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Abstract. There have been relatively few studies of turbulent collision rate
of sedimenting droplets in the context of cloud physics, for which both the
gravitational settling and inertial effects must be simultaneously considered. In
this study, direct numerical simulations (DNS) were used to study the geometric
collision rates of cloud droplets. Both Stokes drag law and a nonlinear drag law
were considered, but the droplet–droplet local aerodynamic interactions were
not included. Typical droplet and turbulence parameters of convective clouds
were used to determine the flow dissipation rate ε, characteristic Stokes numbers,
and the nondimensional terminal velocities. DNS results from a large number of
runs covering the ε range from 10 to 400 cm2 s−3 and droplet sizes from 10 to
60 µm in radius are presented. These results show that air turbulence can increase
the geometric collision kernel by up to 47%, relative to geometric collision by
differential sedimentation. This is due to both a moderate enhancement of the
radial relative velocity between droplets and a moderate level of pair nonuniform
concentration due to local droplet clustering. The turbulence enhancements
increase with the flow dissipation rate and flow Reynolds number. Comparisons
with related DNS studies show that our results confirm and extend the previous
findings. The mean settling velocity of droplets in a turbulent flow was also
obtained, showing that a maximum increase relative to the terminal velocity
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occurs for 20 µm cloud droplets. This agrees with a previous theory based
on simple vortex flows and confirms the importance of a new nondimensional
parameter τ 3

p g2/ν for sedimenting droplets, where τp is the droplet inertial
response time, g is the gravitational acceleration and ν is the air kinematic
viscosity. Limitations of DNS and future directions are also noted.
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1. Introduction

In recent years, there has been a renewed interest in studying the effects of air turbulence on the
collision–coalescence growth of cloud droplets [1]–[6]. This is motivated by the need to resolve
an open issue in cloud physics [7, 8] concerning the growth of cloud droplets in the size range
from 10 to 50 µm in radius (i.e. the so-called size gap), for which neither the condensation
nor the gravitational collision–coalescence mechanism is effective [5]. Observations of radar
reflectivity in tropical regions suggest that rain could form in cumulus clouds by warm
rain process in approximately 15 to 20 min [9, 10]. Theoretical predictions based on the
gravitational–coalescence mechanism alone, however, would require a time interval in the order
of an hour for droplets to grow from 20 to 100 µm in radius (the actual time depends on the cloud
water content, initial droplet size spectrum, updraft speed, etc, see Pruppacher and Klett [7]).
Therefore, there appears to be a factor of 2 or more difference between the predicted observed
growth time. The onset of drizzle-size (∼100 µm in radius) raindrops is still poorly understood
in many precipitating cloud systems.

It has long been speculated that the effect of air turbulence could play an important role
in closing the size gap [12]–[14], although several other alternative explanations have also been
proposed, including growth by ultragiant particles, entrainment-induced spectral broadening
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and effects of pre-existing clouds [11, 15, 16]. Resolving this open issue quantitatively is crucial
in view of the fact that warm rain accounts for 31% of the total rain fall and 72% of the total
rain area in the tropics [17].

Here, we shall focus on the effects of air turbulence on droplet growth by
collision–coalescence. At least four effects of turbulence have been documented to date. The
first is the effect of local shear and air acceleration on the relative fluctuating motion of the
droplets. The increased relative motion is caused by the viscous drag acting on the droplets as
well as the differential inertial response of the droplets to local fluid acceleration. This effect
was first described qualitatively by Arenberg [12] and semi-analytically by Gabilly [18] and
East and Marshall [19]. Saffman and Turner [20] developed a rigorous theoretical formulation
to account for the enhanced relative motion by turbulence on collision rates applicable to weak-
inertia droplets. Further extensions of Saffman and Turner’s theory are found in [21]–[24]. In
the context of cloud droplets, this enhanced relative motion by turbulence has been proposed
as a mechanism to generate a significant increase in collision rates among cloud droplets when
compared with the gravitational collision–coalescence [25]–[28].

The second effect results from the enhanced average droplet-pair density due to local
preferential concentration. Maxey [29] showed theoretically that inertial particles tend to
accumulate in local regions of low vorticity and high strain rate due to an inertial bias
similar to the centrifugal effect. This preferential concentration was later confirmed in direct
numerical simulations (DNS) [30, 31]. Since local collision rates are proportional to the
second moment of local droplet concentrations, the preferential concentration may significantly
increase the average collision rate. This effect on collision rate was described theoretically
through an enhancement factor referred to as the radial distribution function (RDF) [32]–[34].
Falkovich et al [2] argued theoretically that the preferential concentration can increase the
average collision kernel by a factor of 10 in high Reynolds-number turbulence due to strong
intermittency of the local turbulence microstructures.

The third effect is the increased settling velocity by air turbulence. Sedimenting particles
bias their trajectories toward regions of downward fluid motion around vortices and could settle
significantly faster than the terminal velocity [29, 31, 35]. Since the increased settling occurs
selectively for droplets with a certain range of terminal velocity and inertial response time
[31, 35], it has been argued that this effect could alter the collision–coalescence growth by
modified relative mean motion of droplets in clouds [4, 36].

The fourth effect concerns the collision efficiency between droplets due to local
aerodynamic interactions. While the collision efficiencies between droplets without air
turbulence have been relatively well studied [13, 37, 38], there have been very few studies on
collision efficiency in turbulent clouds [34], [39]–[43]. Qualitatively, we expect modifications
of collision efficiency by air turbulence, since the background air flow alters the magnitude
and orientation of droplet–droplet relative motion and since collision efficiency depends
sensitively on the size-dependent relative motion for the size range of interest [37]. Some
limited quantitative assessment of the collision efficiency enhancement by turbulence has been
presented in [34].

We mention in passing that there are a few studies on the effects of turbulence on
the diffusional growth [44]–[47]. Shaw et al [44] speculated that preferential concentration
might result in significant supersaturation fluctuations that could broaden the size spectrum
by diffusional growth. Three-dimensional DNS by Vaillancourt et al [46, 47] for sedimenting
droplets under conditions of typical cumulus clouds showed that, while turbulence does cause
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supersaturation fluctuations, it decreases the correlation time of small-scale supersaturation
fluctuations seen by the droplets. The net effect of small-scale turbulence on the size spectrum
by diffusional growth is found to be insignificant. On the other hand, a two-dimensional DNS
study by Celani et al [48] suggests that large-scale supersaturation fluctuations could lead to a
correlation between droplet trajectories and supersaturation, and thus stochastic broadening of
droplet size distribution.

The brief review above shows both the multifacetedness and complexity of the effects of air
turbulence on droplet growth by collision–coalescence. A complete description of all the aspects
requires a full knowledge of air turbulent motion and dynamics of droplet–fluid interactions and
droplet–droplet interactions, all of which are three-dimensional and time-dependent in nature.
This represents a complex turbulent multiphase flow problem.

The main objective of this paper is to quantify the first three effects of turbulence
discussed above, using DNS in which the small-scale dynamics of air turbulence is computed
precisely. Previously, DNS have been used to study collision rates of non-sedimenting particles
[32, 33, 49]. In the context of cloud droplets, gravitational sedimentation must be included
[14, 45, 47]. We shall limit our study to the parameter region (i.e. relative inertia and terminal
velocity) relevant to atmospheric clouds [12].

There have been very few DNS studies reporting geometric collision rates of sedimenting
cloud droplets [34, 50, 51]. We will quantify the individual effects of turbulence and examine
how they vary with the droplet sizes and flow dissipation rate, and, to a limited extent, with
the flow Reynolds number. This paper extends the work of [34] where collision statistics for
one specific size combination (20 and 25 µm) were reported. The DNS approach used in
this paper is very similar to the work of Franklin et al [50, 51]. We note that the large-scale
forcing scheme used in this work (Langevin stochastic method of Eswaran and Pope [52])
differs from the deterministic forcing method [53] adopted by Franklin et al. It is not clear
which scheme is more appropriate for small-scale cloud turbulence. The deterministic scheme
may bring more coherence to turbulent eddies, this may explain why the collision kernels in
[50, 51] are somewhat larger than our results (see figure 5). Given a very few DNS studies of
geometric collision rate for cloud droplets and the incomplete exploration of the parameter
space so far, the large amount of DNS data to be presented here, together with the results
in [50, 51], provide a more complete quantitative description of the turbulent collision kernel of
cloud droplets.

The paper is organized as follows. In section 2, a general description of cloud turbulence
and cloud droplets is given to help specify the relevant parameters of the problem. The kinematic
formulation of geometric collision kernel is reviewed in section 3, which will be used to validate
our code development and guide the interpretation of DNS results. The main elements of DNS
are described in section 4. DNS results are compiled and discussed in section 5: these include
results and comparison of kinematic collision kernel and dynamic collision kernel, results on
radial relative velocity and RDF and on average settling velocity. Results based on a nonlinear
drag are compared with these based on the Stokes drag. We have also compared our DNS results
with the recent DNS results of Franklin et al [50, 51]. Finally, conclusions are summarized
in section 6. In another contribution to this focus issue [54], we will develop a theoretical
parameterization of the turbulent collision kernel and compare the theory to the DNS results
in this paper.
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Table 1. Typical cloud turbulence dissipation rate and Kolmogorov scales.

ε τk η υk

(cm2 s−3) (s) (cm) (cm s−1)

10 0.1304 0.1488 1.142
100 0.0412 0.0837 2.031
400 0.0206 0.0592 2.872

2. Description of cloud turbulence and cloud droplets

2.1. Characteristics of air turbulence

We consider here the collision rates of small water droplets inside typical cumulus clouds where
the air turbulence is expected to be nearly isotropic and homogeneous. Vaillancourt and Yau [14]
stated two reasons for this expectation. Firstly, the environmental vertical stratification can
be neglected on scales smaller than about 100 m (typical integral length scale of turbulence).
Secondly, at distances sufficiently far from mixing regions of clouds, the small-scale flow is
primarily driven by nonlinear energy transfer from larger scales.

