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ABSTRACT
In this paper, a new mesoscopic approach with both the adjustable Prandtl number and the ratio of bulk to shear viscosity has been devel-
oped to simulate three-dimensional compressible decaying homogeneous isotropic turbulence under the framework of discrete unified gas
kinetic scheme (DUGKS). In the new approach, two reduced model Boltzmann equations with newly designed source terms are solved. In
the continuum limit, the Navier–Stokes–Fourier system can be recovered by applying the Chapman–Enskog analysis. A three-dimensional
DUGKS code has been developed, incorporating the fifth-order weighted essentially non-oscillatory scheme to better reconstruct the particle
distribution functions at the cell interfaces. In addition, a new lattice velocity model with 77 discrete particle velocities is applied to ensure
that the accuracy of the Gauss–Hermite quadrature is up to the ninth-order, and as such, the heat flux can be accurately evaluated. To validate
our code, we simulate two cases with different initial turbulent Mach numbers and Taylor microscale Reynolds numbers. The simulation
results converge with the increase in resolution and agree well with the results from the literature. As a direct application of our DUGKS, we
briefly study the influence of bulk viscosity on turbulence statistics and flow structures. Our results show that the DUGKS is a reliable tool for
simulating compressible decaying isotropic turbulence at low and moderate turbulent Mach numbers. More parametric studies are needed in
the future to further explore the full capabilities of this specific mesoscopic method.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0029424., s

I. INTRODUCTION

Different flow regimes can be classified based on the Knudsen
number (Kn), which is defined as the ratio of the microscopic mean
free path of the particles λ and hydrodynamic length scale l. In terms
of Kn, four flow regimes are typically identified, namely, contin-
uum flow regime (Kn < 10−3), slip flow regime (10−3

< Kn < 10−1),

transition flow regime (10−1
< Kn < 10), and free-molecular flow

regime (Kn > 10).1 Compared to the continuum flow regime where
the non-equilibrium effects are small, the non-equilibrium effects
become more and more important with the increase in the local
Knudsen number. For some unsteady multiscale problems and cer-
tain applications, several flow regimes can coexist.2,3 In general, the
conventional Navier–Stokes–Fourier (NSF) equation-based solvers
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only treat the continuum flows correctly and cannot handle local
flow regimes with high non-equilibrium effects. In addition, it is
not feasible to derive a simple system of closed partial differential
equations such as NSF equations for flows with locally varying Kn
numbers. On the other hand, conceptually, the Boltzmann equation
can not only describe the continuum regime but can also deal with
non-continuum flows. This is one of the reasons that motivated the
developments of mesoscopic computational fluid dynamics (CFD)
methods based on the Boltzmann equations during the last three
decades.

There are mainly two numerical approaches to solve the Boltz-
mann equation. The first one is called the direct simulation Monte
Carlo (DSMC) method,4 which is mainly used to simulate high-
speed rarefied gas flows. However, the particle transport and colli-
sion processes are decoupled in the DSMC method, which implies
that the grid spacing and the time step should be smaller than the
mean free path and the relaxation time (equal to the ratio of the shear
viscosity to the hydrodynamic pressure), respectively. In the local
regions of nearly continuum flow in a multiscale physical problem,
the computational cost for DSMC will increase enormously. In addi-
tion, for flows with low speed and small temperature variation, the
statistical noise in the DSMC method will be on the order of the flow
variables and would thus contaminate the simulation results.5 The
second approach that is used to solve the Boltzmann equation is the
Discrete Velocity Methods (DVMs).6–8 Most DVMs are essentially
single-scale methods with particle collision and transport processes
decoupled, which leads to the requirement that the grid spacing and
time step should also be restricted by the mean free path and the
relaxation time. The well-known lattice Boltzmann method (LBM)
can be viewed as a special type of the discrete velocity formulation.
However, in the LBM, the particle transport and collision are prop-
erly coupled. The LBM is mainly used to simulate incompressible or
weakly compressible continuum flows under the low Mach number
approximation.9–11

Recently, a unified gas kinetic scheme (UGKS)12–15 has been
developed to simulate all Knudsen number flows. The UGKS solves
the hydrodynamic equations and the Boltzmann equation simul-
taneously. The evolution of kinetic variables and the evolution of
hydrodynamic variables are coupled through the collision term and
the cell interface fluxes in the UGKS. The UGKS can be viewed as an
extension of the gas kinetic scheme (GKS),16 which is mainly used
to simulate continuum flows. A kinetic scheme is an asymptotic pre-
serving (AP)17 scheme if (a) the time step is not restricted by the
particle collision time in the continuum regime and (b) it can recover
the limiting hydrodynamic equations in the continuum limit. In the
UGKS, the particle transport and collision processes are coupled due
to the implicit treatment of the collision term such that the time
step is no longer limited by the relaxation time. The AP property
makes the UGKS a true multiscale scheme for simulating different
flow regimes.

Guo et al.17,18 proposed another unified gas kinetic scheme,
namely, the discrete unified gas kinetic scheme (DUGKS) by com-
bining the advantages of LBM and UGKS. Compared to the UGKS,
the DUGKS is a simpler multiscale kinetic method. In the UGKS,
the reconstruction of the cell-interface particle distribution func-
tion is based on the analytical solution of the Boltzmann equa-
tion along the characteristic line. However, in the DUGKS, the flux
across the cell interface is evaluated from the particle distribution

functions at the half time step, and the particle distribution func-
tions are obtained by using the characteristic method instead of
using the analytical solution used in the UGKS. In the DUGKS,
the Boltzmann equation is solved using an accurate finite-volume
formulation coupled tightly with the particle transport and colli-
sion processes. Thus, the time step in the DUGKS is not limited
by the particle collision time for all Kn numbers. Compared to the
LBMs, the DUGKS can more easily incorporate irregular meshes
and incorporate different discrete velocity models as the space grid
is no longer coupled with the lattice velocity set. In addition, the
DUGKS can ensure a second-order accuracy in both space and
time. Due to the need of the reconstruction of the particle distri-
bution function, the DUGKS is slightly more dissipative but with
a better numerical stability than the LBM. The DUGKS has been
applied to simulate single-phase decaying homogeneous isotropic
turbulence,19 wall-bounded turbulent channel flow,20 3D lid-driven
cavity flow,21 microchannel gas flows,22 and immiscible two-phase
flows.23,24 Liu et al.25 combined the total energy double-distribution-
function (TEDDF) model26 with the DUGKS to simulate thermal
compressible flows in all flow regimes. For compressible flows, the
Cartesian discrete velocity space may require a much larger degree
of freedoms, and a higher order of the quadrature may also be
needed; these will influence the accuracy of hydrodynamic vari-
ables and numerical instability. Recently, Chen et al.27 combined the
unstructured discrete velocity space28 with the DUGKS in 2D. The
unstructured velocity mesh adjusts the density of discrete velocities
according to the local relative magnitude of the distribution func-
tion in the velocity space. Although it may be hard to optimize, it is
usually better than a uniform velocity mesh. However, the DUGKS
has not yet been applied to simulate three-dimensional compressible
turbulence.

Compressible turbulence is of fundamental importance to
many natural and engineering applications, such as solar winds,
high-temperature reactive flows, and design of aircrafts. With the
development of computational techniques, direct numerical simu-
lation (DNS) has been applied as an independent research tool to
probe complex flow structures in both incompressible turbulence
and compressible turbulence. For compressible flows, shocklets may
develop randomly due to local compressibility, causing local discon-
tinuities as the turbulent Mach number increases, which can be a
great challenge to the DNS.

The previous relevant DNS studies of compressible turbu-
lence are briefly summarized here. Samtaney et al.29 studied the
decaying compressible turbulence and shocklet statistics at the ini-
tial turbulent Mach numbers of Mat0 = 0.1–0.5 and the Taylor–
Reynolds number of Reλ0 = O(50–100) using a tenth-order com-
pact finite difference scheme. A shocklet extraction algorithm is
also developed to extract and quantify the shocklet statistics from
the DNS data. Honein and Moin30 presented a numerical scheme
with high entropy conservation and numerical stability to simulate
compressible isotropic turbulence at the turbulent Mach number
of Mat0 = 0.3. Frapolli et al.31 overcame the low Mach-number
limit of the traditional LBM and proposed an entropic lattice
Boltzmann model (ELBM) to simulate compressible transonic
and supersonic flows using a D3Q73 lattice velocity model with
temperature-dependent weights. In their work, they first simulated
the flow around a NACA0012 airfoil immersed in a supersonic
flow at Ma = 1.4 and Re = 3 × 106. Then, they considered two
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compressible decaying homogeneous isotropic turbulence (CDHIT)
cases (Reλ0 = 72, Mat0 = 0.1 and Reλ0 = 175, Mat0 = 0.488) to fur-
ther validate the capability of the ELBM. Liao et al.32 applied the
GKS to simulate CDHIT at a Taylor microscale Reynolds number of
Reλ0 = 72.0 and the turbulent Mach number of Mat0 = 0.1–0.6. They
concluded that the GKS is adequate for the DNS of moderately com-
pressible homogeneous isotropic turbulence as far as the low-order
turbulence statistics are concerned. Subbareddy and Candler33 sim-
ulated compressible isotropic turbulence using an implicit, low dissi-
pation finite-volume scheme and studied the effect of the dissipative
flux on the quality of the simulated flow. The dissipative flux term
Fdiss in their numerical formulation is designed to capture shocklets
and is expressed as Fdiss = αdissDf , where Df represents the stan-
dard shock capturing scheme and the coefficient αdiss is close to 0 in
smooth regions and tends to 1 in shocklet regions. The shock detec-
tion switch suggested by Ducros et al.34 was applied for αdiss based
on the local velocity divergence and vorticity magnitudes. By com-
paring the results obtained with different values of αdiss, they showed
that the result using the switch of Ducros et al. achieves better agree-
ment with the filtered DNS data. Later on, Wang et al.35 proposed a
hybrid scheme with an optimal treatment between the shock regions
and the smooth regions. The hybrid scheme utilizes a seventh-order
weighted essentially non-oscillatory (WENO) scheme for the shock-
let regions and an eigth-order compact central finite difference (FD)
scheme for smooth regions. A novel numerical hyperviscosity treat-
ment is added to improve numerical instability. They simulated both
decaying turbulence (Mat0 = 0.56 and Reλ0 = 72) and forced turbu-
lence (Mat = 1.08 and Reλ = 177). They concluded that their scheme
is essentially a direct numerical simulation for scales of the order
of a few Kolmogorov scales and larger. The underlying assump-
tion for the hybrid method is that the dynamics of turbulence is
unaltered even when the shock thickness is made as large as the Kol-
mogorov scale. Liu et al.36 improved the hybrid scheme to simulate
compressible isotropic turbulence at both relatively high turbulent
Mach numbers (Mat = 0.8–2.08) and Reynolds numbers (Reλ = 107–
200). Recently, Chen et al.37 applied the hybrid scheme to study
the effect of bulk viscosity on both forced homogeneous isotropic
turbulence and homogeneous shear turbulence. Most recently, Cao
et al.38 proposed a high-order gas kinetic scheme (HGKS) to sim-
ulate supersonic CDHIT. Their simulation covers the moderate
Reynold numbers ranging from 10 to 72 and the Mach numbers
ranging from 0.5 to 1.2. They also investigated the turbulent Mach
number effect and the Reynolds number effect on flow statistical
quantities.

Two relevant comments can be made here in terms of
DNS of compressible flows. From a physical standpoint, the local
Knudsen number Kn may not be small when the local Mach num-
ber is high enough to induce local shocklets. In other words, the
local flow state is not uniform in the continuum flow regime. There-
fore, the NSF system may fail to describe all local non-equilibrium
effects, while the DUGKS can capture the physics in all flow regimes.
In the hypersonic argon flow past over a sphere, the local Mach
number in the wake region can still reach around 1.5.39 From a
numerical perspective, the NSF system needs a low-order treatment
to capture shocklets and, at the same time, high-order treatment
to capture turbulence fluctuations. Furthermore, the NSF system
handles waves related to the hydrodynamics, while the DUGKS,
instead, handles movements of particles, not the waves directly. The

wave dynamics is obtained as the moments in the particle veloc-
ity space. We believe that the discontinuity at the particle level is
much weaker than the discontinuity in hydrodynamics. For this rea-
son, as a multiscale method, it may be stated that the DUGKS is not
required to incorporate drastically different treatments for different
flow regimes.

