Practice Exam


Solution:

Figure 1
Figure 1

\[ \boldsymbol{v}_{A\in 2} = v_A \boldsymbol{\hat{\imath}}= \boldsymbol{v}_{B\in 2} + \omega_2 \boldsymbol{\hat{k}}\times \boldsymbol{r}_{BA} = \boldsymbol{v}_{B\in 1} - L\omega_2\boldsymbol{\hat{k}}\times (\cos\phi \boldsymbol{\hat{\imath}}+ \sin\phi \boldsymbol{\hat{\jmath}}) \] which gives \[ v_A \boldsymbol{\hat{\imath}}= v_C (1+\cos\theta)\boldsymbol{\hat{\imath}}+ v_C \sin\theta\boldsymbol{\hat{\jmath}}- L\omega_2 (\cos\phi \boldsymbol{\hat{\jmath}}- \sin\phi \boldsymbol{\hat{\imath}}) \] This gives two equations for the unknowns \((v_A, \omega_2)\): \[ v_A = v_C (1+\cos\theta) + L\omega_2\sin\phi , \quad 0= v_C \sin\theta- L\omega_2 \cos\phi \]

The angular speed \(\omega_{AB}\) and speed \(v_A\) are then found from the relationships \[ v_A = v_{A\in 2} = |I_2 A| \omega_2, \qquad v_B= v_{B\in 2} = |I_2B| \omega_2 = v_{B\in 1} = |I_1B| \omega_1 , \qquad v_C = v_{C\in 1} = |I_1 C| \omega_1 \qquad{(4)} \] We find the distance \(|I_2A|\) and \(|I_2B|\) by applying the law of sines in triangle \(AI_2 B\): \[ \frac{|I_2A|}{\sin(\frac{\pi}{4}+\phi) } = \frac{|I_2B|}{\sin(\frac{\pi}{2}-\phi) } = \frac{L}{\sin\frac{\pi}{4}} \] This gives \[ \frac{|I_2A|}{|I_2 B|}= \frac{1+ \tan\phi}{\sqrt{2}}, \qquad |I_2B|=\sqrt{2} L \cos\phi \] Then using (4) we find \[ \boxed{ \omega_2 = \frac{v_C}{L \cos\phi} } \qquad{(5)} \] and \[ \boxed{ v_A = v_C (1+\tan\phi) } \qquad{(6)} \] with angle \(\phi\) given by \(\sin\phi= r/L\). We find the same results as given by (1-2) after setting \(\theta=\pi/2\).

Figure 2
Figure 2

4. Assume \(\theta = \pi /2\). To find the radius of curvature \(\rho\) of the trajectory described by \(B\) we use the fact that \(\rho = v_B^2 /(\boldsymbol{a}_B \cdot \boldsymbol{\hat{e}}_N)\) where \(\boldsymbol{\hat{e}}_N\) is the unit vector normal to the path. We found \(\boldsymbol{v}_B = v_C (\boldsymbol{\hat{\imath}}+\boldsymbol{\hat{\jmath}})\) which gives \(\boldsymbol{\hat{e}}_T = (\boldsymbol{\hat{\imath}}+\boldsymbol{\hat{\jmath}})/\sqrt{2}\) and \(\boldsymbol{\hat{e}}_N = (\boldsymbol{\hat{\imath}}-\boldsymbol{\hat{\jmath}})/\sqrt{2}\) (\(\boldsymbol{\hat{e}}_N\) points towards the center of curvature).

We still need to find \(\boldsymbol{a}_B = \boldsymbol{a}_C + \boldsymbol{\alpha}_1 \times \boldsymbol{r}_{CB} - \omega^2_1\boldsymbol{r}_{CB} = r \omega_1^2 \boldsymbol{\hat{\imath}}= (v_C^2/r)\boldsymbol{\hat{\imath}}\) (using \(\boldsymbol{a}_C = 0\) and \(\boldsymbol{\alpha}_1 =0\) as a consequence of \(v_C= Cst\)). Now we can find \(\boldsymbol{a}_B \cdot \boldsymbol{\hat{e}}_N\) \[ \boldsymbol{a}_B \cdot \boldsymbol{\hat{e}}_N =\frac{ v_C^2} {\sqrt{2} r} = \frac{v_B^2}{\rho} \] This gives \(\boxed{\rho = 2 \sqrt{2} r}\).