Since the local volume fraction of droplets in atmospheric clouds is typically in the order of
10−6 (or mass loading in the order of 10−3), it is assumed that the background air flow U(x, t) is
not affected by the presence of droplets. The dissipation-range fluid motion in the air turbulence
is assumed to govern the collision rate of droplets, and it is characterized by the Kolmogorov
length, velocity and timescales

η = (ν3/ε)1/4, υk = (νε)1/4, τk = (ν/ε)1/2, (1)

where ε is the average air-flow kinetic dissipation rate and ν is the air kinematic viscosity.
Observations suggest that ε could vary from 1 to 1000 cm2 s−3 in cumulus and stratocumulus
clouds [13, 14] yielding a range of η from 470 µm to 2.6 mm. In this work, three intermediate
values of the dissipation rate were considered and they are listed in table 1 along with
the Kolmogorov scales when the air viscosity ν is taken to be 0.17 cm2 s−1. Another
important parameter that characterizes the turbulence in cloud is the Taylor-microscale
Reynolds number Rλ defined as Rλ ≡ u′λ/ν, where λ is the transverse Taylor microscale
(λ ≡ u′/〈(∂u1/∂x1)

2
〉

1/2
= (15νu′2/ε)1/2) and u′ is the rms fluctuation velocity. This Reynolds

number determines the range of scales in a turbulent flow. Rλ achievable in DNS is typically
in the order of 102 and is roughly two orders of magnitude smaller than the Rλ value in real
clouds. Since the dynamics of cloud droplets is governed mainly by the dissipation-range fluid
motion, it is assumed that the value of ε is of primary importance and that Rλ is of secondary
importance. However, this does not exclude the possibility that flow Reynolds number can play
a role: (a) droplets respond to a range of turbulent eddies, including large-scale motion in low-
Reynolds number DNS, (b) the limited scales in DNS do not really allow separation of effects
of large and small scales and (c) there exists a possibility that small-scale eddy structure is
connected to large-scale eddies through non-local eddy interactions.
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Table 2. Basic properties of cloud droplets.

a τp vp Rep0 f (Rep0)

(µm) (s) (cm s−1)

10 0.0013 1.272 0.015 1.008
20 0.0052 4.959 0.116 1.034
30 0.0118 10.717 0.378 1.077
40 0.0209 18.089 0.851 1.134
50 0.0327 26.624 1.566 1.204
60 0.0471 35.944 2.537 1.284

2.2. Characteristics of cloud droplets

We shall focus our study on droplets of radii from 10 to 60 µm as these are most relevant
to the size gap problem in warm rain microphysics. These droplets are one to two orders of
magnitude smaller than the smallest eddies in the air turbulence. They move in response to the
local fluid motion (i.e. velocity and acceleration) and the gravitational body force. Neglecting
the droplet–droplet aerodynamic interaction, each droplet is assumed to move independently
of other droplets in the system. The motion of each droplets is described by its instantaneous
location Y(t) and velocity V(t). Under the above conditions and noting that the density of water
droplets (ρw) is much larger than the air density ρ, the equation of motion of any given droplet
of radius a is

dV(t)

dt
= f (Rep)

U(Y(t), t) − V(t)

τp
+ g, (2)

where U(Y(t), t) is the fluid flow velocity as seen by a stationary observer at the droplet location
and g is the gravitational acceleration. The Stokes inertial response time, τp ≡ 2ρwa2/9ρν, is the
characteristic time for the particle to react to changes in the flow. The nonlinear factor f (Rep)

models the departure from the Stokes drag law and may be given as [53]

f (Rep) = 1 + 0.15Re0.687
p , (3)

where, in general, the droplet Reynolds number is defined in terms of the relative velocity
between the droplet and the background fluid as Rep = 2a|V − U|/ν, provided the background
fluid velocity varies on scales much larger than the size of the droplet. For the case of steady
motion in still air (U = 0), the terminal velocity of a droplet is given as

vp =
τp|g|

f (Rep0)
, (4)

where the droplet Reynolds number in stagnant air is defined as Rep0 ≡ 2avp/ν. Unlike Rep0,
the droplet Reynolds number Rep for a given droplet size is a random variable with a range of
values due to velocity fluctuations in a turbulent flow. The still air Rep0 only provides a rough
estimate of the mean value of Rep.

In table 2, pertinent parameters of the droplets are listed assuming ρ = 0.001 g cm−3 and
ρw = 1.0 g cm−3. The particle Reynolds number is important because particles with large Rep

may cause extended disturbance flows with wake or vortex shedding. As the particle Reynolds
numbers are small, no vortex shedding is expected and the disturbance flows by particles are

New Journal of Physics 10 (2008) 075015 (http://www.njp.org/)

http://www.njp.org/


7

Table 3. Characteristic scales of cloud droplets.

ε (cm2 s−3)a

(µm) 10 100 400

St Sv a/η St Sv a/η St Sv a/η

10 0.010 1.113 0.007 0.032 0.626 0.011 0.063 0.442 0.017
20 0.040 4.343 0.013 0.127 2.442 0.024 0.253 1.727 0.034
30 0.090 9.385 0.020 0.285 5.278 0.036 0.570 3.732 0.051
40 0.160 15.841 0.027 0.507 8.908 0.047 1.014 6.299 0.067
50 0.250 23.316 0.033 0.792 13.111 0.059 1.585 9.271 0.084
60 0.361 31.478 0.040 1.141 17.701 0.071 2.282 12.516 0.101

locally contained. We can conclude from table 2 that the nonlinear drag correction may be
neglected for droplets of radii less than 30 µm, if the droplet motion due to turbulence is weak
compared with the gravity effect. We shall first adopt the linear Stokes drag in our simulations,
but will discuss the use of nonlinear drag later in section 5.4. Another reason for using Stokes
drag is that a more consistent treatment of droplet–droplet aerodynamic interactions is possible
using a hybrid direct simulation approach, as shown in [34, 56].

In table 3, the cloud droplet characteristics are compared to the characteristic scales of
dissipation-range air motion. The two nondimensional numbers describing the relative inertia
and settling rate are

St =
τp

τk
, Sv =

vp

vk
. (5)

The Stokes number St is a key parameter governing the droplet response to the fluid motion and
the resulting effects of turbulence on the collision rate. If the particle reacts instantaneously to
any acceleration of the flow (small Stokes number), then it behaves as a tracer. If the particle
responds very slowly to the accelerations in the flow (large Stokes number), then the effect of
fluid acceleration may not be felt by the particle. A strong interaction between the flow and
the particles in a vertical flow occurs when the Stokes number is in the order of one [31]. It is
stressed that ranges of time and length scales coexist in a turbulent flow. We chose to define
the nondimensional parameters with Kolmogorov scales in this work since the relative motion
of the droplets is of primary concern. Sv also plays a very important role in determining the
interaction time with turbulent eddies as the droplet settles under gravity and in determining
whether the droplet mean settling velocity differs from its terminal velocity [35]. Sv can also be
viewed as the ratio of the small-eddy turnover time (assumed to be τk) and the time it takes for
the particle to sediment across the eddy. If the ratio is much larger than one, then the particle
will rapidly sediment through the eddy, thereby leading to weak particle–eddy interaction. On
the other hand, if the ratio is much smaller than one, sedimentation does not play any significant
role in reducing the time of particle–eddy interaction.

We display in figure 1 the dependence of Sv and St on ε and a for a larger range of ε

that is relevant to clouds. From both table 3 and figure 1, we conclude that the Stokes number
is typically less than one whereas the nondimensional settling is typically larger than one.
Consistent with the conclusion of Vaillancourt and Yau [14], the gravitational effect is always
important for cloud droplets. More importantly, both nondimensional parameters can vary by
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Figure 1. Contour plots of (a) Stokes number St and (b) nondimensional settling
velocity Sv as a function of flow dissipation rate ε and droplet radius a.

more than one order of magnitude even for such a narrow size range from 10 to 60 µm. The
range of values for St in the table shows that the relative importance of turbulent inertia effect
in the cloud context varies. Most turbulent effects on particle collision rate tend to increase
with St for St < 1 according to previous studies for non-sedimenting particles. The important
issue to be addressed here is whether droplet–turbulence interactions are modified by droplet
sedimentation. For ε < 10 cm2 s−3, St < 0.2 and Sv is significantly larger than one, then gravity
dominates the motion of droplets and the inertia effect only introduces a weak modification to
the motion.

3. Kinematic formulation of geometric collision kernel

In this paper, we shall neglect droplet–droplet aerodynamic interaction. In this case, the number
of collisions per unit time is defined as geometric collision rate. Assuming that the volume
concentration of droplets is small so the background airflow is not modified by the presence of
droplets, droplet–droplet geometric collisions can be subdivided into combinations of bidisperse
collisions involving two separate sizes and monodisperse collisions of nearly equal-size
droplets. Furthermore, the monodisperse geometric collisions can be viewed as a limiting case
of bidisperse collisions when the size ratio approaches one.

Now, consider a bidisperse system containing droplets of radii a1 and a2 (a2 < a1). The
average geometric collision rate per unit volume, Ṅ c, in a large volume can be expressed as

Ṅ c = 0D
12n1n2, (6)

where n1 and n2 are average number concentrations of the two size groups and 0D
12 is the average

dynamic collision kernel.
The most general kinematic description of geometric collision [22, 32, 33] is given by

0K
12 = 2π R2

〈|wr|(r = R)〉g12(r = R), (7)

where the radial relative velocity wr is defined in terms of the relative velocity w between two
droplets with separation vector r as wr ≡ w · r/|r|, with r ≡ |r|. The angle brackets 〈〉 denote
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an average over all possible directions of r in addition to the usual ensemble averaging or
averaging over space and time for a homogeneous and stationary system. The average radial
relative velocity at contact 〈|wr|(r = R)〉 represents the average relative flux on the geometric
collision sphere, a concept introduced initially by Saffman and Turner [20]. The other factor
g12(r) in equation (7) is known as the RDF measuring the effect of preferential concentration on
the pair number density at separation distance r . It is the ratio of the actual pair concentration
to that in a uniform suspension. Thus, if the droplets are uniformly distributed in a volume,
g12(r = R) is equal to unity. In DNS, g12 is computed, at any given time, as [33, 49]

g12(r; t) =
Npairs/Vs

N1 N2/VB
, (8)

where Npairs is the total number of pairs detected with separation distance falling in a spherical
shell of inner radius equal to r1 ≡ r − δ1 and outer radius equal to r2 ≡ r + δ2. Here, δ1 and
δ2 are small fractions of r [31, 47]. Vs is the volume of the spherical shell, Vs = 4π [(r +
δ2)

3
− (r − δ1)

3]/3. N1 and N2 are the total numbers of a1 and a2 droplets, respectively, used
in the simulation, VB is the computational domain size. Therefore, n1 = N1/VB and n2 =

N2/VB · g12(r; t) is further averaged over time to obtain g12(r = R). Similarly, 〈|wr|(r = R)〉

is computed based on the droplet pairs in the same spherical shell, by averaging the pair relative
velocities over all pairs detected and over time.