In this paper, we apply the DUGKS combined with a fifth-order
WENO scheme40–43 to simulate CDHIT. A newly designed BGK
model is utilized, allowing the variation of both the Prandtl num-
ber and the ratio of bulk to shear viscosity. The NSF system can be
recovered in the continuum limit by applying the Chapman–Enskog
expansion.44

The rest of this paper is organized as follows. In Sec. II,
the original BGK–Shakhov model is briefly summarized, and a
new model with an adjustable Prandtl number and a viscos-
ity ratio is introduced. Through the Chapman–Enskog analysis,
the NSF system for compressible flows can be recovered, and
the relevant dimensionless parameters are briefly summarized. In
Sec. III, we present the implementation details of the DUGKS
under our altered design. Important statistical quantities about
the CDHIT are reviewed in Sec. IV. A three-dimensional DUGKS
code is developed to simulate CDHIT, and the results are dis-
cussed in Sec. V. Two simulation cases are considered, and the
results are carefully compared with the literature data to validate
our approach. Different WENO schemes and interfacial treatments
are also compared to examine the sensitivity of flow statistics on
implementation details. Finally, we investigate the effect of bulk to
shear viscosity ratio on the statistics of turbulence by using our
DUGKS approach. Major conclusions are summarized in Sec. VII,
along with some additional discussions. In Appendixes A–E,
we include the details on Hermite polynomials and our newly
designed novel E9

3,77 discrete particle velocity model (Appendix A),
Hermite expansion of the equilibrium, the implementation of the
fifth-order WENO scheme (Appendix B), the Chapman–Enskog
analysis of our redesigned model (Appendix C), explicit expressions
of two reduced distribution functions (Appendix D). The evolution
equation of mean square velocity divergence is also derived in detail
(Appendix E).

II. MESOSCOPIC MODELS

A. The BGK–Shakhov model
The Boltzmann equation with the BGK–Shakhov collision

model18,45 can be expressed as

∂f
∂t

+ ξ ⋅ ∇f = Ωf ≡
f S − f
τ

, (1)

where f (x, ξ, η, ζ, t) is the particle distribution function, x = (x1,
. . ., xD) is the position, t is the time, ξ = (ξ1, . . ., ξD) is the par-
ticle velocity in D-dimensional space, η = (ηD+1, . . ., η3) is the
particle velocity in the remaining (3 −D) dimensional space, and
ζ = (ζ1, . . ., ζK) represents the K-dimensional internal degree
of freedom. τ = μ/p is the relaxation time and is related to the
shear viscosity μ and pressure p, and ν = μ/ρ is the kinematic
viscosity.
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By assuming that the particle motion in the (η, ζ) subspace is at
local equilibrium, the Shakhov equilibrium distribution function is
expressed as

f S = f eq + f Pr ,

f eq =
ρ

(2πRT)(3+K)/2 exp(−
c2 + η2 + ζ2

2RT
), (2)

f Pr = (1 − Pr)
c ⋅ q

5pRT
(
c2 + η2

RT
− 5) f eq,

where f eq is the Maxwellian distribution function, ρ is the density
of fluid, R is the specific gas constant, T is the temperature, c = ξ
− u is the particle thermal-fluctuation velocity with respect to the
hydrodynamic velocity u, Pr is the Prandtl number, and q is the heat
flux. The extra term f Pr is designed to adjust the heat flux and thus
the Prandtl number. Without f Pr , the Prandtl number would be 1.
The equilibrium distribution implies that the ideal-gas equation of
state (EOS), i.e., p = ρRT, is satisfied.

The conservative variables are defined as the moments of the
particle distribution function,

ρ = ∫ fdξdηdζ, ρu = ∫ ξfdξdηdζ,

ρE =
1
2
ρu2 + ρe = ∫

ξ2 + η2 + ζ2

2
fdξdηdζ.

(3)

Here, ρE is referred to as the total energy and ρe = ρCvT is the inter-
nal energy per unit volume. All relations in Eq. (3) remain valid if f
is replaced by f S.

With the above-mentioned equilibrium distribution, it can be
shown that the specific heat capacity at constant volume Cv and that
at constant pressure Cp are related to K and R as Cv = (3 + K)R/2
and Cp = (5 + K)R/2. Therefore, the specific heat ratio γ = Cp/Cv
= (5 + K)/(3 + K).

The viscous stress tensor σ and the heat flux q are determined
by

σ = −∫ cc( f − f eq)dξdηdζ, q =
1
2 ∫

c(c2 + η2 + ζ2
)fdξdηdζ. (4)

The shear viscosity is determined by the intermolecular inter-
actions and molecular thermal motions. For ideal gases, the shear
viscosity increases with temperature, which introduces an additional
effect of thermal field on the hydrodynamic velocity field. Two well-
known models are widely used in the existing literature. The first one
is called the hard-sphere (HS) or variable hard-sphere (VHS) model,
which takes the form of power law.2,29 The second one is known as
the Sutherland’s law,46 which for air can be written as

μ
μ0
=

1.4042(T/T0)
1.5

(T/T0) + 0.404 17
. (5)

It has been verified from the experimental data that the HS model
has a maximum relative error of about 5% for extreme cases of
T/T0 → 0.55 and T/T0 → 3, while the Sutherland’s law has a

maximum relative error of 2.0% at T/T0 = 3 and less than 0.52% at
T/T0 = 0.55.35 Therefore, the latter is used in our simulations.

The evolution of the particle distribution function depends only
on the particle velocity in D-dimensional space. To reduce the com-
putational cost, two reduced distribution functions residing in the
lower dimensional phase-space [of dimension (2D)] are therefore
introduced,18

g = ∫ fdηdζ, h = ∫ (η
2 + ζ2

)fdηdζ. (6)

Thus, the evolution equation for g and h can be obtained from Eq. (1)
to give

∂g
∂t

+ ξ ⋅ ∇g = Ωg ≡
gS − g
τ
=
geq − g
τ

+
gPr

τ
, (7a)

∂h
∂t

+ ξ ⋅ ∇h = Ωh ≡
hS − h
τ
=
heq − h
τ

+
hPr

τ
, (7b)

where the reduced Shakhov equilibrium functions are gS = geq + gPr

and hS = heq + hPr . geq, heq and gPr , hPr can be obtained by integrating
f eq and f Pr over the (η, ζ) space, respectively.18

Two important observations are in order. The first concerns the
computational cost of the model. Through the Chapman–Enskog
analysis, we can observe that when using the BGK–Shakhov model,
a Gauss–Hermite quadrature of up to the twelth-order accuracy is
needed to compute heat flux accurately as compared to the eigth-
order accuracy without the Shakhov correction, which implies that,
rigorously speaking, more discrete particle velocities should be used
and that the computational cost will be increased. Therefore, an
alternative model for a flexible Prandtl number will be consid-
ered instead. The second concerns the physical bulk viscosity in
the model. It can be shown from the Chapman–Enskog expansion
that the ratio between the bulk viscosity μV and the shear viscos-
ity μ is χ ≡ μV /μ = 2/D − 2/(3 + K), which is always less than 2/D.
Therefore, for a fixed specific heat ratio, the original DUGKS cannot
be used to investigate the physical effect of the bulk-to-shear vis-
cosity ratio. Moreover, in the previous simulations done by using
traditional CFD methods, the Stokes assumption with zero bulk
viscosity is applied, and the specific heat ratio γ is equal to 1.4.35

However, in the original DUGKS, setting the specific heat ratio γ
= 1.4 means that the internal degree of freedom is K = 2. This will
result in a non-zero bulk viscosity μV = 4μ/15. This difference in
bulk viscosities in the BGK–Shakhov model and in the simulations
reported in the literature makes precise inter-comparison impossi-
ble. To resolve these two issues together, we shall propose next a
new model, which can have a flexible Prandtl number and an arbi-
trary ratio between bulk viscosity and shear viscosity; then, only
a lattice velocity model with at least eigth-order quadrature accu-
racy is needed to correctly compute the heat flux, the highest order
moment encountered in the Chapman–Enskog analysis for the NSF
system.

B. A new model with adjustable Prandtl number
and the ratio of bulk to shear viscosity

We shall begin with the same two reduced Boltzmann equa-
tions but instead with to-be-designed source terms Sg and Sh,
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∂g
∂t

+ ξ ⋅ ∇g =
geq − g
τ

+ Sg ≡ Ωg + Sg , (8a)

∂h
∂t

+ ξ ⋅ ∇h =
heq − h
τ

+ Sh ≡ Ωh + Sh, (8b)

where the equilibrium distribution functions geq and heq are simply
the Maxwellian

geq =
ρ

(2πRT)D/2
exp[−

(ξ − u)2

2RT
], heq = (3 −D + K)RTgeq. (9)

The two source terms Sg and Sh are designed using an inverse
design approach, as presented in Ref. 47. The design process is used
to first find five integral constraints for the two source terms nec-
essary to reproduce the NSF hydrodynamic system; then, a specific
choice for Sg and Sh is derived based on the properties of the Hermite
polynomials. The design is not unique. The results of our specific
design, as explained in detail in Ref. 47, are

Sg = −ω(ξ,T0)(χ −
2(3 −D + K)
D(K + 3)

)
pϑ

2RT0
(
ξ2

RT0
−D), (10a)

Sh = ω(ξ,T0)[(D − 2
u ⋅ ξ
RT0
)(χ −

2(3 −D + K)
D(K + 3)

)pϑ

+
2(1 − Pr)q ⋅ ξ

τRT0
], (10b)

where the weighting function ω(ξ, T0) is ω(ξ,T0) = exp
(−ξ2
/(2RT0))/(2πRT0)

D/2, ϑ ≡ ∇ ⋅ u is the velocity divergence
(dilatation), and T0 is the reference temperature (see Appendix A
for details). The velocity divergence is evaluated by either a second-
order or fourth-order finite difference scheme for the present simu-
lations, which can be further optimized.

The expressions for evaluating conservative variables, heat flux,
and the viscous stress tensor are given as

ρ = ∫ gdξ, ρu = ∫ ξgdξ, ρE =
1
2 ∫

(ξ2g + h)dξ,

q =
1
2 ∫

c(c2g + h)dξ, σ = −∫ cc(g − geq)dξ.
(11)

By using the Chapman–Enskog expansion, one can recover the
following constitutive relation for the viscous stress tensor σ:

σ = 2μ(S −
1
D
ϑI) + μVϑI + O(τ2

), (12)

where S = (∇u +∇uT)/2 is the strain rate tensor and I is the unit ten-
sor. In addition, the closure model for heat flux vector q is consistent
with Fourier’s law,

q = −κ∇T + O(τ2
), (13)

where the thermal conductivity coefficient is κ = μCp/Pr.

Applying the Chapman–Enskog analysis (see Appendix C), we
can prove that the above-mentioned model can yield the following
compressible Navier–Stokes–Fourier (NSF) system up to the order
of O(τ):

∂ρ
∂t

+∇ ⋅ (ρu) = 0, (14a)

∂(ρu)
∂t

+∇ ⋅ (ρuu) = −∇p +∇ ⋅ σ, (14b)

∂(ρE)
∂t

+∇ ⋅ (ρEu) = −∇ ⋅ q −∇ ⋅ (pu) +∇ ⋅ (σ ⋅ u). (14c)

The following characteristic scales35 are chosen to non-
dimensionalize the above-mentioned NSF system. We choose a ref-
erence length scale L0, reference velocity scale U0, reference time
scale L0/U0, reference temperature T0, reference density ρ0, refer-
ence speed of the sound c0 =

√
γRT0, reference energy per unit

volume ρ0U2, reference pressure p0 = ρ0c2
0/γ = ρ0RT0, reference vis-

cosity μ0, and reference thermal conductivity κ0. Then, the dimen-
sion analysis shows that the system is governed by five dimensionless
parameters: the Reynolds number Re = ρ0UL/μ0, Prandtl number
Pr = μ0cp/κ0, Mach number Ma = U0/c0, specific heat ratio γ (or
internal degree of freedom K), and ratio between bulk viscosity and
shear viscosity χ. If for a given fluid, γ, χ, and Pr are assumed to
be known constants, the evolution of the system is then governed
by two dimensionless parameters, i.e., the Reynolds number and
the Mach number. For CDHIT, the initial flow Taylor microscale
Reynolds number Reλ0 and the turbulent Mach number Mat0, along
with the initial energy spectrum, are often used to describe the
system.

