 4:1599-1601, 1992.

  •  
  • [5] Wang L.-P., Maxey M.R., Burton T.D., and Stock D.E., Chaotic Dynamics of Particle Dispersion in Fluids, Physics of Fluids A 4: 1789-1804, 1992.

  •  
  • [4] Wang L.-P. and Stock D.E., ``Stochastic Trajectory Models for Turbulent Diffusion: Monte-Carlo Process versus Markov Chains'', Atmospheric Environment 26:1599-1607, 1992.

  •  
  • [3] Wang L.-P. and Stock D.E., ``Numerical Simulation of Heavy Particle Dispersion: I. Time Step and Nonlinear Drag Considerations, ASME J. of Fluids Engineering 114:100-106, 1992.

1991
  • [2] Wang L.-P., Burton T.D. and Stock D.E., Quantification of Chaotic Dynamics for Heavy Particle Dispersion in ABC Flow. Physics of Fluids A 3:1073-1080, 1991.

1990
  • [1] Wang L.-P., Burton T.D. and Stock D.E., Chaotic Dynamics of Heavy Particle Dispersion: Fractal Dimension versus Dispersion Coefficients. Physics of Fluids A 2:1305-1308, 1990
126 Spencer Laboratory | University of Delaware | Newark, DE 19716-3140 | phone 302-831-8160| fax 302-831-3619