The kinematic formulation has been validated against DNS dynamic collision kernel for
both monodisperse and bidisperse collisions of non-sedimenting particles with no aerodynamic
interactions [33, 49]. We will show in section 5.1 that this kinematic formulation is also valid
for sedimenting inertial droplets although wr and g12 are no longer spherically symmetric. The
kinematic formulation implies that predicting the geometric collision kernel can be viewed
alternatively as predicting the two kinematic properties 〈|wr|〉 and g12. Wang et al [34] have
successfully extended the kinematic formulation to aerodynamically interacting droplets.

4. DNS

The numerical methods for simulating turbulent airflow and detecting droplet–droplet collisions
have been described previously in [31, 34, 49, 56]. Consequently, only a brief description is
presented below.

4.1. Turbulent flow field

A DNS of homogeneous isotropic turbulence was used to compute the air flow by a pseudo-
spectral method. The incompressible Navier–Stokes and the continuity equations:

∂U
∂t

= U × ω − ∇

(
P

ρ
+

1

2
U2

)
+ ν∇

2U + f(x, t), (9)

∇ · U = 0, (10)

were solved in a periodic cubic box. Here, ω and P denote the fluid vorticity and pressure. The
term f(x, t) is a random body force term, restricted to very low wavenumbers, that provides an
energy source to sustain the air turbulence. Stationary turbulence can be reached since energy
propagates from low to high wavenumbers; hence, the forcing energy propagates until viscous
dissipation becomes active, establishing a quasi-steady energy balance. The time evolution was
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computed using a second-order Adams–Bashforth scheme for the nonlinear terms and a second-
order Crank–Nicholson scheme for the viscous term. The pressure was eliminated through the
continuity equation.

The flow domain is discretized uniformly into N 3 grid points. This grid resolution
determines the scale separation, and hence, the Reynolds number of the resulting flow. For this
paper, we considered 323, 643 and 1283 grid points for each selected cloud-dissipation rate for
a total of nine cases. Table 4 lists the flow parameters: the component rms fluctuating velocity
u′, integral length scale L f, fluid acceleration variance 〈(Du/Dt)2

〉, longitudinal Taylor-type
microscale of fluid acceleration λD, eddy turnover time Te, Kolmogorov velocity scale vk,
Kolmogorov timescale τk, Kolmogorov length scale η, Taylor microscale λ, Taylor-microscale
Reynolds number Rλ, size of the cubic box flow domain LB, grid spacing 1x and flow time step
size dt . The time step was chosen to ensure that the Courant–Friedrich–Levy (CFL) number
was 0.3 or less for numerical stability and accuracy. The spatial resolution of the simulations
were monitored by the value kmaxη, which should be greater than unity for the smallest scales
of flow to be resolved. Other details of the simulated flows can be found in [31].

It is important to note that, due to the limited scales in DNS, it may be possible that not all
scales of motion affecting a droplet are resolved in DNS. To give an indication of this aspect, we
list two scale ratios in table 4: The first is τp/Te and the second is τpu′/LB, for 50 µm droplets.
The first ratio may be used to indicate the effect of unresolved large scales. The second ratio
shows the influence of resolved large-eddy scales. Taking a value of 0.1 as a rough dividing
line for the possible influence of a given large scale, we conclude that whereas the effect of
unresolved large-scale motion may be neglected, the resolved large-scale motion does have
some effect on larger droplets considered in this study, when the dissipation rate is high and
the grid resolution is low. For all 1283, the scale ratios imply that all relevant scales of the fluid
motion appear to have been resolved for the size range of droplets considered in this study. With
increasing computing resources, we hope to address this aspect more systematically in the near
future.

4.2. Motion of droplets

Since droplet–droplet aerodynamic interaction is not considered here, each droplet is treated
as a point particle. The location and velocity of each droplet were advanced by integrating the
equation of motion described in section 2.2, with a fourth-order, Adams–Moulton scheme for
droplet velocity and a fourth-order, Adams–Bashforth scheme for droplet location. The fluid
velocity at the droplet location was interpolated from the velocity values at the neighboring grid
points using a six-point Lagrange interpolation. For most of the simulations, the Stokes drag was
assumed. The effect of the nonlinear drag on our results will be discussed later in section 5.4.

The droplets were introduced into the flow when the air turbulence had reached the
statistically stationary stage. The initial conditions were that the locations of the droplets were
randomly distributed and the initial velocity was set equal to the local fluid velocity plus the
terminal velocity of the droplet. After about 3 × max(τp1, τp2), data on collision-related statistics
were begun to be accumulated to obtain running averages, to minimize any effect of the initial
conditions. To closely simulate the number density in clouds, typically of the order of 100 000
size-1 droplets and 100 000 size-2 droplets were followed. The same time step size was used
to integrate the Navier–Stokes equation and the equation of motion for droplets. The time step
must be made small compared to the droplet inertial response time and the flow Kolmogorov
time. The proper choice of time step size has been discussed in detail in [56].
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Table 4. DNS flow parameters and characteristics.

ε = 10 cm2 s−3 ε = 100 cm2 s−3

323 643 1283 323 643 1283

u′ (cm s−1) 2.805 3.806 4.937 4.987 6.768 8.779
L f (cm) 2.224 5.547 12.164 1.251 3.119 6.839
〈(Du/Dt)2

〉 (cm2 s−4) 0.720 × 102 1.184 × 102 1.582 × 102 2.281 × 103 3.752 × 103 5.010 × 103

λD (cm) 0.7404 0.8454 0.8912 0.4164 0.4754 0.5012
Te (s) 0.787 1.449 2.434 0.248 0.458 0.771
vk (cm s−1) 1.142 1.142 1.142 2.031 2.031 2.031
τk (s) 0.1304 0.1304 0.1304 0.0412 0.0412 0.0412
η (cm) 0.1488 0.1488 0.1488 0.0837 0.0837 0.0837
λ (cm) 1.416 1.922 2.493 0.796 1.081 1.402
Rλ 23.370 43.037 72.408 23.370 43.037 72.408
LB (cm) 10.528 21.056 42.112 5.920 11.840 23.680
τp(50 µm)/Te 0.042 0.023 0.013 0.132 0.071 0.093
τp(50 µm)u′/LB 8.7 × 10−3 5.9 × 10−3 3.8 × 10−3 2.8 × 10−2 1.9 × 10−2 1.2 × 10−2

1x (cm) 0.329 0.329 0.329 0.185 0.185 0.185
dt × 103 (s) 4.568 3.515 2.843 1.443 1.110 0.898
CFL 0.2479 0.2831 0.301 0.2479 0.2831 0.301
kmaxη 1.2741 1.3619 1.3826 1.2741 1.3619 1.3826

ε = 400 cm2 s−3

323 643 1283

u′ (cm s−1) 7.054 9.572 12.416
L f (cm) 0.884 2.206 4.837
〈(Du/Dt)2

〉 (cm2 s−4) 1.825 × 104 3.002 × 104 4.008 × 104

λD (cm) 0.2944 0.3361 0.3544
Te (s) 0.124 0.229 0.385
vk (cm s−1) 2.872 2.872 2.872
τk (s) 0.0206 0.0206 0.0206
η (cm) 0.0592 0.0592 0.0592
λ (cm) 0.563 0.764 0.991
Rλ 23.370 43.037 72.408
LB (cm) 4.192 8.384 16.768
τp(50 µm)/Te 0.264 0.143 0.085
τp(50 µm)u′/LB 5.5 × 10−2 3.7 × 10−2 2.4 × 10−2

1x (cm) 0.131 0.131 0.131
dt × 103 (s) 0.722 0.555 0.449
CFL 0.2479 0.2831 0.301
kmaxη 1.2741 1.3619 1.3826

4.3. Collision detections and computation of kinematic properties

In the computation of the dynamic collision kernel, the collision events were detected during the
simulation. The number of collisions was recorded in each time step. The mean and statistical
uncertainty of the dynamic collision kernel were evaluated by using the values recorded for a
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large number of time steps. The method for collision detection went through several iterations
and the final version utilized the efficient cell-index method and the concept of linked lists [57].
Since the geometric collision is of interest here, the droplets were allowed to overlap at the
beginning of a time step and were not removed at all from the system after collision. A collision
detection grid was carefully chosen so that all collision events were counted and, at the same
time, no time was wasted on processing pairs with large separations. Once the rate of collision
per unit volume Ṅ c is computed, the dynamic collision kernel 0D

12 can be determined from
equation (6). While we were primarily interested in the 1–2 collision events, same-size collisions
(1–1 and 2–2) were also counted.

For a given time duration T and the volume VB of the computational domain, the number
of droplets determines the number of pairs and the total collision rate. A larger number of
droplets lead to a larger number of collisions and smaller statistical errors. It can be shown
that the relative uncertainty of the computed dynamic collision kernel can be roughly estimated
as [56, 58] [(

VB

0D
12T

− 1
) /

Npairs

]1/2

, (11)

where Npairs = Np1 Np2 . This was used to monitor the relative uncertainty of the resulting
dynamic collision kernel. The time interval T was typically around 10 eddy turnover times.
The relative uncertainty may be further reduced by averaging over several independent runs of
the same parameter setting, but different initial flow or particle realizations.