III. THE DUGKS APPROACH
The implementation details about the DUGKS approach are

described below. For convenience, we can rewrite the two Boltz-
mann equations in a unified form,

∂ϕ
∂t

+ ξ ⋅ ∇ϕ = Ωϕ + Sϕ ≡ Ω̄ϕ, (15)

where ϕ = g or h and the new collision operators are defined as
Ω̄g ≡ Ωg + Sg and Ω̄h ≡ Ωh + Sh.

As a finite-volume scheme, the computational domain is
divided into many subcells V j, with the cell centers denoted by
xj. Integrating Eq. (15) over the control volume V j from tn to
tn+1(=tn + Δt) and using the midpoint rule for the integration of
linear convective term and the trapezoidal rule for the combined
collision operators, we can obtain

ϕ̃n+1
j (ξ) = ϕ̃

+,n
j (ξ) −

Δt
∣Vj∣

Jn+1/2
ϕ (ξ), (16)

where the flux across the cell interface at the half time step (tn +Δt/2)
is

Jn+1/2
ϕ (ξ) = ∮

∂Vj

(ξ ⋅ n)ϕ(x, ξ, tn+1/2)dS, (17)
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|V j| and ∂V j denote the cell volume and the surface area of V j,
and n is the outward normal vector of the cell interface ∂V j. tn+1/2
= tn + s represents the half time step with s = Δt/2. Two new
distribution functions ϕ̃ and ϕ̃ are introduced in order to convert
the implicit time integration scheme to an explicit scheme, namely,
ϕ̃ = ϕ − (Δt/2)Ω̄ϕ and ϕ̃+

= ϕ + (Δt/2)Ω̄ϕ. ϕnj (ξ) and Ω̄n
ϕ,j(ξ) are

cell-averaged values of ϕ(x, ξ, tn) and Ω̄ϕ(x, ξ, tn), respectively. In
the implementation, we track the distribution function ϕ̃ instead of
the original one.

Once the distribution function ϕ̃ is obtained, the conservative
variables at the cell center can be computed as

ρ = ∫ g̃dξ, ρu = ∫ ξg̃dξ, ρE =
1
2
(ξ2g̃ + h̃)dξ. (18)

In terms of the transformed distributions, the heat flux q and the
viscous stress tensor σ at the cell center can be readily obtained as

q =
2τ

2τ + ΔtPr
1
2 ∫

c(c2g̃ + h̃)dξ,

(19)

σ = −
2τ

2τ + Δt ∫
cc(g̃ − geq)dξ

+
τΔt

2τ + Δt
(χ −

2(3 −D + K)
D(3 + K)

)pϑI.

The surface flux integral at each interface is evaluated via the
midpoint rule. In order to evaluate the flux term in Eq. (17) at the
half time step, the original distribution function at the half time
step is needed at the cell interfaces. This can be done by integrat-
ing Eq. (15) along the characteristic line for a half time step s = Δt/2
with the ending point located at the center of the cell interface xb. By
using the trapezoidal rule for the collision term, we have

ϕ(xb, ξ, tn + s) − ϕ(xb − ξs, ξ, tn)

=
s
2
[Ω̄ϕ(xb, ξ, tn + s) + Ω̄ϕ(xb − ξs, ξ, tn)]. (20)

Once again, two new transformed distribution functions ϕ̄ = ϕ
−(s/2)Ω̄ϕ and ϕ̄+

= ϕ+(s/2)Ω̄ϕ are introduced to remove the implic-
ity. Then, we have ϕ̄(xb, ξ, tn + s) = ϕ̄+

(xb − ξs, ξ, tn). By applying the
Taylor expansion, we can obtain

ϕ̄(xb, ξ, tn + s) = ϕ̄+
(xb, ξ, tn) − ξs ⋅ σb, (21)

where σb = ∇ϕ̄+
(xb, ξ, tn).

For compressible flows, the proper treatments of the local value
ϕ̄+
(xb, ξ, tn) and local gradient σb are essential. First, we implement

the fifth-order WENO-JS scheme40 to reconstruct the distribution
function ϕ̄+

(xb, ξ, tn) at the cell interface by using the cell-averaged
values ϕ̄nj (ξ) and enforcing the upwind rule according to the direc-
tion of a given discrete particle velocity. The WENO-Z41,42 and
WENO-M43 schemes are also tested, and the results are compared
with those from the WENO-JS scheme. See Appendix B for more
details of these reconstruction schemes. Second, we use van Leer lim-
iter48 to obtain the slope σj = ∇ϕ̄+

(xj, ξ, tn) at the cell center; then, it

follows that the gradient at the cell interface can be approximated by
σb = (σj + σj+1)/2. An alternative way to evaluate the gradient σb is to
use the finite difference schemes of different orders. To demonstrate
the effect of different finite difference schemes used in the simula-
tion, we will compare flow statistics from the second-order and the
fourth-order central finite difference schemes in the second (higher
Mach number) simulation case. If a shocklet is located near the cell
interface, then σb could have a jump across the shocklet surface. In
order to deal with this kind of discontinuity, σb is approximated
by the gradient in the nearest upstream cell center or evaluated by
the cell-averaged values in several upstream cells according to the
direction of a given particle velocity. Finally, ϕ̄(xb, ξ, tn + s) can be
obtained according to Eq. (21).

In order to transform back to the original distributions, we first
need to evaluate the conservative variables at the cell interface. They
can be computed as

ρ(xb, tn + s) = ∫ ḡdξ, ρu(xb, tn + s) = ∫ ξḡdξ,

ρE(xb, tn + s) =
1
2 ∫

(ξ2ḡ + h̄)dξ.
(22)

The heat flux can be evaluated by

q(xb, tn + s) =
2τ

2τ + sPr
1
2 ∫

c(c2ḡ + h̄)dξ. (23)

Therefore, the equilibrium distribution function ϕeq(xb, ξ, tn + s) can
be computed based on the hydrodynamic variables obtained at the
cell interface at the half time step. Then, the original distribution
function can be obtained as

ϕ(xb, ξ, tn + s) =
2τ

2τ + s
ϕ̄(xb, ξ, tn + s) +

s
2τ + s

ϕeq(xb, ξ, tn + s)

+
τs

2τ + s
Sϕ(xb, ξ, tn + s). (24)

Finally, the flux across the cell interface Jn+1/2
ϕ (ξ) can be obtained by

using Eq. (17).
Due to the nature of the linear transformation, the following

two useful relations can be derived easily:

ϕ̃+
=

4
3
ϕ̄+
−

1
3
ϕ̃, ϕ̄+

=
2τ − s

2τ + Δt
ϕ̃ +

3s
2τ + Δt

ϕeq +
3τs

2τ + Δt
Sϕ. (25)

At last, the distribution function ϕ̃ can be updated through Eq. (16).
In the DUGKS, the time step is governed by the condi-

tion imposed on the Courant–Friedrichs–Lewy (CFL) number, Δt
= CFL ⋅Δxmin/(|u|max + |ξ|max), where Δxmin is the minimal grid
spacing, |u|max is the local maximum hydrodynamic fluid velocity,
and |ξ|max is the local maximum discrete velocity. A new discrete
particle velocity model (E9

3,77) with 77 discrete particle velocities
and ninth-order Gauss–Hermite quadrature has been used in the
implementation. See Appendix A for details.
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IV. PROBLEM DESCRIPTION OF COMPRESSIBLE
DECAYING HOMOGENEOUS ISOTROPIC
TURBULENCE (CDHIT)

The dynamic process is more complicated in a compress-
ible turbulence than that in an incompressible turbulence, due to
stronger coupling effects between the hydrodynamic flow quanti-
ties and thermodynamic quantities. With the increase in the turbu-
lent Mach number, such coupling process will become increasingly
stronger and finally leads to emergence of the shocklets.35

We consider CDHIT without an external driving force. The
flow domain is a cubic box with the side length of L = 2π. The
periodic boundary conditions and the uniform Cartesian grids are
applied in all three directions. An initial divergence-free velocity
field u(t = 0) is generated by a Gaussian random field with a pre-
scribed kinetic energy spectrum E(k, t = 0) in the spectral space.
Then, the initial velocity field in the physical space is obtained by
carrying out the inverse Fourier transformation. The initial kinetic
energy spectrum is specified as29

E(k, t = 0) = A0k4 exp(−2k2
/k2

0), (26)

where A0 is the constant, k is the wavenumber, and k0 is the peak
wavenumber.

The relevant flow statistical quantities are summarized below.
The root-mean-square velocity is defined as urms = ⟨u ⋅ u⟩1/2/

√
3,

where the symbol ⟨⋯⟩ denotes the spatial average over the
whole domain at a given time. The Taylor microscale and Taylor
microscale Reynolds numbers are defined as

λ =
√

3urms

⟨(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2⟩
1/2

,

Reλ =
urmsλ⟨ρ⟩
⟨μ⟩

.

(27)

The turbulent kinetic energy per unit mass and per unit volume is
defined as

K(t) =
1
2
⟨u ⋅ u⟩ = ∫

∞

0
E(k, t)dk,

Kρ(t) =
1
2
⟨ρu ⋅ u⟩ = ∫

∞

0
Eρ(k, t)dk,

(28)

where E(k, t) and Eρ(k, t) are the three-dimensional kinetic energy
spectra corresponding to K(t) and Kρ(t). The longitudinal integral
length scale and the large eddy turnover time are given by

Lf =
π

2u2
rms
∫

∞

0

E(k)
k

dk, Te =
Lf
urms

. (29)

The average viscous dissipation rate and the Kolmogorov length
scale are defined as

ε = ⟨
1
ρ
σ : S⟩, η = [

⟨μ/ρ⟩3

ε
]

1/4

. (30)

The turbulent Mach number Mat and the local Mach number Maloc
are, respectively, defined as

Mat =
⟨u2
⟩

1/2

⟨
√
γRT⟩

, Maloc =
(u ⋅ u)1/2

√
γRT

. (31)

The root mean square dilatation, an important property for com-
pressible flow, is defined as

ϑrms ≡ ⟨ϑ2
⟩

1/2
= ⟨(∇ ⋅ u)2

⟩
1/2

. (32)

In addition, the skewness and flatness of the longitudinal velocity
derivatives are

Su =
⟨[(∂ux/∂x)3 + (∂uy/∂y)3 + (∂uz/∂z)3

]/3⟩

⟨[(∂ux/∂x)2 + (∂uy/∂y)2 + (∂uz/∂z)2
]/3⟩

3/2
, (33)

Fu =
⟨[(∂ux/∂x)4 + (∂uy/∂y)4 + (∂uz/∂z)4

]/3⟩

⟨[(∂ux/∂x)2 + (∂uy/∂y)2 + (∂uz/∂z)2
]/3⟩

2 , (34)

where the velocity derivatives are evaluated by first transforming the
velocity field into the spectral space, performing the gradient oper-
ations, and then transforming back to the physical space using the
inverse Fourier transform.

In our simulation, the initial density ρ0, pressure p0, and tem-
perature T0 are set as constants. The initial turbulent kinetic energy
K0, the root mean square velocity urms0, dissipation rate ε0, Kol-
mogorov length scale η0, integral length scale Lf 0, and large eddy
turnover time Te0 can be derived from the initial energy spectrum to
give

K0 =
3A0

64

√
2πk5

0,

urms0 = (
2K0

3
)

1/2
, ε0 = 2ν0

15
√

2π
256

A0k7
0,

(35)

η0 = (
128ν2

0

15
√

2πA0k7
0

)

1/4

, Lf 0 =

√
2π
k0

,

Te0 = (
32
A0
)

1/2
(2π)1/4k−7/2

0 .

Therefore, the initial Taylor microscale Reynolds number Reλ0
and the initial turbulent Mach number Mat0 can be computed as

Reλ0 =
(2π)1/4

4ν0

√
2A0k3/2

0 , Mat0 =
√

3urms0
√
γRT0

. (36)

The time will be normalized by the initial large eddy turnover time
Te0, and the subscript “0” of Te0 will be omitted in all the subsequent
figures for simplicity.

V. SIMULATION RESULTS
A three-dimensional DUGKS code is developed to simu-

late CDHIT by using the newly developed mesoscopic model. To
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validate our code and test its ability to simulate CDHIT with differ-
ent initial turbulent Mach numbers and Taylor microscale Reynolds
numbers, two cases are considered, and the simulation results are
carefully compared with the literature data based on other methods.

A. The low turbulent Mach number case
A case with a relatively low initial turbulent Mach number and a

low initial Reynolds number (Mat0 = 0.3, Reλ0 = 30) is first simulated
to validate our three-dimensional DUGKS code. The bulk-to-shear

viscosity ratio is set as 0 or 4/15, and the specific heat ratio γ is 1.4.
The constant A0 of the prescribed spectrum is 3.74 × 10−4, and the
corresponding peak wave number is k0 = 4. The turbulent kinetic
energy K(t) is normalized by its initial value K0, and three quan-
tities representing normalized root mean square thermodynamic
fluctuations are defined as follows:

p′ =
prms

γp0Ma2
t0

,T′ =
Trms

(γ − 1)T0Ma2
t0

,V′ =
Vrms

V0Ma2
t0

, (37)

FIG. 1. Time evolution of (a) normalized turbulent kinetic energy K(t)/K0, (b) normalized rms value of the specific volume V′, (c) normalized rms value of the temperature T′,
and (d) normalized rms value of the pressure p′, for the case of Mat 0 = 0.3 and Reλ0 = 30.
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where the specific volume of the fluid is defined as V = 1/ρ and
V0 = 1/ρ0. The physical quantity with a subscript rms denotes the
root mean square value of the physical quantity. The CFL num-
ber is set to 0.5. In this case, the large eddy turnover time Te

= 2
√

3/(k0Mt0) in order to be consistent with the definition in the
literature for the postprocessing.30 The fifth-order WENO schemes
are used to reconstruct the particle distribution functions at the cell
interface.

First, several low resolution simulations are conducted. With
643 uniform grids as that used in the literature, Fig. 1 shows the
results obtained by the DUGKS combined with different WENO
schemes. The results of WENO-Z (p = 1) and WENO-Z (p = 2)
almost overlap with those of WENO-M. The simulation results are
compared to the data given by Honein and Moin,30 Liao et al.,32 and
Subbareddy and Candler.33 Overall, all the DUGKS results match
well with the literature data even at such a low resolution. The
results obtained by the WENO-JS scheme are a little bit lower than
other DUGKS results because WENO-JS is more dissipative than
other WENO schemes. In contrast, the results obtained by Sub-
bareddy and Candler.33 are lower than other results for normalized
thermodynamic fluctuation quantities after two large eddy turnover
times.

Next, Fig. 2 shows the evolution of the velocity derivative skew-
ness and flatness with 5123 uniform grids. Their values approach
almost a constant after one large eddy turnover time, indicating that
the flow becomes physically developed. Then, the time evolution of
normalized turbulent kinetic energy K(t)/K0 and those normalized
thermodynamic fluctuation quantities are carefully compared with
the existing data from the literature in Fig. 3. Overall, the DUGKS
results agree well with the reference data from the literature. We
note that the reference results in the literature are obtained with
only 643 uniform grid points, while the DUGKS results are obtained

with higher resolution. With the grid resolution 5123, the results
for thermodynamic fluctuation quantities almost overlap with those
obtained by Honein and Moin30 who used an entropy conserva-
tion sixth-order compact finite difference scheme. However, they
do not provide enough data points in the peak region for compar-
ison. Therefore, we do not know the exact position of the peak. It is
observed that the peak position could be different when using dif-
ferent numerical treatments. For example, near the peak value of the
curve, our results are almost identical with those obtained by Sub-
bareddy and Candler33 who used a low dissipation, finite-volume
scheme. In contrast, the GKS results obtained by Liao et al.32 are
lower in the peak region. Moreover, the results obtained by different
bulk-to-shear viscosity ratios only exhibit minor difference because
the compressible effect is not so strong, and the difference in the
bulk-to-shear viscosity ratio is not large enough in the present case.
Still, we can see that the curve with χ = 4/15 is a little bit lower
than that with χ = 0 for the thermodynamic flow quantity because
a small increase in the bulk-to-shear viscosity ratio can decrease the
compressibility effect slightly.

In the simulation of incompressible isotropic turbulence, Wang
et al.19 have shown that the DUGKS can resolve the flow when
kmaxη > 3 in their simulated cases, where kmax is the maximum wave
number and η is the Kolmogorov length scale. However, for com-
pressible isotropic turbulence, the approximate value for kmaxη is
still unknown. The grid convergence study is done with the different
uniform grids N3 = 643, 1283, 2563, 5123, and the simulation results
are shown in Fig. 4. The corresponding initial values of kmaxη are
1.40, 2.88, 5.84, and 11.69, respectively. The DUGKS result with the
lowest resolution 643 is reasonable but does not coincide very well
with the reference data, especially for the kinetic energy. With the
increase in the resolution, the results gradually converge to the data
points given by Honein and Moin.30 It is clear that the result with

FIG. 2. Time evolution of (a) velocity derivative skewness Su and (b) velocity derivative flatness Fu, for the case of Mat 0 = 0.3 and Reλ0 = 30.
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FIG. 3. Time evolution of (a) normalized turbulent kinetic energy K(t)/K0, (b) normalized rms value of the specific volume V′, (c) normalized rms value of the temperature T′,
and (d) normalized rms value of the pressure p′, for the case of Mat 0 = 0.3 and Reλ0 = 30.

highest resolution 5123 is in good agreement with the data points in
Ref. 30. Finally, the effect of the CFL number on the results is also
examined for the present case. The bulk-to-shear viscosity ratio is
0. Three CFL numbers 0.25, 0.5 and 0.75 are tested on 5123 uniform
grid points. The time history of turbulent kinetic energy and the nor-
malized pressure fluctuation are shown in Fig. 5. The results with
different CFL numbers are almost identical. The explicit valuesΔt/τ0
(τ0 = μ0/p0) for three CFL cases are 0.146, 0.292, and 0.437, respec-
tively. This implies that accurate NSF solutions can be obtained

without the requirement that the time step should be much less than
the relaxation time. This observation is consistent with the AP prop-
erties of the DUGKS approach.18 Therefore, in all the subsequent
sections, the CFL number is fixed at 0.5.

B. The higher turbulent Mach number case
To further validate the capability of the present DUGKS

approach to simulate locally subsonic and supersonic turbulent
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FIG. 4. Grid convergence study with uniform grids N3 = 643, 1283, 2563, 5123. (a) Normalized turbulent kinetic energy K(t)/K0. (b) Normalized rms value of the specific
volume V′. (c) Normalized rms value of the temperature T′. (d) Normalized rms value of the pressure p′. The bulk-to-shear viscosity ratio χ is set to 0. Mat 0 = 0.3 and
Reλ0 = 30.

flows, we consider a case with a higher initial turbulent Mach num-
ber of Mat0 = 0.488 and a Taylor microscale Reynolds number of
Reλ0 = 175, previously studied by Samtaney et al.29 and Frapolli
et al.31 The initial divergence-free velocity field is generated by an
energy spectrum given in Eq. (26) with the constant of A0 = 0.011
and the peak wavenumber of k0 = 4. Two different grid resolu-
tions, 2563 and 5123, are adopted for the newly developed meso-
scopic model. The corresponding initial kmaxη0 are 2.43 and 4.89,

respectively. The CFL number is set to 0.5. The ratio of bulk to shear
viscosity is 0 as in the simulations from the literature.

First, in Fig. 6, we display the time evolution of velocity deriva-
tive skewness and the root mean square value of velocity diver-
gence. Results are compared with those from a NSF solver using a
hybrid scheme35 and the results from a tenth-order compact finite
difference scheme.29 Overall, our results are in good agreement
with the literature data. Based on the time evolution of the velocity
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FIG. 5. Effect of time step size (or CFL number) of the results. Three CFL values (0.25, 0.5, and 0.75) were tested on uniform grids N3 = 5123. The bulk-to-shear viscosity
ratio χ is 0. (a) Normalized turbulent kinetic energy K(t)/K0. (b) Normalized rms value of the pressure p′. Mat 0 = 0.3 and Reλ0 = 30.

derivative skewness, we conclude that the flow has not evolved
into a physical flow before t/Te = 1.5, during which the specific
random flow initialization may affect the flow statistics. Differ-
ent numerical treatments and grid resolutions will also introduce
numerical dissipations at different levels, which can lead to the slight

deviations near the peak and valley regions, but these regions occur
during the transition from the initial random flow to the physi-
cal CDHIT flow. For these reasons, slight deviations at the regions
near the peak and valley points for the skewness and the peak
regions for the root mean square velocity divergence should not be

FIG. 6. (a) Time evolution of velocity derivative skewness Su. (b) Time evolution of root mean square velocity divergence ϑrms.
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FIG. 7. Comparison of the PDF of the local Mach number at t/Te = 1.56. (a) PDF with a logarithmic coordinate in the y axis. (b) PDF without logarithmic coordinates.

taken too seriously. The evolution of the rms velocity divergence for
t/Te > 1.5 is in excellent agreement with the literature results. As
illustrated in Fig. 6(b), even for the results between the work of
Samtaney et al.29 and Wang et al.,35 some difference can be observed
in the neighborhood of the peak value of the curves. In the following
discussions, we will further confirm our statement here by simulat-
ing the same case with different WENO schemes and different treat-
ments for interfacial derivatives of distribution functions at the cell
interface.

Next, we compare the probability density function (PDF) of the
local Mach number obtained by using the DUGKS approach with
those obtained by Samtaney et al.29 and Frapolli et al.31 In Fig. 7,
the DUGKS results and the benchmark data are compared with each
other at the dimensionless time t/Te = 1.56. We provide both the
PDFs with and without the logarithmic y coordinate for comparison.
In Fig. 7(a), we found that the DUGKS results agree very well with
the benchmark data except for a minor difference in the region at
the very end of the tail, perhaps due to the insufficient data samples.
In Fig. 7(b), it is also observed that the DUGKS results overlap with
the benchmark data for almost all Mach number regions.

A comparison of the PDF of normalized root mean square
velocity divergence is shown in Fig. 8. We observe that the DUGKS
results with 2563 and 5123 uniform girds are in excellent agreement
with the data points taken from the work of Samtaney et al.29 In con-
trast, the DUGKS result with 5123 uniform grids exhibits a longer
tail with large negative velocity divergence than that with 2563 grids,
although the probability of the large negative value is relatively small.
The longer tail indicates that a high resolution simulation can bet-
ter capture extreme turbulent fluctuations of different scales in local
compression regions.

Figure 9 displays the PDF of the local Mach number and the
PDF of normalized root mean square velocity divergence obtained

using the third-order WENO-JS scheme and the fifth-order WENO-
JS scheme to reconstruct the particle distribution functions at the cell
interface. Again, the DUGKS results are in good agreement with the
benchmark data. In Fig. 9(a), only a slight deviation can be observed
near the maximum Mach number. The results with the fifth-order
WENO-JS scheme appear much closer to the benchmark data near
the maximum Mach number when comparing with the third-order
WENO-JS scheme. In Fig. 9(b), different treatments only show slight
difference in the tails of the PDF. We choose to use the fifth-order
WENO-JS scheme in the following simulations.