A separate code was used to independently compute the kinematic properties 〈|wr(r)|〉 and
g12(r). They were computed, at an instant of time, using all the pairs with interparticle distance r
falling between (R − δ/2) and (R + δ/2), where δ is a small fraction of R. Wang et al [33] found
that a suitable value for δ should be about 0.02R or less. We used a value of δ = 0.02R. The
velocities and the separation vectors of all detected pairs were recorded during the simulations
at different times and were used to obtain g12(r = R), using equations (8), and the radial
relative velocity by 〈|wr|〉 = 〈|vr

(2)
− vr

(1)
|〉, where vr

(2) and vr
(1) are the velocity components

of the droplets along the axis defined by the separation vector. Again the mean and statistical
uncertainty of 〈|wr(r = R)|〉 and g12(r = R) were evaluated using their values at different times.
For further details on collision detections and computation of kinematic properties, the readers
are referred to Zhou et al [49, 59].

Since we considered geometric collisions, droplets were allowed to overlap and move
independently. Namely, they were treated as ghost particles. Although somewhat unrealistic,
this treatment maintains the statistical stationarity of the system, and it is consistent with
the Saffman and Turner formulation [20, 60]. Additionally, the RDF at contact can be
calculated more accurately using this treatment. We had compared the collision kernel for
ghost particles with the collision kernel base on non-overlapping droplets [34], the results were
very similar.

5. Results

5.1. Validation of the kinematic kernel against the dynamic kernel

Before presenting results for turbulent geometric collision, we shall first demonstrate that the
kinematic formulation, equation (7), is consistent with the dynamic formulation, equation (6),
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Figure 2. Ratio of DNS kinematic collision kernel to DNS dynamic collision
kernel for gravitational collision in stagnant air.

for droplets settling under gravity in a turbulent flow. The gravity introduces a dependence of
the relative motion on the orientation of the separation and breaks the spherical symmetry of
pair statistics.

In figure 2, we compare the dynamic collision kernel with the kinematic collision kernel for
collisions of 20 µm droplets with droplets of different sizes in stagnant air. The two methods of
obtaining the collision kernel can be shown theoretically to give identical results for this simple
case [22]. The numerical results contain statistical uncertainties, but otherwise confirm that the
kinematic formulation is consistent with dynamic collision detections. For this simplest case,
this consistency test was undertaken mainly to validate the DNS code.

The radial relative velocity and the RDF for the above test cases in stagnant air are shown in
figure 3. The numerical results agree, within statistical uncertainties, with the theoretical values
given by

〈|wr|(r = R)〉 =
1
2 |vp2 − vp1|, g12(r = R) = 1.0, 0K

12 = π R2
|vp2 − vp1|. (12)

These results validate the code implementation of the kinematic properties.
A more interesting comparison would be for sedimenting cloud droplets in turbulent air.

Figure 4 compares the collision kernel results from the two formulations at two levels of flow
dissipation rate. Clearly, the kinematic collision kernel agrees with the dynamic collision kernel
at both intensities of turbulence. In DNS, the kinematic properties can be more easily obtained
than the dynamic collision kernel as more droplet pairs can be used to compute the kinematic
properties [59]. The results here confirm that the kinematic formulation can be used to predict
the collision kernel for sedimenting inertial droplets in a turbulent flow, although the kinematic
properties wr and g12 are no longer spherically symmetric. The same conclusion was reached
in [50, 34].
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Figure 3. Comparison of DNS results with the theory for droplets settling in
stagnant air: (a) 〈|wr|〉, (b) g12 and (c) 012.

5.2. Geometric collision kernel and related kinematic properties

DNS results of geometric collision kernel, in cm3 s−1, are tabulated in table 5 for three
different flow dissipation rates. For each flow dissipation rate, three flow Reynolds numbers
were considered. Twenty-one droplet size combinations were simulated, 6 for monodisperse
collisions and 15 for bidisperse collisions. The values in parentheses represent estimated
standard deviation of the kernel, which is typically two orders of magnitude smaller than the
obtained kernel. Two interesting observations can be made here. Firstly, for a given bidisperse
size combination, the collision kernel increases with the flow dissipation rate, as a result of
increasing effect of air turbulence on the motion of droplets. The effect of flow Reynolds
number is relatively weak and somewhat mixed: for some cases, the kernel is slightly larger
for larger Rλ, and for other cases, the kernel is slightly less for larger Rλ. This supports our
working assumption that the dissipation-range turbulent motion governs the collision process
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Figure 4. Comparison of the kinematic collision kernel and the dynamic collision
kernel for sedimenting droplets in turbulent air.

so that the flow dissipation rate plays a primary role and the flow Reynolds number plays a
secondary role as far as geometric collision of small cloud droplets (say, <20 µm) is concerned.
Secondly, for a monodisperse system, the gravitational kernel vanishes, but the collision kernel
in a turbulent flow is nonzero. In this case, the resulting kernel, although relatively small in
magnitude, depends much more strongly on both the flow dissipation rate and Rλ. This turbulent
collision among nearly equal sized droplets should be carefully considered, in view of the
narrow droplet size distribution typically generated by condensational growth. This turbulent
collision mechanism has been shown to play a role in shortening the time for the initial phase
(i.e. autoconversion phase) of the growth process by collision–coalescence [56].

The ratio of the turbulent collision kernel to the gravitational kernel is shown in table 6 for
all bidisperse interactions. This represents the overall enhancement of geometric collision rate
by air turbulence. This enhancement depends mainly on the magnitude of flow dissipation rate,
from just a few percent for weak turbulence with ε = 10 cm2 s−3 up to 47% for strong cloud
turbulence with ε = 400 cm2 s−3. It also increases with the droplet size as the inertial effect
becomes more important in altering the motion and distribution of droplets. The highlighted
cells in the table indicate values that are larger than 1.1. For the case of ε = 10 cm2 s−3, the
relative enhancement is very small and numerical uncertainties can lead to an average ratio
slightly less than one. For the two size combinations (40 and 50 µm) and (50 and 60 µm) shown
in the table, we note that the ratio decreases with increasing flow Reynolds number. This could
be due to the inadequate resolution of large-scale motion for these larger droplets, as stated in
section 4.1, these data should be re-examined in future with higher resolution DNS.

According to the kinematic formulation, this enhancement may be decomposed into two
parts: the effect of turbulence on enhancing the radial relative motion (the turbulent transport
effect, table 7) and that on the RDF (the accumulation effect, table 8). Take, for example,
the case of a1 = 10 µm and a2 = 20 µm in a flow with ε = 400 cm2 s−3 and Rλ = 72.4, the
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Table 5. DNS results of dynamic collision kernel (cm3 s−1).

a1 a2 10 cm2 s−3 100 cm2 s−3 400 cm2 s−3

Rλ = 23.4 Rλ = 43.0 Rλ = 72.4 Rλ = 23.4 Rλ = 43.0 Rλ = 72.4 Rλ = 23.4 Rλ = 43.0 Rλ = 72.4

10 10 4.026E-07 0.000E+00 0.000E+00 4.792E-07 3.416E-07 5.061E-07 7.936E-07 8.206E-07 5.741E-07
(2.31E-07) (0.00E+00) (0.00E+00) (1.72E-07) (1.80E-07) (2.24E-07) (1.99E-07) (2.72E-07) (1.94E-07)

10 20 1.094E-04 1.100E-04 1.151E-04 1.126E-04 1.122E-04 1.154E-04 1.164E-04 1.235E-04 1.245E-04
(1.57E-06) (1.69E-06) (4.01E-06) (1.16E-06) (1.52E-06) (2.11E-06) (1.15E-06) (1.38E-06) (1.75E-06)

10 30 5.066E-04 5.197E-04 5.018E-04 5.228E-04 5.292E-04 5.278E-04 5.456E-04 5.60E-04 5.707E-04
(4.31E-06) (4.96E-06) (1.303E-05) (1.85E-06) (2.31E-06) (6.77E-06) (1.16E-06) (1.39E-06) (4.10E-06)

10 40 1.509E-03 1.537E-03 1.573E-03 1.534E-03 1.541E-03 1.520E-03 1.591E-03 1.637E-03 1.647E-03
(1.43E-05) (1.65E-05) (4.33E-05) (8.28E-06) (1.70E-05) (1.75E-05) (7.73E-06) (1.70E-05) (1.98E-05)

10 50 3.509E-03 3.504E-03 3.548E-03 3.551E-03 3.545E-03 3.596E-03 3.610E-03 3.642E-03 3.725E-03
(2.86E-05) (3.46E-05) (7.62E-05) (1.77E-05) (3.34E-05) (3.65E-05) (2.06E-05) (3.35E-05) (3.94E-05)

10 60 6.956E-03 6.965E-03 7.076E-03 6.954E-03 7.036E-03 7.046E-03 7.047E-03 7.103E-03 7.274E-03
(6.35E-05) (6.42E-05) (1.27E-04) (2.34E-05) (6.46E-05) (7.52E-05) (1.48E-05) (4.91E-05) (8.28E-05)

20 20 9.584E-07 1.413E-06 1.295E-06 2.639E-06 4.691E-06 5.154E-06 1.405E-05 2.216E-05 2.561E-05
(3.48E-07) (3.33E-07) (9.11E-07) (3.49E-07) (6.13E-07) (8.43E-07) (7.73E-07) (1.33E-06) (1.69E-06)

20 30 5.119E-04 4.998E-04 4.854E-04 5.329E-04 5.387E-04 5.420E-04 5.900E-04 6.360E-04 6.617E-04
(5.71E-06) (5.29E-06) (1.03E-05) (5.77E-06) (5.77E-06) (7.58E-06) (5.86E-06) (8.33E-06) (7.72E-06)