FIG. 8. Comparison of the PDF of normalized velocity divergence at t/Te = 1.56.
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FIG. 9. Comparison of the results obtained from the third-order WENO-JS scheme and the fifth-order WENO-JS scheme at t/Te = 1.56. (a) PDF of the local Mach number.
(b) PDF of the normalized velocity divergence.

To further validate our code, Fig. 10 shows the time history of
the normalized turbulent Mach number and the normalized turbu-
lent kinetic energy. The DUGKS results are in excellent agreement
with the benchmark data. We also observe that the local maximum
Mach number can reach values as high as 1.5, which is consistent
with the observation reported by Frapolli et al.31

It would be interesting to examine the distribution of the local
Knudsen number, Kn ≡ λ/l, where λ is the molecular mean free
path and l is the local characteristic length scale. The value of l
could be defined based on a hydrodynamic field variable, so the
choice is not unique. Although the local Knudsen number can
have different values due to different definitions of l, the following

FIG. 10. (a) Time evolution of the turbulent Mach number Mat /Mat 0. (b) Time evolution of normalized turbulent kinetic energy Kρ(t)/Kρ(0).
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FIG. 11. (a) Time evolution of the PDF of the density-based Knudsen number Knρ. (b) Time evolution of the PDF of the pressure-based Knudsen number Knp.

discussion can provide us a better understanding of the local flow
state. Based on the density field and the temperature field, we
can define three local Knudsen numbers, namely, Knρ ≡ λ|∇ρ|/ρ,
Knpress ≡ λ|∇p|/p, and KnT ≡ λ|∇T|/T, where the mean free path is
given by λ = (μ/p)

√
πRT/2 for air.17,49

The evolution of PDFs of Knρ and Knp is shown in Fig. 11.
The peak value of the PDF increases, and the corresponding Knud-
sen number decreases over time. As a result, the flow state appears
to be within the continuum regime completely as the flow evolves
with time. We observe that the local Knudsen number can be larger

than 0.001 at earlier times. In the region with a high local Knud-
sen number, the flow may not belong to the continuum flow regime
so that the NSF system cannot provide a satisfying description to
the local flow state, especially near or inside the shocklets. However,
for most flow regions, the NSF system can be accurate such that the
NSF-based solver and the Boltzmann-based solver can yield identical
results.

Figure 12 shows two snapshots of contours of normal-
ized velocity divergence ϑ/ϑrms and local Mach number Maloc at
z/L = 0.502 and t/Te = 1.56. Figure 13 displays slices of contours of

FIG. 12. Slices of contours of (a) normalized velocity divergence ϑ/ϑrms and (b) local Mach number Maloc at t/Te = 1.56.
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FIG. 13. Slices of contours of (a) normalized density fluctuation (ρ − ⟨ρ⟩)/⟨ρ⟩ and (b) normalized temperature fluctuation (T − ⟨T⟩)/⟨T⟩ at t/Te = 1.56.

normalized density fluctuation (ρ − ⟨ρ⟩)/⟨ρ⟩ and normalized tem-
perature fluctuation (T − ⟨T⟩)/⟨T⟩ at the same position and time.
Local highly compression and expansion regions can be clearly
observed in Figs. 13(a) and 13(b) which could be explained by
the intermittency of compressible turbulence. The structures of the
density fluctuations and the temperature fluctuations exhibit some
similarities. Using the DNS data on this slice, we find that the
correlation coefficient between the density fluctuation and the
temperature fluctuation corr(ρ, T) is 0.90. For any two physi-
cal quantities ϕ and ψ, the correlation coefficient is defined as
corr(ϕ,ψ) = ⟨(ϕ − ⟨ϕ⟩)(ψ − ⟨ψ⟩)⟩/⟨(ϕ − ⟨ϕ⟩)2

⟩
1/2
⟨(ψ − ⟨ψ⟩)2

⟩
1/2,

where the angle brackets denote spatial averages. Figure 14 dis-
plays the slices of contours of Knρ and Knp at the same loca-
tion and time. From Figs. 14(a) and 14(b) we observe that most
flow regions reside in the continuum regime, while the regions
with large density and pressure variations could reside in the
slip regime locally. The correlation coefficient corr(Knρ, Knp) is
found to be 0.98, implying highly similar Knudsen number pat-
terns displayed in Figs. 14(a) and 14(b). In addition, we find that
corr(Knp, |∇ρ|), corr(Knp, |∇p|), corr(Knρ, |∇ρ|), and corr(Knρ,
|∇p|) are 0.95, 0.94, 0.96, and 0.91, respectively. These relatively
high levels of correlation confirm that large local Knudsen

FIG. 14. Slices of contours of the (a) density-based local Knudsen number Knρ and (b) pressure-based local Knudsen number Knp at t/Te = 1.56.
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numbers tend to overlap with regions of rapid density and pres-
sure variations. Moreover, the correlation coefficients corr(Knρ, ϑ2),
corr(Knρ, Maloc), corr(Knp, ϑ2), and corr(Knp, Maloc) are 0.24, 0.35,
0.27, and 0.37, respectively. We find that the quantities ϑ2 and
Maloc are all positively correlated with the local Knudsen numbers
although the correlation coefficients are relatively small. These can
be explained from two aspects. First, the negatively skewed PDF of
the velocity divergence demonstrates that the very strong compres-
sion motions associated with the shocklets exist more frequently
than the expansion motions in the whole flow field. Generally
speaking, these strong compression motions could more effectively
decrease the local length scale and thus increase the local Knudsen
number. However, local expansion motions can also decrease the
local density, increase the local density gradient, and thus increase
the local Knudsen number, which is more pronounced when the
expansion region is surrounded by some local compression regions
(high density regions with negative velocity divergence). As clearly
displayed in Figs. 12(a) and 13(a), the regions with a relatively
high Knudsen number mainly correspond to the local low den-
sity regions induced by local strong expansion motions, but not
by the local strong compression motions. Second, a rough esti-
mate shows that the local Knudsen number is proportional to
the ratio Maloc/Reloc, where the local Reynolds number Reloc is
defined based on the local velocity scale and length scale. There-
fore, local supersonic flow with a relatively large local Mach num-
ber may correspond to a relatively large local Knudsen number
assuming that the local Reynolds number does not change sig-
nificantly. In that case, a positive correlation between the local
Mach number and the local Knudsen number can be observed.
Based on these considerations, the Knudsen number patterns are
related, at different levels, to the physical quantities shown in
Figs. 12 and 13.

C. Comparison of different treatments
of interfacial derivatives

In the simulations mentioned above, the interfacial distribu-
tion function ϕ̄+

(xb, ξ, tn) is reconstructed from the cell-averaged
value ϕ̄nj (ξ) by applying the fifth-order WENO-JS scheme. Based on
the known distribution functions ϕ̄+

(xb, ξ, tn) and ϕ̄nj (ξ), different
numerical methods can be applied to evaluate the interfacial gradi-
ent σb. In addition to the van leer limiter (method A) mentioned
above, we also test the following the second-order (method B) and
the fourth-order (method C) central finite difference schemes in our
simulation. Note that for smooth flows without shocklets, σb should
be continuous at the cell interface, while a jump of σb may occur
across a strong shocklet surface in high turbulent Mach number
flows. For the latter cases, the interfacial gradient σb can be approx-
imated by the velocity gradient in the nearest upstream cell center
obtained by using the van Leer limiter according to the direction
of a given particle velocity (method D). The WENO-JS scheme and
WENO-Z scheme are combined with methods A–D, respectively.
The parameter p in the nonlinear weights of the WENO-Z scheme is
equal to one. The grid resolution is 2563.

For instance, we consider the implementation for the cell inter-
faces facing the x direction. In the normal direction of the cell inter-
face, the second-order and fourth-order central FD schemes can be
written as

(
df
dx
)
i+1/2,j,k

=
fi+1,j,k − fi,j,k

Δx
+ O(Δx2

), (38a)

(
df
dx
)
i+1/2,j,k

=
27( fi+1,j,k − fi,j,k) − ( fi+2,j,k − fi−1,j,k)

24Δx
+O(Δx4

). (38b)

In the tangential direction of the cell interface, the second-order and
fourth-order central FD schemes can be expressed as

(
df
dy
)

i+1/2,j,k
=
fi+1/2,j+1,k − fi+1/2,j−1,k

2Δy
+ O(Δy2

), (39a)

(
df
dz
)
i+1/2,j,k

=
fi+1/2,j,k+1 − fi+1/2,j,k−1

2Δz
+ O(Δz2

), (39b)

(
df
dy
)

i+1/2,j,k
=

8(fi+1/2,j+1,k − fi+1/2,j−1,k) − (fi+1/2,j+2,k − fi+1/2,j−2,k)

12Δy

+O(Δy4
), (39c)

(
df
dz
)
i+1/2,j,k

=
8(fi+1/2,j,k+1 − fi+1/2,j,k−1) − (fi+1/2,j,k+2 − fi+1/2,j,k−2)

12Δz

+O(Δz4
), (39d)

where the subscripts i, j, k denote the position of the function f and
Δx, Δy, and Δz represent the grid spacings in x, y, z, respectively. All
comparisons of methods A–D are performed at t/Te = 1.56.

Figures 15 and 16 show the PDFs of the local Mach number and
normalized velocity divergence. The results obtained from differ-
ent methods are in good agreement with each other, and only small
difference can be seen at the tails, which represent local highly com-
pressed or expanded regions. Therefore, the PDFs of the local Mach
number and normalized velocity divergence are not sensitive to the
methods used to evaluate the interfacial gradient σb.

Figures 17 and 18 display the time history of velocity derivative
skewness and root mean square velocity divergence, respectively. As
demonstrated in Fig. 17, the results obtained from methods A–D
agree well with each other for both the WENO-JS and WENO-Z
schemes, which indicates that the skewness is also not sensitive to the
methods used. In Fig. 18(a), with the WENO-JS scheme, the DUGKS
result from method A coincides well with the result from the hybrid
scheme for most regions but has a lower peak value. In addition,
the DUGKS results obtained from methods B–D are slightly lower
than that obtained from method A. However, in Fig. 18(b), with the
WENO-Z scheme, the DUGKS results obtained from methods B and
C agree well with the hybrid scheme except for the peak region of the
curve. In contrast, the DUGKS results obtained from methods A and
D have a slightly higher value than that from the hybrid scheme for
most regions but can reach the same level in the peak region. For this
3D compressible case, no analytical solution can be derived, and the
truth benchmark can never be known thoroughly. If the traditional
and mesoscopic CFD methods yield comparable results, then we can
have more confidence in our simulation results. Moreover, we com-
pare the instantaneous density and temperature profiles (not shown
here). The results obtained from different methods also match very
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FIG. 15. Comparison of the PDF of the local Mach number by methods A–D at t/Te = 1.56. (a) WENO-JS combined with methods A–D and (b) WENO-Z combined with
methods A–D.

well with each other. From the above-mentioned results, we can con-
clude that different treatments at the cell interface can yield very
similar results.

D. Comparison of different WENO schemes
In this subsection, we reconstruct the particle distribution

functions at the cell interface by using WENO-JS, WENO-Z, and

WENO-M schemes, respectively. The parameter p in the WENO-Z
scheme is taken as 1 and 2 in the simulation. The details and
some discussion on these three WENO schemes are included in
Appendix C. As discussed above, method A is still used to compute
σb at the cell interface. A 2563 uniform grid is applied.

The PDFs of the local Mach number and normalized veloc-
ity divergence are plotted in Figs. 19(a) and 19(b). The DUGKS

FIG. 16. Comparison of the PDF of normalized velocity divergence by using methods A–D at t/Te = 1.56. (a) WENO-JS combined with methods A–D and (b) WENO-Z
combined with methods A–D.
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FIG. 17. Comparison of the time evolution of velocity derivative skewness by using methods A–D. (a) WENO-JS combined with methods A–D and (b) WENO-Z combined
with methods A–D.

results obtained from different WENO schemes agree well with each
other and the reference data. Figure 20(a) shows the evolution of
velocity derivative skewness. Only small differences can be observed
between these four curves. The evolution of root mean square veloc-
ity divergence is also shown in Fig. 20(b). The results obtained from

two WENO-Z schemes and WENO-M scheme are almost identical,
but their magnitudes are slightly higher than those from the hybrid
scheme and WENO-JS scheme for most regions although they share
almost the same peak value. This is because the WENO-Z scheme
and WENO-M scheme are more accurate and less dissipative than

FIG. 18. Comparison of the time evolution of root mean square velocity divergence by using methods A–D. (a) WENO-JS combined with methods A–D and (b) WENO-Z
combined with methods A–D.
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FIG. 19. Comparison of the PDF of (a) the Mach number and (b) normalized velocity divergence by using different WENO schemes at t/Te = 1.56.

the WENO-JS scheme, particularly near the critical points. We also
confirm that the results do not show visible difference with the small
parameter of ε0 = 10−5 and 10−6 (not shown here). The comparison
leads to the conclusion that the PDFs of the local Mach number, nor-
malized velocity divergence, and velocity derivative skewness are not
very sensitive to the details of the WENO schemes applied. As to the

root mean square velocity divergence, the results are still reasonable.
Different dissipation levels of different WENO schemes contribute
to the small difference. We also compare the instantaneous density
and temperature profiles (not shown here). No obvious difference
could be observed, which implies that the instantaneous flow fields
are also not sensitive to the WENO schemes applied.

FIG. 20. Comparison of the time evolution of (a) velocity derivative skewness and (b) root mean square velocity divergence by using different WENO schemes.
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E. Effect of bulk to shear viscosity ratio on PDFs
of some physical quantities

The Stokes hypothesis (i.e., zero bulk viscosity) is extensively
applied to the NSF-based simulation of viscous compressible flows,
in particular to gas dynamics problems.29,35 The compressible turbu-
lence is not expected to be affected by the bulk viscosity significantly
when the bulk viscosity is of the order of the shear viscosity.50 There-
fore, the simulations with and without the Stokes assumption will
yield almost the same results. As a direct application of our newly
developed model, the effect of the bulk to shear viscosity ratio on
PDFs of some physical quantities is explored by using our DNS data.
Three viscosity ratios χ = 0, 30, and 100 are considered, and some
preliminary results are presented next.

First, the PDFs of normalized velocity divergence and local
Mach number are shown in Figs. 21(a) and 21(b) at t/Te = 1.56.
When computing the PDFs, we first find the maximum (Amax) and
minimum (Amin) values of the field; then, the bin width is defined
as (Amax − Amin)/Nbin. The number of bins, Nbin, is chosen to be
400. Oscillations of the PDF tails reflect the inadequate number of
samples used there. As illustrated in Fig. 21(a), we observe that the
left tail with large negative values becomes shorter with the increase
in the bulk to shear viscosity ratio, which is qualitatively consistent
with those reported by Chen et al.37 and Pan and Johnsen.50 This is
because the increase in the bulk to shear viscosity ratio can damp
the compressibility. In Fig. 21(b), the maximum Mach number also
decreases with the increase in the bulk to shear viscosity ratio, which
further confirms the previous observation. An explanation for the
bulk viscosity effect is given as follows. For simplicity, neglecting the
spatial variation of the shear and bulk viscosities in the viscous term,
the spatially averaged evolution equation for ⟨ϑ2

⟩/2 in a periodic
domain can be derived from the momentum equation, yielding

∂

∂t
⟨

1
2
ϑ2
⟩ = ⟨

1
2
ϑ3
⟩ + ⟨ϑ(Ω : Ω − S : S)⟩

+ ⟨
1
ρ
∇p ⋅∇ϑ⟩ − ⟨

4
3
μ
ρ
∣∇ϑ∣2⟩

− ⟨
μV
ρ
∣∇ϑ∣2⟩, (40)

where the minus sign in the last term implies that the bulk viscosity
always reduces the velocity divergence magnitude in both the expan-
sion and compression regions. This equation can be used to further
analyze different contributions to the change in the mean square
dilatation, which is beyond the scope of this paper. The derivation
details are included in Appendix E.

Next, Figs. 22(a) and 22(b) present the PDFs of normalized vor-
ticity magnitude ω/ωrms and the normalized vortex stretching term
Φ = (ω ⋅ S ⋅ ω)/(⟨ω2

⟩(S : S)1/2
) at t/Te = 1.56. Different from

the previous ones, it is found that the PDFs of normalized vorticity
magnitude and the normalized vortex stretching term exhibit little
sensitivity to the ratio of bulk to shear viscosity. The PDFs are almost
identical for different bulk-to-shear viscosity. This is also consistent
with the findings by Pan and Johnsen.50 Another evidence can be
found in Fig. 23 that displays the vortices extracted by Q-criterion51

at t/Te = 1.56 for χ = 0, 30, respectively. We observe that the vor-
tex structures are almost unaffected by the bulk-to-shear viscosity
ratio. This can be understood from two aspects. On the one hand, the
vorticity dynamics is dominated by the vortex stretching and shear-
density gradient effects and could be partly influenced by the bulk
viscosity-density gradient effect.50 On the other hand, increasing
the bulk-to-shear viscosity ratio can attenuate the coupling between
the solenoidal mode and the compressive mode such that the

FIG. 21. (a) PDF of normalized velocity divergence ϑ/ϑrms. (b) PDF of the local Mach number Maloc . Time t/Te = 1.56.

Phys. Fluids 32, 125104 (2020); doi: 10.1063/5.0029424 32, 125104-21

© Author(s) 2020

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 22. (a) PDF of normalized vorticity magnitude ω/ωrms. (b) PDF of normalized vortex stretching term Φ = (ω ⋅ S ⋅ ω)/(⟨ω2
⟩(S : S)1/2

). Time t/Te = 1.56.

solenoidal-velocity-dominated vortical motion is not evidently
altered by the bulk viscosity.

To have an intuitive understanding of effect of the bulk to shear
viscosity ratio, the isosurfaces of the normalized velocity divergence
ϑ/ϑrms with χ = 0, 30 are also visualized in Figs. 24(a) and 24(b) at
t/Te = 1.56, respectively. The red isosurfaces (ϑ/ϑrms = −2) denote
the compression regions, while the blue ones (ϑ/ϑrms = 2) represent

the expansion regions. We observe that more blob-like structures
emerge, and the sheet-like structures is less visible with the increase
in the bulk to shear viscosity ratio. The increase in the bulk to shear
viscosity ratio damps the compressible effect in the local strong com-
pression regions and reduces the probability of the existence of the
shocklets, which finally drives the flow toward the incompressible
state.

FIG. 23. 3D isosurfaces of vortices identified by Q-criterion Q = 100 at t/Te = 1.56. (a) χ = 0 and (b) χ = 30.
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FIG. 24. 3D isosurfaces of normalized velocity divergence ϑ/ϑrms at t/Te = 1.56. (a) χ = 0 and (b) χ = 30. Red surfaces: ϑ/ϑrms = −2 and blue surfaces: ϑ/ϑrms = 2.

VI. COMPUTATIONAL COST
We ran both the DUGKS code and the hybrid compact FD-

WENO code for 10 000 time steps at the 2563 resolution on the
Taiyi cluster provided by the Center for Computational Science and
Engineering at the Southern University of Science and Technol-
ogy. Taiyi is equipped with 815 nodes (2.4 GHz Intel Xeon Gold
614820c), each containing 40 cores. The hybrid compact FD-WENO
code was developed by Wang et al.35 and was parallelized using
one-dimensional domain decomposition. Due to the requirement to
implement the finite difference schemes in the code, the maximum
number of the cores that can be used in this case is 64. The total
central processing unit (CPU) time is 506 469 s, and the wall clock
time is 7 888 s. Our DUGKS code, which was parallelized using the
two-dimensional domain decomposition strategy,52 can be run eas-
ily with 256 cores with 16 divisions in each of the two directions
(more processors can be used if needed). The total CPU time is
16 658 809 s, and the wall clock time is 65 890 s.

This comparison indicates that currently the DUGKS code is
inefficient when compared to the hybrid compact FD-WENO code.
Two main reasons are given here. First, the compressible DUGKS
code has not been optimized, and many implementation details
could be improved. Second, the hybrid compact FD-WENO code
only solves five hydrodynamic variables including density (ρ), tem-
perature (T), and three velocity components (ux, uy, uz). While in
the DUGKS code, we track the particle distribution functions g̃ and
h̃. The hydrodynamic variables are obtained by integrating g̃ and h̃
over the particle velocity space. Using the E3Q77A9 discrete parti-
cle velocity model, 154 discrete distribution functions were solved,
namely, g̃α and h̃α, α = 1, 2, . . ., 77. The relative ratio of the number
of variables between the two methods is about 1:30, which reflects
roughly the CPU time ratio. We are in the process of optimizing the
DUGKS code including decreasing the number of the discrete par-
ticle velocities, but such efforts are beyond the scope of the current
paper, and they will be reported in the future. The results from the

current paper will serve as a benchmark for such future optimization
efforts.

VII. CONCLUSIONS AND DISCUSSIONS
We have proposed a new kinetic model with both an adjustable

Prandtl number and a tunable ratio of bulk to shear viscosity and
applied the model to simulate CDHIT under the DUGKS approach.
Different fifth-order WENO schemes are used to reconstruct the dis-
tribution function at the interface, and different treatments of the
interfacial derivatives are implemented. Simulation results from var-
ious implementations are compared with each other and with the
literature data. A newly developed 3D lattice velocity model with 77
discrete particle velocities and a Gauss–Hermite quadrature order at
9 has been used to evaluate the velocity moments of the particle dis-
tribution functions. This new lattice velocity model can ensure an
accurate evaluation of the heat flux at the mesoscopic level.

We apply the re-designed DUGKS approach to simulate two
CDHIT cases with different initial turbulent Mach numbers and
Taylor microscale Reynolds numbers. The simulation results agree
well with the results from the literature. For the local flow region
with high compressible effects, the NSF system may no longer be
accurate in describing the local flow state, while the Boltzmann equa-
tion can handle both the continuum flow regime and the flows in
the non-continuum regimes. Due to the coupled treatment of the
particle transport and collision processes, the DUGKS can success-
fully simulate the flows with multiscale physics, with a second-order
accuracy in both space and time. The hydrodynamic variables rep-
resent only the low-order moments of the distribution functions.
Although the use of more discrete velocities increases the compu-
tational cost, more information can be obtained from the particle
distribution functions at a given point in the DUGKS.

As a direct application of our DNS data, we study the effect of
bulk viscosity on turbulence statistics and structures. The DUGKS
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results show that the compressibility effect in CDHIT could be
damped with the increase in the bulk to shear viscosity ratio, similar
to what has been found in compressible stationary HIT.37,50

Our results show that the DUGKS approach can be a reliable
tool for simulating CDHIT at low and moderate turbulent Mach
numbers. In a companion paper, we first report results in applying
the DUGKS approach to simulate compressible stationary HIT.53

More parametric studies and the code optimization are needed in
the future.
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APPENDIX A: HERMITE POLYNOMIALS, HERMITE
EXPANSION, AND 3D DISCRETE PARTICLE VELOCITY
MODEL

The nth order Hermite polynomial54 is defined by

H (n)
(ξ,T0) ≡ (

√
RT0)

n (−1)n

ω(ξ,T0)
∇ξ⋯∇ξ
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−fold

ω(ξ,T0), (A1)

where the weighting function ω(ξ, T0) is ω(ξ,T0)

= exp(−ξ2
/(2RT0))/(2πRT0)

D/2 and T0 is the reference tempera-
ture. The Hermite polynomials of different orders are orthogonal to
each other in the following sense:

∫ ω(ξ,T0)H
m
i (ξ,T0)H

n
j (ξ,T0)dξ = δmnδnij, (A2)

where i represents the abbreviation of i1i2⋯in and δnij is equal to 1 if
and only if i is the permutation of j.