20 40 1.714E-03 1.725E-03 1.768E-03 1.807E-03 1.819E-03 1.810E-03 1.846E-03 1.961E-03 1.954E-03
(1.55E-05) (1.78E-05) (2.63E-05) (1.38E-05) (1.94E-05) (1.94E-05) (1.10E-05) (2.65E-05) (3.18E-05)

20 50 4.194E-03 4.147E-03 4.068E-03 4.197E-03 4.252E-03 4.196E-03 4.266E-03 4.341E-03 4.429E-03
(3.44E-05) (3.95E-05) (7.61E-05) (1.87E-05) (4.05E-05) (5.24E-05) (2.11E-05) (4.40E-05) (5.69E-05)

20 60 8.333E-03 8.251E-03 8.228E-03 8.307E-03 8.295E-03 8.302E-03 8.358E-03 8.496E-03 8.595E-03
(6.63E-05) (5.56E-05) (1.44E-04) (2.70E-05) (7.41E-05) (1.01E-04) (2.70E-05) (6.65E-05) (1.09E-04)

30 30 2.475E-06 3.785E-06 2.479E-06 1.624E-05 2.559E-05 3.023E-05 1.514E-04 2.715E-04 3.372E-04
(6.29E-07) (8.77E-07) (1.49E-06) (1.52E-06) (2.26E-06) (3.75E-06) (4.51E-06) (8.44E-06) (1.01E-05)

30 40 1.414E-03 1.398E-03 1.391E-03 1.494E-03 1.517E-03 1.540E-03 1.658E-03 1.802E-03 1.972E-03
(1.59E-05) (1.49E-05) (2.30E-05) (1.24E-05) (2.33E-05) (2.13E-05) (1.50E-05) (2.97E-05) (4.67E-05)

30 50 4.160E-03 4.116E-03 4.077E-03 4.238E-03 4.405E-03 4.287E-03 4.494E-03 4.612E-03 4.600E-03
(3.21E-05) (4.22E-05) (5.06E-05) (2.43E-05) (5.41E-05) (6.72E-05) (2.34E-05) (4.82E-05) (1.01E-04)

30 60 8.772E-03 8.862E-03 8.655E-03 8.893E-03 9.117E-03 8.668E-03 9.342E-03 9.308E-03 9.134E-03
(7.35E-05) (8.64E-05) (9.87E-05) (3.43E-05) (7.75E-05) (1.45E-04) (3.73E-05) (6.72E-05) (1.30E-04)

40 40 5.503E-06 4.239E-06 1.033E-05 5.274E-05 1.095E-04 1.475E-04 3.678E-04 6.862E-04 9.065E-04
(1.30E-06) (1.40E-06) (3.79E-06) (3.05E-06) (6.95E-06) (1.01E-05) (9.44E-06) (2.24E-05) (2.71E-05)

40 50 3.132E-03 3.051E-03 2.976E-03 3.424E-03 3.400E-03 3.345E-03 3.596E-03 3.767E-03 3.853E-03
(2.71E-05) (3.31E-05) (4.41E-05) (2.20E-05) (4.92E-05) (7.77E-05) (2.25E-05) (4.66E-05) (9.26E-05)

40 60 8.207E-03 8.173E-03 8.182E-03 8.796E-03 8.632E-03 8.326E-03 8.971E-03 9.013E-03 9.124E-03
(7.37E-05) (8.06E-05) (9.70E-05) (3.99E-05) (8.07E-05) (1.85E-04) (3.91E-05) (7.50E-05) (1.48E-04)

50 50 7.130E-06 1.174E-05 1.853E-05 6.507E-05 2.061E-04 3.263E-04 4.192E-04 9.509E-04 1.388E-03
(1.94E-06) (3.25E-06) (6.63E-06) (4.24E-06) (1.49E-05) (2.25E-05) (1.26E-05) (3.46E-05) (5.32E-05)

50 60 5.894E-03 5.991E-03 5.630E-03 7.195E-03 6.645E-03 6.027E-03 7.860E-03 7.139E-03 6.904E-03
(5.66E-05) (7.74E-05) (8.39E-05) (5.22E-05) (7.21E-05) (1.43E-04) (6.22E-05) (6.02E-05) (1.25E-04)

60 60 1.340E-05 1.473E-05 2.819E-05 8.118E-05 2.005E-04 4.005E-04 5.174E-04 9.116E-04 1.635E-03
(4.96E-06) (4.76E-06) (1.00E-05) (4.39E-06) (1.69E-05) (3.53E-05) (1.78E-05) (3.32E-05) (6.45E-05)

overall enhancement is 14.5%. Tables 7 and 8 show that roughly 10% of this is due to the
turbulent transport effect, and the remaining 4% is due to the accumulation effect. For a second
case of a1 = 20 µm and a2 = 30 µm in the same flow, the overall enhancement of 31.4% is
roughly equally shared by the turbulent transport effect and the accumulation effect. Therefore,
the turbulent transport effect dominates the enhancement for smaller cloud droplets, while
the accumulation effect could become equally important for larger cloud droplets. Another
important observation from table 8 is that the accumulation effect quickly diminishes as the
sizes of the colliding droplets become different (see also figure 9 below). Again, values larger
than 1.1 in table 8 are highlighted. Numerical uncertainties for some of the cases are larger
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Table 6. The ratio of turbulent collision kernel to gravitational geometric
collision kernel. The values in parentheses are the corresponding statistical
uncertainties (± one standard deviation).

a1 a2 ε

(µm) (µm) 10 cm2 s−3 100 cm2 s−3 400 cm2 s−3

Rλ Rλ Rλ

23.4 43.0 72.4 23.4 43.0 72.4 23.4 43.0 72.4

10 20 1.006 1.011 1.058 1.035 1.031 1.061 1.070 1.136 1.145
(0.014) (0.016) (0.037) (0.011) (0.014) (0.019) (0.011) (0.013) (0.016)

10 30 0.988 1.013 0.978 1.019 1.032 1.029 1.064 1.092 1.113
(0.008) (0.010) (0.025) (0.004) (0.004) (0.013) (0.002) (0.003) (0.008)

10 40 0.999 1.018 1.041 1.016 1.020 1.006 1.053 1.083 1.090
(0.009) (0.010) (0.029) (0.005) (0.011) (0.012) (0.005) (0.011) (0.013)

10 50 1.008 1.007 1.019 1.020 1.018 1.033 1.037 1.046 1.070
(0.008) (0.010) (0.022) (0.005) (0.010) (0.010) (0.006) (0.010) (0.011)

10 60 1.007 1.008 1.024 1.007 1.018 1.020 1.020 1.028 1.053
(0.009) (0.009) (0.018) (0.003) (0.009) (0.011) (0.002) (0.007) (0.012)

20 30 1.016 0.992 0.964 1.058 1.070 1.076 1.172 1.263 1.314
(0.011) (0.011) (0.020) (0.011) (0.011) (0.015) (0.012) (0.017) (0.015)

20 40 0.985 0.991 1.016 1.038 1.045 1.040 1.061 1.127 1.123
(0.009) (0.010) (0.015) (0.008) (0.011) (0.011) (0.006) (0.015) (0.018)

20 50 1.012 1.000 0.981 1.013 1.026 1.012 1.029 1.047 1.068
(0.008) (0.010) (0.018) (0.005) (0.010) (0.013) (0.005) (0.011) (0.014)

20 60 1.010 1.000 0.997 1.007 1.005 1.006 1.013 1.030 1.042
(0.008) (0.007) (0.017) (0.003) (0.009) (0.012) (0.003) (0.008) (0.013)

30 40 1.023 1.012 1.007 1.081 1.098 1.115 1.200 1.304 1.427
(0.011) (0.011) (0.017) (0.009) (0.017) (0.015) (0.011) (0.021) (0.034)

30 50 1.008 0.998 0.988 1.027 1.068 1.039 1.089 1.118 1.115
(0.008) (0.010) (0.012) (0.006) (0.013) (0.016) (0.006) (0.012) (0.024)

30 60 0.996 1.006 0.982 1.009 1.035 0.984 1.060 1.056 1.037
(0.008) (0.010) (0.011) (0.004) (0.009) (0.016) (0.004) (0.008) (0.015)

40 50 1.067 1.039 1.013 1.166 1.158 1.139 1.225 1.283 1.312
(0.009) (0.011) (0.015) (0.007) (0.017) (0.026) (0.008) (0.016) (0.032)

40 60 1.019 1.014 1.016 1.092 1.071 1.033 1.113 1.119 1.132
(0.009) (0.010) (0.012) (0.005) (0.010) (0.023) (0.005) (0.009) (0.018)

50 60 1.099 1.117 1.050 1.342 1.239 1.124 1.466 1.331 1.288
(0.011) (0.014) (0.016) (0.010) (0.013) (0.027) (0.012) (0.011) (0.023)

due to the limited computing resources. High-resolution DNS using message passing interface
(MPI) are under development, which will address this aspect in the near future.

For the case of monodisperse interactions, however, the accumulation effect can dominate
the collision kernel. The RDF can be of the order of 10 or larger for high flow dissipation rates
(table 8).

Tables 5 through 8 represent a compilation of DNS results covering the largest
combinations of relevant parameters for sedimenting cloud droplets. They together extend the
DNS data published previously in [34, 50, 51] for sedimenting droplets.