From the Chapman–Enskog expansion, we observe that the
fourth-order Hermite expansion of the equilibrium geq and the
second-order Hermite expansion of the equilibrium heq are sufficient
for accurate calculation of the heat flux. They are given by

geq,N=4
= ρω(ξ,T0)[A0 + A1 + A2 + A3 + A4], (A3)

heq,N=2
= (3 −D + K)RTρω(ξ,T0)[A0 + A1 + A2], (A4)

where A0–A4 are given by

A0 = 1, A1 =
ξ ⋅ u
RT0

,

A2 =
1
2
[(

ξ ⋅ u
RT0
)

2

−
u2

RT0
+ (

T
T0
− 1)(

ξ2

RT0
−D)],

A3 =
1
6
(
ξ ⋅ u
RT0
)[(

ξ ⋅ u
RT0
)

2

− 3
u2

RT0
+ 3(

T
T0
− 1)(

ξ2

RT0
−D − 2)],

A4 =
1

24

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ξ ⋅ u
RT0
)

4

− 6(
u2

RT0
)(

ξ ⋅ u
RT0
)

2

+ 3(
u2

RT0
)

2

+ 6(
T
T0
− 1)

× [(
ξ2

RT0
−D − 4)(

ξ ⋅ u
RT0
)

2

+
u2

RT0
(D + 2 −

ξ2

RT0
)]

+3(
T
T0
− 1)

2⎡⎢
⎢
⎢
⎢
⎣

(
ξ2

RT0
)

2

− 2(D + 2)
ξ2

RT0
+ D(D + 2)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(A5)

Based on the orthogonal property of Hermite polynomials,
Shan et al.55,56 developed a general solution of the discrete velocity
model by solving linear equations for weights of velocities with pre-
defined abscissas on the lattice points. The three-dimensional dis-
crete velocity model E9

3,103 with 103 dicrete particle velocities and a
Gauss–Hermite quadrature order at 9 has been proposed. However,
the DUGKS does not require the abscissas of the discrete velocities
to be coincided with the Cartesian grids. This provides us with an
opportunity to design a discrete velocity model with a less num-
ber of discrete velocities and the same Gauss–Hermite quadrature
order of 9. Recently, a new model E9

3,77 with a less number of discrete
velocities is proposed by Wen et al.57 They began with a construc-
tion based on E9

3,125 = E9
1,5 × E

9
1,5 × E

9
1,5 and then examined the true

number of constraints in the model for achieving a Gauss–Hermite
quadrature order of 9 in 3D. They found that the one lattice velocity
group in E9

3,125 can be removed, leading to E9
3,77. The relevant sym-

metry groups, discrete velocity vectors, number of velocities, and the
corresponding weights of the resulting E9

3,77 model are summarized
in Table I, where r2

= 5 +
√

10, s2
= 5−

√
10 are the constants in the

discrete velocity vectors.

TABLE I. E3Q77 discrete particle velocity model with ninth-order Gauss–Hermite
quadrature.

Group Vector Number Weights

1 (0, 0, 0) 1 1.214 814 8 × 10−1

2 (r, 0, 0) 6 9.194 665 0 × 10−4

3 (s, 0, 0) 6 8.056 201 5 × 10−2

4 (r, r, 0) 12 4.224 310 3 × 10−5

5 (s, s, 0) 12 1.643 923 8 × 10−2

6 (r, s, 0) 24 2.499 999 9 × 10−3

7 (r, r, r) 8 4.224 310 3 × 10−5

8 (s, s, s) 8 1.643 923 8 × 10−2
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APPENDIX B: FIFTH-ORDER WENO SCHEME
FOR RECONSTRUCTION OF DISTRIBUTION
FUNCTIONS AT CELL INTERFACE

To improve the spatial accuracy, we employ the fifth-order
WENO-JS40 scheme to reconstruct the particle distribution func-
tions at the cell interface. Due to the nature of linear convection of
the Boltzmann equation, the upwind rule should be satisfied by con-
sidering the directions of particle velocities in order to enhance the
numerical stability.

For instance, consider the cell interfaces of which the normal
vectors are pointing in the positive x direction. If the x component
of the particle velocity ξαx > 0 at the cell interface xj+1/2, then by using
the third-order interpolation, we can obtain

ϕ̄+(0)
(xj+1/2, ξα, tn) =

1
3
ϕ̄+,n
j−2(ξα) −

7
6
ϕ̄+,n
j−1(ξα) +

11
6
ϕ̄+,n
j (ξα), (B1a)

ϕ̄+(1)
(xj+1/2, ξα, tn) = −

1
6
ϕ̄+,n
j−1(ξα) +

5
6
ϕ̄+,n
j (ξα) +

1
3
ϕ̄+,n
j+1(ξα), (B1b)

ϕ̄+(2)
(xj+1/2, ξα, tn) =

1
3
ϕ̄+,n
j (ξα) +

5
6
ϕ̄+,n
j+1(ξα) −

1
6
ϕ̄+,n
j+2(ξα). (B1c)

It should be noted that the left-hand sides of the above equation are
local values at the interface, while the values on the right-hand sides
are all cell-averaged.

The smoothness factors β0, β1, and β2 can be explicitly
expressed as

β0 =
13
12
(ϕ̄+,n

j−2(ξα) − 2ϕ̄+,n
j−1(ξα) + ϕ̄+,n

j (ξα))
2

+
1
4
(ϕ̄+,n

j−2(ξα) − 4ϕ̄+,n
j−1(ξα) + 3ϕ̄+,n

j (ξα))
2, (B2a)

β1 =
13
12
(ϕ̄+,n

j−1(ξα) − 2ϕ̄+,n
j (ξα) + ϕ̄+,n

j+1(ξα))
2

+
1
4
(ϕ̄+,n

j−1(ξα) − ϕ̄
+,n
j+1(ξα))

2, (B2b)

β2 =
13
12
(ϕ̄+,n

j (ξα) − 2ϕ̄+,n
j+1(ξα) + ϕ̄+,n

j+2(ξα))
2

+
1
4
(3ϕ̄+,n

j (ξα) − 4ϕ̄+,n
j+1(ξα) + ϕ̄+,n

j+2(ξα))
2. (B2c)

Therefore, the nonlinear weights can be expressed as

ωJS
j =

ω̃JS
j

∑
2
q=0 ω̃

JS
q

, ω̃JS
q =

γq
(ϵ0 + βq)2 , j, q = 0, 1, 2, (B3)

where γ0 = 1/10, γ1 = 3/5, and γ2 = 3/10 are the linear weights. The
small parameter ε0 is originally used to avoid divisions by zero in
the nonlinear weights. As suggested, ε0 = 10−6 is often used in the
simulation.38,40 However, it also has a collateral effect on the order
of accuracy of the scheme.58–60 Therefore, according to the above
discussion, ε0 should be the order of O((δx/L)2

) (with the same
dimension as the smoothness factors), where δx is the grid spacing
and L is the side length of the cubic box.

Finally, the distribution functions ϕ̄+
(xj+1/2, ξα, tn) can be a

weighted sum, given as

ϕ̄+
(xj+1/2, ξα, tn) = ω0ϕ̄+(0)

(xj+1/2, ξα, tn) + ω1ϕ̄+(1)
(xj+1/2, ξα, tn)

+ω2ϕ̄+(2)
(xj+1/2, ξα, tn). (B4)

If the x component of the particle velocity ξαx < 0 at the cell
interface xj+1/2, the similar procedures can be repeated with three
cells in the upstream direction and two cells in the downstream
direction. If ξαx = 0, we take the average of the results obtained by
two cases mentioned above. For the cell interfaces in the y direction
and z direction, the logic is similar to what we have done in the x
direction. The reconstruction process is displayed in Fig. 25.

The WENO-JS scheme can lose its optimal order of accuracy
at the critical points (where df /dx = 0, but d2f /dx2

≠ 0) of a smooth
function.41,59 Therefore, Borges et al.41 and Castro et al.42 proposed
the WENO-Z scheme by redesigning the nonlinear weights that sat-
isfy the necessary and sufficient conditions for an optimal order at
the critical points. The WENO-Z scheme is less dissipative than
WENO-JS.60 In addition to WENO-JS and WENO-Z schemes, Hen-
rick et al.43 proposed the WENO-M scheme by introducing a map-
ping function to the weights. The above conclusions are drawn from
1D or 2D simulations in the existing literature. For the present 3D
implementation using the DUGKS approach, the effect of differ-
ent WENO schemes on turbulence statistics should also be further
studied.

FIG. 25. The fifth-order WENO scheme for the reconstruction of particle distribution functions at the cell interface.
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APPENDIX C: CHAPMAN–ENSKOG ANALYSIS
FOR THE REDESIGNED MESOSCOPIC MODEL

In this appendix, we provide the details of the Chapman–
Enskog analysis for the redesigned mesoscopic model. From
Eqs. (8a) and (8b), the Chapman–Enskog expansion for two reduced
distribution functions g and h can be written as

g = geq − τ(
∂geq

∂t
+ ξ ⋅∇geq − Sg) + O(τ2

), (C1a)

h = heq − τ(
∂heq

∂t
+ ξ ⋅∇heq − Sh) + O(τ2

). (C1b)

From the definitions of the equilibriums and source terms in
Eqs. (9) and (10), the following moments can be evaluated directly:

∫ geqdξ = ρ, ∫ ξgeqdξ = ρu, ∫ (ξ
2geq + heq)dξ = 2ρE, (C2)

∫ Sgdξ = 0, ∫ ξSgdξ = 0,

∫ ξξSgdξ = −(χ −
2(3 −D + K)
D(3 + K)

)pϑI, ∫ ξξξSgdξ = 0,
(C3)

∫ Shdξ = D(χ −
2(3 −D + K)
D(3 + K)

)pϑ,

∫ ξShdξ =
2(1 − Pr)q

τ
− 2(χ −

2(3 −D + K)
D(3 + K)

)pϑu.
(C4)

Combination of Eqs. (11) and (C2) yields the conservation
requirements for the collision operators,

∫ Ωgdξ = 0, ∫ ξΩgdξ = 0, ∫ (ξ
2Ωg + Ωh)dξ = 0. (C5)

Then, by taking the zeroth moment of Eq. (8a), we obtain the
continuity equation [see Eq. (14a)]. Similarly, by taking the first-
order moment of Eq. (8a), we obtain the momentum equation [see
Eq. (14b)]. By using Eq. (C1a), we can obtain the explicit expression
for the viscous stress tensor in Eq. (12).

Likewise, by taking the second-order moment of Eq. (8a) and
the zeroth-order moment for Eq. (8b), we have

1
2
∂

∂t ∫
hdξ +

1
2
∇ ⋅ ∫ ξhdξ =

1
2 ∫

Ωhdξ +
1
2 ∫

Shdξ, (C6)

1
2
∂

∂t ∫
ξ2gdξ+

1
2
∇⋅∫ ξ2ξgdξ =

1
2 ∫

ξ2Ωgdξ+
1
2 ∫

ξ2Sgdξ. (C7)

The sum of Eqs. (C6) and (C7) gives the total energy equation in
Eq. (14c).

The remaining task is to find the explicit expression for the heat
flux q by using the Chapman–Enskog expansion of two reduced dis-
tribution functions given in Eqs. (C1a) and (C1b). First, we note that
by using Eqs. (C3) and (C4), we obtain

∫ cc2Sgdξ = (D + 2)(χ −
2(3 −D + K)
D(3 + K)

)pϑu, (C8a)

∫ cShdξ =
2(1 − Pr)q

τ
− (D + 2)(χ −

2(3 −D + K)
D(3 + K)

)pϑu. (C8b)

Therefore, we have

∫ c(c2Sg + Sh)dξ =
2(1 − Pr)q

τ
. (C9)

Using Eq. (C9), the heat flux q can be computed as

q = −
1
2
τ[∫ cc2

(
∂geq

∂t
+ ξ ⋅∇geq)dξ

+ ∫ c(
∂heq

∂t
+ ξ ⋅∇heq)dξ]

+
1
2
τ∫ cc2Sgdξ +

1
2
τ∫ cShdξ + O(τ2

)

= −pτcp∇T +
1
2
τ∫ c(c2Sg + Sh)dξ + O(τ2

)

= −pτcp∇T + (1 − Pr)q + O(τ2
). (C10)

Therefore, the Fourier’s law can be recovered, as shown in Eq. (13).
Finally, it is worth pointing out that the source terms can be

designed by applying the Hermite expansion with five constraints in
order to recover the NSF system.47 Obviously, the simplest choice
is to take a truncated Hermite polynomial without increasing the
Gauss–Hermite quadrature order.