In very recent studies, Franklin et al [51] compiled results for the radius ranging from
10 to 30 µm and a dissipation rate ranging from 95 to 1535 cm2 s−3. In figure 5, we compare
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Table 7. DNS results of 〈|wr|〉 (cm s−1). The values in the parentheses are the
corresponding statistical uncertainties (± one standard deviation).

a1 a2 Gravity ε

(µm) (µm) only 10 cm2 s−3 100 cm2 s−3 400 cm2 s−3

Rλ Rλ Rλ

23.4 43.0 72.4 23.4 43.0 72.4 23.4 43.0 72.4

10 10 0.0 0.0042 0.0000 0.0000 0.0083 0.0104 0.0120 0.0246 0.0206 0.0247
(0.0001) (0.0000) (0.0000) (0.0004) (0.0007) (0.0012) (0.0008) (0.0012) (0.0020)

10 20 1.923 1.9026 1.2303 1.8927 1.9601 1.8768 2.0240 1.9460 2.0081 2.1013
(0.0314) (0.0411) (0.0843) (0.0239) (0.0294) (0.0519) (0.0231) (0.0312) (0.0372)

10 30 5.129 5.2215 5.2086 5.2245 5.2001 5.2300 5.3156 5.4314 5.4393 5.4771
(0.0706) (0.0806) (0.2290) (0.0309) (0.0385) (0.1130) (0.0200) (0.0251) (0.0708)

10 40 9.617 9.5720 9.8049 9.4186 9.7991 9.9554 9.6236 9.9498 10.3605 10.3614
(0.1896) (0.2055) (0.5925) (0.1183) (0.2061) (0.2312) (0.1042) (0.2380) (0.2673)

10 50 15.388 15.4243 15.3117 16.1403 15.3078 15.7826 15.8227 15.7347 15.9450 16.4044
(0.3078) (0.3658) (0.7821) (0.1908) (0.3521) (0.3839) (0.2000) (0.3858) (0.4477)

10 60 22.441 22.6362 23.5599 24.3773 22.5954 23.4653 22.9248 22.9298 23.4133 23.9669
(0.4734) (0.5228) (1.1193) (0.2193) (0.5893) (0.7111) (0.1106) (0.4407) (0.7152)

20 20 0.0 0.0052 0.0080 0.0143 0.0225 0.0223 0.0295 0.0430 0.0414 0.0487
(0.0004) (0.0008) (0.0102) (0.0003) (0.0008) (0.0038) (0.0007) (0.0008) (0.0010)

20 30 3.205 3.2580 3.1792 2.9678 3.2569 3.3279 3.3088 3.6000 3.6151 3.5979
(0.0769) (0.0755) (0.1672) (0.0759) (0.0450) (0.0989) (0.0838) (0.0959) (0.0893)

20 40 7.694 7.2993 8.2027 6.5537 7.9654 7.8431 8.0923 8.4753 8.7605 8.3664
(0.2260) (0.2550) (0.3676) (0.1859) (0.2653) (0.3200) (0.1536) (0.3189) (0.3286)

20 50 13.464 12.9898 13.7363 13.0868 13.8613 14.1471 13.8796 14.0495 14.5866 14.4914
(0.3990) (0.5306) (1.0297) (0.2443) (0.5106) (0.6819) (0.2492) (0.4872) (0.5538)

20 60 20.517 20.1635 20.5985 20.7621 20.9189 20.1444 21.5174 20.8684 20.6940 20.8566
(0.8036) (0.6303) (1.6073) (0.3188) (0.7952) (1.3291) (0.2850) (0.5861) (0.8886)

30 30 0.0 0.0082 0.0105 0.0110 0.0305 0.0314 0.0323 0.0801 0.0923 0.0882
(0.0009) (0.0014) (0.0142) (0.0012) (0.0006) (0.0021) (0.0018) (0.0027) (0.0030)

30 40 4.488 4.6746 4.1913 4.6287 4.5491 4.9338 4.8052 5.1519 5.8088 5.8182
(0.1906) (0.1756) (0.2342) (0.1122) (0.1939) (0.1820) (0.0932) (0.2135) (0.2579)

30 50 10.258 10.2177 10.4476 10.4197 10.6381 11.3064 9.9614 10.6990 11.2457 11.8929
(0.3910) (0.5009) (0.6706) (0.2436) (0.4580) (0.5150) (0.1557) (0.3074) (0.5586)

30 60 17.311 16.3535 16.3066 16.4510 17.7121 17.7448 17.0378 17.7799 18.1798 19.3753
(0.9852) (1.0879) (1.1156) (0.3389) (0.6794) (1.2148) (0.2116) (0.4203) (0.8606)

40 40 0.0 0.0115 0.0131 0.0104 0.0338 0.0387 0.0435 0.1008 0.1217 0.1427
(0.0010) (0.0053) (0.0057) (0.0007) (0.0013) (0.0028) (0.0020) (0.0047) (0.0057)

40 50 5.770 5.5903 5.4857 6.1128 5.9287 6.2618 6.0141 6.1100 6.8143 7.1730
(0.2324) (0.3207) (0.3092) (0.1082) (0.2179) (0.3105) (0.0681) (0.1601) (0.3406)

40 60 12.823 12.3016 12.7379 13.1884 13.1010 13.2056 12.7466 13.3519 13.4474 14.8824
(0.7504) (0.8553) (0.7415) (0.2028) (0.4299) (0.9086) (0.1294) (0.2595) (0.5643)

50 50 0.0 0.0118 0.0115 0.0162 0.0326 0.0412 0.0444 0.0869 0.1172 0.1537
(0.0044) (0.0038) (0.0110) (0.0007) (0.0016) (0.0023) (0.0013) (0.0038) (0.0078)

50 60 7.0529 7.4904 6.6426 7.5736 7.0420 7.3359 7.2318 7.2111 7.3769 7.9946
(0.3394) (0.3470) (0.4029) (0.0872) (0.1843) (0.4323) (0.0319) (0.1173) (0.2811)

60 60 0.0 0.0095 0.0112 0.0133 0.0318 0.0361 0.0430 0.0974 0.1020 0.1304
(0.0066) (0.0050) (0.0065) (0.0005) (0.0011) (0.0029) (0.0009) (0.0022) (0.0050)

our results with theirs for the case of a1 = 30 µm and a2 = 10 µm. It is noted that, in
the work of Franklin et al [51], the dissipation rate and flow Reynolds number were not
independently varied. The four flow dissipation rates of 95, 280, 656 and 1535 cm2 s−3 used
in their work correspond to the four flow Taylor-microscale Reynolds numbers of 33, 40, 48
and 55, respectively, while in our DNS, the dissipation rate and flow Reynolds number were
independently varied. Figure 5 shows that our results are in reasonable agreement with those
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Table 8. DNS results of g12. The values in the parentheses are the corresponding
statistical uncertainties (± one standard deviation).

a1 a2 ε

(µm) (µm) 10 cm2 s−3 100 cm2 s−3 400 cm2 s−3

Rλ Rλ Rλ

23.4 43.0 72.4 23.4 43.0 72.4 23.4 43.0 72.4

10 10 1.488 1.000 1.000 1.562 0.953 1.433 1.213 1.639 0.945
(0.352) (0.000) (0.000) (0.411) (0.405) (0.630) (0.232) (0.432) (0.252)

10 20 1.026 1.006 0.945 1.041 1.042 1.104 1.060 1.076 1.043
(0.029) (0.033) (0.076) (0.024) (0.026) (0.054) (0.021) (0.031) (0.033)

10 30 0.973 1.000 0.987 0.997 1.010 1.010 1.012 1.015 1.040
(0.024) (0.028) (0.078) (0.010) (0.013) (0.037) (0.006) (0.008) (0.021)

10 40 1.015 1.004 1.010 1.010 0.986 0.944 1.009 1.047 1.047
(0.034) (0.039) (0.104) (0.022) (0.033) (0.036) (0.017) (0.040) (0.044)

10 50 0.977 0.984 1.122 1.019 1.033 1.045 0.975 0.994 1.045
(0.031) (0.044) (0.097) (0.021) (0.038) (0.042) (0.022) (0.039) (0.049)

10 60 0.994 1.063 1.038 0.991 0.968 0.974 0.995 1.005 1.019
(0.039) (0.044) (0.003) (0.017) (0.046) (0.050) (0.008) (0.031) (0.044)

20 20 1.552 1.067 1.407 1.209 1.936 1.814 3.179 5.032 5.087
(0.310) (0.202) (0.571) (0.103) (0.231) (0.193) (0.157) (0.324) (0.332)

20 30 1.054 0.985 0.971 1.037 1.003 1.024 1.032 1.127 1.125
(0.046) (0.042) (0.093) (0.044) (0.022) (0.051) (0.041) (0.043) (0.046)

20 40 0.999 1.002 0.884 1.071 0.930 0.974 1.004 1.018 1.038
(0.050) (0.056) (0.081) (0.042) (0.051) (0.058) (0.029) (0.052) (0.057)

20 50 1.046 0.946 0.991 1.081 0.984 0.985 0.970 1.087 1.048
(0.053) (0.066) (0.135) (0.033) (0.057) (0.085) (0.027) (0.056) (0.063)

20 60 1.139 1.091 1.055 1.028 1.006 1.001 1.007 1.057 0.959
(0.079) (0.059) (0.140) (0.026) (0.068) (0.097) (0.021) (0.045) (0.077)

30 30 1.671 1.382 0.879 2.313 3.854 3.227 8.184 13.256 16.824
(0.331) (0.248) (0.356) (0.183) (0.295) (0.493) (0.240) (0.406) (0.591)

30 40 0.881 0.927 1.222 0.979 1.024 0.979 1.108 1.053 1.114
(0.060) (0.065) (0.108) (0.036) (0.069) (0.059) (0.032) (0.057) (0.073)

30 50 0.969 1.030 1.077 0.993 1.073 0.934 1.024 1.048 1.089
(0.063) (0.086) (0.118) (0.040) (0.081) (0.074) (0.022) (0.048) (0.092)

30 60 1.020 0.915 1.018 0.969 0.993 1.054 0.989 1.011 0.996
(0.098) (0.100) (0.116) (0.032) (0.067) (0.112) (0.018) (0.039) (0.073)

40 40 1.284 0.916 2.240 3.690 7.163 7.913 8.701 14.019 15.711
(0.240) (0.235) (0.534) (0.192) (0.476) (0.549) (0.252) (0.550) (0.641)

40 50 1.144 0.962 0.939 1.179 1.244 1.206 1.168 1.132 0.984
(0.074) (0.085) (0.085) (0.033) (0.070) (0.108) (0.021) (0.038) (0.077)

40 60 1.019 0.992 1.267 1.089 1.057 1.051 1.063 1.061 0.997
(0.105) (0.111) (0.140) (0.030) (0.059) (0.120) (0.017) (0.035) (0.064)

50 50 0.892 1.577 2.526 2.974 8.006 10.781 7.254 12.180 14.491
(0.207) (0.342) (0.554) (0.158) (0.524) (0.760) (0.211) (0.470) (0.720)

50 60 1.112 1.214 1.016 1.330 1.250 0.959 1.429 1.230 1.191
(0.093) (0.091) (0.103) (0.028) (0.056) (0.093) (0.014) (0.035) (0.060)

60 60 1.194 1.268 2.568 2.733 5.812 9.566 5.647 9.373 13.721
(0.274) (0.258) (0.543) (0.105) (0.441) (0.802) (0.153) (0.360) (0.689)
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Figure 5. Comparison of our DNS results with some DNS data taken from
Franklin et al [51]: (a) normalized collision kernel, (b) radial relative velocity
and (c) RDF as a function of energy dissipation rate, for the bidisperse pair of
a1 = 30 µm and a2 = 10 µm.

of Franklin et al. Quantitatively, the Franklin et al results on collision rate and relative velocity
appear to be somewhat larger than our results. This quantitative difference could be due to
the different forcing schemes (random forcing versus deterministic forcing) used in our DNS
and in the work of Franklin et al, as noted in the introduction. Taken together, the dependence
of collision kernel and kinematic pair statistics on the flow dissipation rate is nonlinear, with
increasing slope at high flow dissipation rate.