APPENDIX D: EXPLICIT EXPRESSIONS OF THE TWO
REDUCED DISTRIBUTION FUNCTIONS

The following Euler equations can be easily obtained by
approximating the distribution functions by the corresponding
equilibriums to the order of O(1):

∂ρ
∂t

+∇ ⋅ (ρu) = 0, (D1a)

ρ(
∂u
∂t

+ u ⋅∇u) = −∇p + O(τ), (D1b)

ρcv(
∂T
∂t

+ u ⋅∇T) = −pϑ + O(τ). (D1c)

Similarly, by performing the Chapman–Enskog expansion in
the hydrodynamic limit, the particle distribution function can be
approximated by its equilibrium and relevant derivatives to the
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order of O(τ). Through direct evaluation, we found that the time
derivative and the spatial derivative of the equilibrium distribution
function geq are proportional to itself, and the coefficient includes
both the time and spatial derivatives of the hydrodynamic flow
variables,

∂geq

∂t
= [

1
ρ
∂ρ
∂t

+ (
c2

2RT
−
D
2
)

1
T
∂T
∂t

+
∂u
∂t
⋅
c
RT
]geq, (D2a)

∇geq = [
1
ρ
∇ρ + (

c2

2RT
−
D
2
)

1
T
∇T +∇u ⋅

c
RT
]geq. (D2b)

If we use the Euler equations [see Eq. (D1)] to replace the time
derivatives of the hydrodynamic variables with the spatial deriva-
tives, we can obtain the Chapman–Enskog expansion of the two
reduced distribution functions to the order of O(τ),

g = (1 − τG)geq + τSg + O(τ2
), (D3a)

h = (1 − τG − τΦ1)heq + τSh + O(τ2
), (D3b)

where the coefficient G = G1 + G2 and G1, G2, and Φ1 are given by

G1 = (
c2

2RT
−
D + 2

2
)c ⋅ (

1
T
∇T), (D4a)

G2 =
c ⋅ S ⋅ c
RT

−
1

K + 3
(
c2

RT
+ 3 −D + K)ϑ, (D4b)

Φ1 = c ⋅ (
1
T
∇T) −

2
3 + K

ϑ. (D4c)

Equations (D3) and (D4) can be used to initialize two reduced
distribution functions g̃ and h̃.

APPENDIX E: A DERIVATION OF THE EVOLUTION
EQUATION OF MEAN SQUARE VELOCITY
DIVERGENCE

Taking the divergence of both sides of Eq. (14b), we obtain

∂ϑ
∂t

+ S : S −Ω : Ω + u ⋅∇ϑ = −∇ ⋅ (
1
ρ
∇p) +∇ ⋅ (

1
ρ
∇ ⋅ σ), (E1)

where Ω = (∇uT −∇u)/2 is the rotation tensor.
Multiplying Eq. (E1) by the dilatation on both sides and then

averaging the resulting equation over the periodic domain, we obtain

∂

∂t
⟨

1
2
ϑ2
⟩ = ⟨

1
2
ϑ3
⟩ + ⟨ϑ(Ω : Ω − S : S)⟩ + ⟨

1
ρ
∇p ⋅∇ϑ⟩

− ⟨
1
ρ
∇ϑ ⋅ (∇ ⋅ σ)⟩. (E2)

Furthermore, using the identity ∇ϑ ⋅ ∇2u = ∇ ⋅ (ϑ∇2u − ϑ∇ϑ)
+ |∇ϑ|2, the viscous term in Eq. (E2) can be evaluated as

−
1
ρ
∇ϑ ⋅ (∇ ⋅ σ) = −2

1
ρ
∇μ ⋅ Sd ⋅∇ϑ

−∇ ⋅ (
μ
ρ
(ϑ∇2u − ϑ∇ϑ))

+ (ϑ∇2u − ϑ∇ϑ) ⋅∇ν −
4
3
μ
ρ
∣∇ϑ∣2

−
1
ρ
ϑ∇ϑ ⋅∇μV −

μV
ρ
∣∇ϑ∣2, (E3)

where Sd = S − (1/3)ϑI is the traceless part of the strain rate tensor.
Combining Eqs. (E2) and (E3) gives the evolution equation for

⟨ϑ2
⟩/2,

∂

∂t
⟨

1
2
ϑ2
⟩ = ⟨

1
2
ϑ3
⟩ + ⟨ϑ(Ω : Ω − S : S)⟩ + ⟨

1
ρ
∇p ⋅∇ϑ⟩

− ⟨2
1
ρ
∇μ ⋅ Sd ⋅∇ϑ⟩ + ⟨(ϑ∇2u − ϑ∇ϑ) ⋅∇ν⟩

− ⟨
4
3
μ
ρ
∣∇ϑ∣2⟩ − ⟨

1
ρ
ϑ∇ϑ ⋅∇μV⟩ − ⟨

μV
ρ
∣∇ϑ∣2⟩, (E4)

where on the right-hand side, the first term originates from the
advection term, the second term represents the vorticity-dilatation
effect, the third term denotes the coupling effect induced by the
pressure gradient and dilatation gradient, the sixth term repre-
sents the dilatational dissipation due to the shear viscosity and the
dilatation gradient, and the eighth term denotes the dilatational
dissipation induced by the bulk viscosity. The remaining terms
are related to the non-uniform distribution of the shear and bulk
viscosities.

If both the shear viscosity gradient and the bulk viscosity gradi-
ent are relatively small [for instance, the ratio (⟨μ⟩ − μ0)/μ0 < 5% in
our simulations] such that the terms relevant to these gradients can
be neglected, then Eq. (E4) can be reduced to Eq. (40).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(Clarendon, Oxford, 1994), Vol. 42.
2L. Zhu, Z. Guo, and K. Xu, “Discrete unified gas kinetic scheme on unstructured
meshes,” Comput. Fluids 127, 211–225 (2016).
3Z.-X. Tong, Y.-L. He, and W.-Q. Tao, “A review of current progress in multiscale
simulations for fluid flow and heat transfer problems: The frameworks, coupling
techniques and future perspectives,” Int. J. Heat Mass Transfer 137, 1263–1289
(2019).
4G. A. Bird, “Recent advances and current challenges for DSMC,” Comput. Math.
Appl. 35, 1–14 (1998).

Phys. Fluids 32, 125104 (2020); doi: 10.1063/5.0029424 32, 125104-27

© Author(s) 2020

https://scitation.org/journal/phf
https://doi.org/10.1016/j.compfluid.2016.01.006
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.004
https://doi.org/10.1016/s0898-1221(97)00254-x
https://doi.org/10.1016/s0898-1221(97)00254-x


Physics of Fluids ARTICLE scitation.org/journal/phf

5J. Fan and C. Shen, “Statistical simulation of low-speed rarefied gas flows,”
J. Comput. Phys. 167, 393–412 (2001).
6P. Wang, M. T. Ho, L. Wu, Z. Guo, and Y. Zhang, “A comparative study of
discrete velocity methods for low-speed rarefied gas flows,” Comput. Fluids 161,
33–46 (2018).
7L. M. Yang, C. Shu, J. Wu, and Y. Wang, “Comparative study of discrete veloc-
ity method and high-order lattice Boltzmann method for simulation of rarefied
flows,” Comput. Fluids 146, 125–142 (2017).
8L. Mieussens, “Discrete-velocity models and numerical schemes for the
Boltzmann-BGK equation in plane and axisymmetric geometries,” J. Comput.
Phys. 162, 429–466 (2000).
9A. S. Jebakumar, V. Magi, and J. Abraham, “Lattice-Boltzmann simulations of
particle transport in a turbulent channel flow,” Int. J. Heat Mass Transfer 127,
339–348 (2018).
10S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu.
Rev. Fluid Mech. 30, 329–364 (1998).
11P. K. Kolluru, M. Atif, M. Namburi, and S. Ansumali, “Lattice Boltzmann model
for weakly compressible flows,” Phys. Rev. E 101, 013309 (2020).
12K. Xu and J.-C. Huang, “A unified gas-kinetic scheme for continuum and
rarefied flows,” J. Comput. Phys. 229, 7747–7764 (2010).
13J.-C. Huang, K. Xu, and P. Yu, “A unified gas-kinetic scheme for continuum and
rarefied flows II: Multi-dimensional cases,” Commun. Comput. Phys. 12, 662–690
(2012).
14J.-C. Huang, K. Xu, and P. Yu, “A unified gas-kinetic scheme for continuum and
rarefied flows III: Microflow simulations,” Commun. Comput. Phys. 14, 1147–
1173 (2013).
15C. Liu, K. Xu, Q. Sun, and Q. Cai, “A unified gas-kinetic scheme for continuum
and rarefied flows IV: Full Boltzmann and model equations,” J. Comput. Phys.
314, 305–340 (2016).
16K. Xu, “A gas-kinetic BGK scheme for the Navier–Stokes equations and its con-
nection with artificial dissipation and Godunov method,” J. Comput. Phys. 171,
289–335 (2001).
17Z. Guo, K. Xu, and R. Wang, “Discrete unified gas kinetic scheme for all
Knudsen number flows: Low-speed isothermal case,” Phys. Rev. E 88, 033305
(2013).
18Z. Guo, K. Xu, and R. Wang, “Discrete unified gas kinetic scheme for all
Knudsen number flows. II. Thermal compressible case,” Phys. Rev. E 91, 033313
(2015).
19P. Wang, L.-P. Wang, and Z. Guo, “Comparison of the lattice Boltzmann
equation and discrete unified gas-kinetic scheme methods for direct numerical
simulation of decaying turbulent flows,” Phys. Rev. E 94, 043304 (2016).
20Y. Bo, P. Wang, Z. Guo, and L.-P. Wang, “DUGKS simulations of three-
dimensional Taylor-Green vortex flow and turbulent channel flow,” Comput.
Fluids 155, 9–21 (2017).
21C. Wu, B. Shi, Z. Chai, and P. Wang, “Discrete unified gas kinetic scheme with
a force term for incompressible fluid flows,” Comput. Math. Appl. 71, 2608–2629
(2016).
22H. Liu, Y. Cao, Q. Chen, M. Kong, and L. Zheng, “A conserved discrete unified
gas kinetic scheme for microchannel gas flows in all flow regimes,” Comput. Fluids
167, 313–323 (2018).
23Z. Yang, C. Zhong, and C. Zhuo, “Phase-field method based on discrete uni-
fied gas-kinetic scheme for large-density-ratio two-phase flows,” Phys. Rev. E 99,
043302 (2019).
24C. Zhang, K. Yang, and Z. Guo, “A discrete unified gas-kinetic scheme
for immiscible two-phase flows,” Int. J. Heat Mass Transfer 126, 1326–1336
(2018).
25H. Liu, M. Kong, Q. Chen, L. Zheng, and Y. Cao, “Coupled discrete unified
gas kinetic scheme for the thermal compressible flows in all Knudsen number
regimes,” Phys. Rev. E 98, 053310 (2018).
26Z. Guo, C. Zheng, B. Shi, and T. Zhao, “Thermal lattice Boltzmann equa-
tion for low Mach number flows: Decoupling model,” Phys. Rev. E 75, 036704
(2007).
27J. Chen, S. Liu, Y. Wang, and C. Zhong, “Conserved discrete unified gas-kinetic
scheme with unstructured discrete velocity space,” Phys. Rev. E 100, 043305
(2019).

28R. Yuan and C. Zhong, “A conservative implicit scheme for steady state solu-
tions of diatomic gas flow in all flow regimes,” Comput. Phys. Commun. 247,
106972 (2020).
29R. Samtaney, D. I. Pullin, and B. Kosović, “Direct numerical simulation of
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