In figure 6, we compare our DNS data on dynamic collision kernel with data taken from
Pinsky et al [61]. The latter was based on a statistical formulation of turbulence and a leading
order expansion of the droplet relative motion. The two results agree with one another to within
10% and both show that the collision kernel increases with the flow dissipation rate. Note that
our collision kernel includes the effect of RDF, but the data from Pinsky et al [61] are for the
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Figure 6. Comparison of our DNS results on dynamic collision kernel with data
taken from figure 8(a) in Pinsky et al [61], for colliding pairs with a1 = 15 µm
and a2 = 10 µm.

Figure 7. Radial relative velocity of droplets in turbulent flow: (a) bidisperse
pairs with a1 = 30 µm, Rλ = 72.41 and ε = 400 cm2 s−3; (b) monodisperse pairs
(i.e. a1 = a2 = a).

swept volume excluding the contribution from RDF. This may account for part of the difference
between the two results.

Figure 7 shows the radial relative velocity (cm s−1) as a function of droplet radius. The
top figure shows results for bidisperse pairs at contact as a function of a2 when a1 is set
to 30 µm. The results are compared to the pure gravitational value. Clearly, the differential
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Figure 8. A snapshot from DNS of droplet position (left panel) and normalized
flow entrophy (right panel) on the same planar slice. Left panel: the locations
of droplets of 20 µm radius are shown by yellow cones and those of 30 µm
by blue cones. The flow parameters are: Rλ = 72.41 and ε = 400 cm2 s−3. Note
that the 30 µm droplets (St = 0.570) show much higher levels of preferential
concentration and 20 µm droplets (St = 0.253) display only a weak clustering.

sedimentation dominates the relative velocity with a very moderate but measurable (10–30%)
enhancement due to air turbulence. The bottom figure shows the radial relative velocity for
monodisperse pairs. Interestingly, the radial relative velocity may reach a maximum when
a1 = a2 = 50 µm for the high-ε high-Rλ flow case. This may be qualitatively explained as
follows. As the droplet size increases, both the droplet inertia and terminal velocity become
larger. The inertia causes droplets to deviate from flow streamlines, thus contributing to the
radial relative motion. The sedimentation, on the other hand, decreases the interaction time
between a droplet and a turbulent eddy, leading to reduction of radial relative motion. These two
effects compete with one another. For droplets of 50 µm or larger, the terminal velocity is larger
than the turbulent fluctuation velocity (see tables 2 and 4), so the sedimentation effect dominates
the droplet–turbulent eddy interaction. The figure also shows that the relative motion increases
rapidly with the intensity of turbulence as measured by the flow dissipation rate. For a given
droplet size, increasing dissipation rate leads to larger St and smaller Sv (see table 3); therefore,
the inertial effect is made more significant relative to the sedimentation effect, yielding a larger
radial relative motion between the droplets.

Next, we examine the accumulation effect, namely, how the level of droplet clustering
depends on gravity and the turbulent flow parameters. Figure 8(a) is a snapshot of droplet
locations within a thin planar slice from DNS of a bidisperse case in a turbulent flow at
Rλ = 72.41 and ε = 400 cm2 s−3. Each droplet is represented by a cone whose tip points in the
direction of the instantaneous droplet velocity vector. The size of the cone does not represent
the actual droplet size, it was made larger in order for them to be visible. Two different colors
are used to indicate two different droplet sizes (yellow for 20 µm droplets and blue for 30 µm
droplets). Figure 8(b) shows, for the same slice as in figure 8(a), a contour plot of the normalized
entrophy ((ωiωi)

1/2/〈(ωiωi)
1/2

〉), where ωi is the flow vorticity. The gray scale is defined such
that the darkest color denotes at least twice the corresponding field mean and the lightest color a
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Figure 9. RDF for sedimenting droplets in turbulent flow. (a) Monodisperse case,
(b) bidisperse system with a1 = 30 µm, Rλ = 72.41, and ε = 400 cm2 s−3.

zero local value. Figure 8(a) shows that a large percentage of droplets is moving along with the
gravity direction. Some droplets are moving horizontally to avoid high-intensity vortices while
falling. A few vertical patches of droplets are formed due to preferential sweeping [31]. Similar
to what Zhou et al [49] observed for non-sedimenting droplets, we find here that sedimenting
droplets of two different sizes tend to be located in somewhat different regions relative to the
flow microstructures and these two sizes exhibit different levels of clustering. For sedimenting
droplets, both the droplet Stokes number St and the settling ratio Sv can affect the level of
clustering. Davila and Hunt [35] have proposed a new parameter to describe the combined
effect of sedimentation and inertia, they showed that the interaction of sedimenting particles
with vortices should be analyzed in terms of a nondimensional parameter

Fp ≡ τpv
2
p/0vort,

where 0vort is the circulation around a vortical region. For Stokes drag, this parameter depends
very sensitively on the droplet size, namely, Fp is proportional to d6

p . This explains why
the concentration field of 30 µm droplets can be noticeably different from that of 20 µm
droplets. We believe that the level of clustering shown in figure 8(a) is more representative
for sedimenting cloud droplets in strong air turbulence, than those shown in Shaw et al [44] for
non-sedimenting particles.

Some representative results of the RDF for sedimenting droplets are shown in figure 9(a)
for monodisperse pairs and in figure 9(b) for bidisperse pairs. For the case of monodisperse
pairs, due to the competing effects of droplet inertia and sedimentation, the trends are similar to
those for the radial relative motion shown in figure 7(b). The magnitude of monodisperse RDF
depends on both the flow dissipation rate and the flow Reynolds number. For non-sedimenting
particles, the maximum clustering has been found to occur for St in the order of unity [33], with
maximum level to be Rλ-dependent. Here, for monodisperse sedimenting droplets, we observe a
similar St-number- and Rλ-dependence. The level of monodisperse RDF is also comparable to
those found in [33] for non-sedimenting particles. However, it should be noted that Wang et al
[33] assumed 2a ≈ η in their DNS, but here for cloud droplets R � η. Since the monodisperse
RDF increases with decreasing R for R < η, the level of monodisperse RDF observed here
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Figure 10. DNS dynamic collision kernel of sedimenting droplets in turbulent
flow. (a) a1 = 30 µm, Rλ = 72.41 and ε = 400 cm2 s−3 and (b) monodisperse
case.

actually implies that sedimentation tends to reduce the RDF for a given a/η. A complete
quantitative study of monodisperse RDF for sedimenting droplets would be a necessary step
for quantifying the collision kernel for monodisperse droplets.

More interesting results are for the bidisperse RDF g12(R) shown in figure 9(b). The level
of g12(R) is much lower than the monodisperse RDF when a1/a2 deviates from one. This is due
to the rapid decorrelation of concentration distributions for different droplet sizes. The rapid
decorrelation was discussed in [33] for non-sedimenting particles. DNS of sedimenting droplets
in Vaillancourt et al [47] showed that the level of clustering as measured by a clustering index
decreases with increasing sedimentation rate. Falkovich et al [2] presented a theory (equation (3)
in their paper) of this decorrelation for sedimenting droplets, and the results of their theory is
shown in figure 9(b) for comparison. The value of the parameter α in their theory was set
to 1.2 to match the monodisperse RDF. For sedimenting droplets, both the differential inertia
and differential sedimentation lead to the decorrelation, so decorrelation happens much faster
than the case of non-sedimenting particles. This reduction of bidisperse RDF by sedimentation
can significantly reduce the importance of the accumulation effect on the collision kernel. The
theory of Falkovich et al [2] appears to show a faster decorrelation rate than that of the DNS
data.

In figure 10, we plot the geometric collision kernel as a function of droplet size. For specific
flow conditions in figure 10(a), air turbulence causes a moderate (4–42%) enhancement of the
collision kernel when a2 differs from a1 by at least 10 µm. However, when a2 is close to a1,
the insert in figure 10(a) shows that air turbulence can double the gravitational collision kernel.
For monodisperse pairs (figure 10(b)), the collision kernel increases rapidly with droplet size,
flow dissipation rate and Rλ. For high-ε and high-Rλ, the magnitude of monodisperse collision
kernel could become comparable to the bidisperse collision kernel.

Also shown in figure 10(b) are the theoretical results from Falkovich and Pumir [62] at
ε = 600 cm2 s−3 and Rλ = 105. The dashed line shows their prediction of the total geometric
collision kernel (sum of figures 5(b) and 6 in [62]). Falkovich and Pumir [62] considered two
contributions to the collision kernel: a contribution due to interaction of droplets with a local
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Figure 11. The average settling velocity of droplets in turbulent air, normalized
by the terminal velocity in stagnant air.

flow eddy and a nonlocal contribution due to interaction of droplets with distant eddies (the
sling effect). The dashed–dotted line in figure 10(b) shows the local contribution only (figure 5b
from Falkovich and Pumir [62]). For the relatively low Reynolds numbers considered here, the
local contribution dominates the sling component, as noted in [62]. The theory seems to predict
well the overall trend, with some under-estimation of the collision kernel considering the higher
dissipation rate and Reynolds number used in their analysis.

5.3. Average settling velocity

Here, we briefly discuss the increased settling velocity by turbulence. Sedimenting particles
bias their trajectories toward regions of downward fluid motion around vortices and could settle
significantly faster than the terminal velocity [28, 31, 35]. Figure 11 displays the ratio of average
settling velocity of a droplet in turbulent flow to its terminal velocity in stagnant air. The DNS
results show that large droplets (a > 40 µm) move in a turbulent flow at a mean velocity roughly
equal to the terminal velocity.

The increased settling occurs selectively for particles with a certain range of terminal
velocity and inertial response time [31, 35]. Interestingly, 20 µm droplets always exhibit the
largest increase in settling velocity. This can be explained again by the theory of Davila and
Hunt [35] which showed that the increased settling in vortical flow is maximized when the
parameter Fp is of the order of one. For Kolmogorov eddies, 0vort ≈ vkη = ν and is independent
of the flow dissipation rate. Therefore,

Fp =
τpv

2
p

0vort
=

τ 3
p |g|

2

ν
. (13)

For cloud droplets in air with ν = 0.17 cm2 s−1, we have Fp = 0.0124, 0.794, 9.28 and 51.6 for
a = 10, 20, 30 and 40 µm, respectively. This shows that for 20 µm droplets, the inertial response
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Figure 12. Difference between the average settling velocity of a droplet in
turbulent flow and its terminal velocity in stagnant air.

time happens to be similar to the time (ν/v2
p) for the droplet to settle through a Kolmogorov eddy.

This explains why a maximum occurs at a = 20 µm, regardless of Rλ and ε.
Figure 11 suggests that the collision kernel between 20 µm droplets and droplets smaller

than 20 µm will be larger if this selective increase in settling is considered. In general, the
increased settling is larger in magnitude (〈vpturb〉 − vp) for a > 20 µm than a 6 15 µm (see
figure 12), so larger droplets can collect tiny cloud droplets more effectively due to the increased
settling.

It has been argued that the increased settling velocities could alter the collision–coalescence
growth by altering relative mean motion of droplets in clouds [36]. From the DNS results, we
find that the relative turbulent settling velocities are larger than the relative stagnant-air settling
velocities mainly for droplet-pairs with radii less than 40 µm.

We mention in passing that Franklin et al [51] noted that in their DNS, the RDF for 20 µm
collector droplet is the largest. Since the flow dissipation rates used in their work are higher,
it is not possible to deduce whether their observation is related to the parameter Fp mentioned
here or the higher droplet Stokes numbers at around 20 µm in their DNS. It is suggested that the
parameter Fp should be considered in future studies of sedimenting droplets.

5.4. The nonlinear drag effect

In the preceding discussions, the fluid drag on the droplets has been based on a linear Stokes
drag law. A better treatment may be to use a nonlinear drag of the form given by equation (3),
as the droplet Reynolds number is of the order of one (see table 2). In this section, we discuss
briefly the effect of such drag nonlinearity on the radial relative velocity, the RDF and the
average collision kernel.

Figures 13 and 14 show the nonlinear drag effect on the results for bidisperse systems
and for monodisperse systems, respectively. The difference between the results based on the
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Figure 13. The effect of nonlinear drag (NLD) in bidisperse systems with
a1 = 30 µm, Rλ = 43.04 and ε = 400 cm2 s−3. (a) 〈|wr|〉, (b) g12NLD/g12SD and (c)
collision kernel.

two drag laws can be understood qualitatively by modifying the particle response time and the
terminal velocity in still air as [31]

τpNLD =
2ρwa2

9ρν f (Rep0)
, vpNLD = τpNLD g. (14)

Due to the nonlinear drag, the effective inertial response time τpNLD is smaller than the Stokes
inertial response time τp, so is the effective terminal velocity. In other words, the nonlinear drag
effectively reduces the size of the droplet, particularly for the larger cloud droplets where the
factor f (Rep0) is relatively larger.

For the bidisperse cases (figure 13), the droplet clustering is not significantly affected by
the drag nonlinearity and the large statistical uncertainties make it difficult to draw a definite
conclusion. The radial relative velocity is clearly decreased due to the reduced mean droplet
terminal velocities. As a result, the collision kernel is reduced by the nonlinear drag. Similar
observations were made in Franklin et al [51] who considered the effect of nonlinear drag for
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Figure 14. The effect of nonlinear drag (NLD) for monodisperse pairs. (a) 〈|wr|〉,
(b) g(r = 2a) and (c) collision kernel.

collisions between 27 and 30 µm droplets at ε = 1535 cm2 s−3. Our results concerning the effect
of nonlinear drag are more extensive and systematic.

For monodisperse systems (figure 14), we find very little change in the radial relative
velocity for droplets smaller than 30 µm as the nonlinear factor f (Rep0) is close to unity
(see table 2). For larger droplets, 〈|wr|〉 is increased by the nonlinear drag which is contrary
to the speculation by Kruis and Kusters [63] that the assumption of Stokes’ law yields an
overestimation of the relative particle velocity. On the other hand, Zhou et al [49] found an
increase in the DNS collision kernel of non-settling particles due to drag nonlinearity. They
argued that the nonlinear drag, which is larger than the Stokes drag, will increase the particle
rms velocity rather than decrease it. This could increase the radial relative velocity. In contrast
to 〈|wr|〉, figure 14(b) shows a slight decrease in g12 (up to 10%). The nonlinear drag tends to
increase 〈|wr|〉 which consequently could decrease the level of particle clustering. Finally, the
collision kernel is shown in figure 14(c). An interesting observation from this figure is that 0

experiences an increase for large droplets similar to the increase on 〈|wr|〉. However, there are
cases for medium-sized droplets where the collision kernel actually decreases slightly.
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6. Summary and concluding remarks

We studied effects of air turbulence on the geometric collision rate of cloud droplets. The
air turbulence within clouds was assumed to be homogeneous and isotropic, and its small-
scale motion (from roughly 1 mm to 10 cm scales) is computationally generated by direct
numerical integration of the full Navier–Stokes equations. Typical droplet and turbulence
parameters of convective warm clouds are used to determine the Stokes numbers (St) and
the nondimensional terminal velocities (Sv) which characterize droplet relative inertia and
gravitational sedimentation, respectively. A large number of droplets forming a bidisperse
system were tracked computationally, under the influence of gravity, flow drag and their
own inertia. Both dynamic geometric collision events and kinematic pair statistics have been
computed for 21 different droplet size combinations, three flow dissipation rates and three flow
Reynolds numbers. The collection of the DNS data represents the most comprehensive study
of geometric collision of sedimenting droplets. The droplet size range covered was from 10 to
60 µm.

The DNS results show that turbulence can increase the geometric collision kernel relative
to the gravitational geometric kernel by as much as 47% when ε = 400 cm2 s−3, due to enhanced
radial relative motion (the turbulent transport effect) and preferential concentration of droplets
(the accumulation effect). For smaller cloud droplets, the turbulent transport effect dominates
the enhancement of collision kernel by air turbulence. For larger cloud droplets or for droplets
close in size, however, the accumulation effect may become equally important. The exact level
of enhancements depends on the Taylor-microscale Reynolds number, turbulent dissipation rate
and droplet pair size ratio. Similar to previous observations of Franklin et al [49], it is found that
turbulence has a relatively dominant effect on the collision process between droplets close in
size as the gravitational collision mechanism diminishes. Some quantitative difference between
our results and those of Franklin et al [51] implies that the large-scale forcing scheme may
affect the collision statistics. Relative to the monodisperse system, the accumulation effect is
much less important in a bidisperse system due to the rapid decorrelation of the concentration
fields for different droplet sizes, in agreement with previous studies [2, 47, 49] .

The noticeable dependence of the results on flow Reynolds numbers observed in this work
is somewhat surprising and not fully understood. There are two possible reasons: (1) droplets
respond to a range of turbulent eddies and the limited scales in DNS do not really allow
separation of effects of large and small scales, (2) there exists a possibility that small-scale
eddy structure is connected to large-scale eddies through non-local eddy interactions. Clearly,
additional work is needed to fully resolve the effect of flow Reynolds number.

As an additional effect of turbulence on the droplet motion, we find an increase in the
average settling velocity by as much as 25% when compared with the still-air terminal velocity.
This increased settling centered around droplets of radius equal to 20 µm, regardless of the
flow dissipation rate and Reynolds number. This confirms the analytical prediction of Davila
and Hunt [35] in terms of an interaction time of a sedimenting particle with an idealized flow
vortex. This selective enhancement in settling rate could have some impact on the growth of
cloud droplets by collision–coalescence.

Finally, some consideration is given to the effect of nonlinear drag on the collision kernel.
Drag nonlinearity was found to decrease the collision kernel by up to 26% for larger cloud
droplets. For droplets less than 30 µm in radius, it was shown that the collision kernel can be
accurately predicted by using the Stokes drag law.
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There was evidence in this paper (e.g. figure 8) showing that the level of clustering of
droplets depends sensitively on the size of droplets. For cloud droplets, both droplet inertia and
terminal velocity increase with the size. It would be desirable to systematically study how the
level of particle clustering and the structure of particle concentration field changes with the
sedimentation parameter Sv for a given inertia parameter St or alternatively in terms of Fp, for
the range of flow conditions relevant to clouds.

It should be noted that the relatively low flow Reynolds number in DNS implies that only
a very limited range of scales of flow motion is explicitly represented in DNS. The relative
motion and pair statistics of larger cloud droplets may be affected by larger scale fluid motion
not included in our DNS. Performing DNS at higher flow Reynolds numbers in the future will
eventually help resolve this uncertainty.
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