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Stereoscopic particle image velocimetry

A. K. Prasad

Abstract Stereoscopic particle image velocimetry (PIV)
employs two cameras to record simultaneous but distinct
off-axis views of the same region of interest (illuminated
plane within a flow seeded with tracer particles). Sufficient
information is contained in the two views to extract the
out-of-plane motion of particles, and also to eliminate
perspective error which can contaminate the in-plane
measurement. This review discusses the principle of ste-
reoscopic PIV, the different stereoscopic configurations
that have been used, the relative error in the out-of-plane
to the in-plane measurement, and the relative merits of
calibration-based methods for reconstructing the three-
dimensional displacement vector in comparison to geo-
metric reconstruction. It appears that the current trend
amongst practitioners of stereoscopic PIV is to use digital
cameras to record the two views in the angular displace-
ment configuration while incorporating the Scheimpflug
condition. The use of calibration methods has also gained
prominence over geometric reconstruction.

1
Introduction
The method of using two cameras to obtain depth-per-
ception has been practiced for several decades in various
engineering applications. In fact, such twin camera sys-
tems mimic the binocular vision that enables human be-
ings to distinguish between objects near and far.
Essentially, a single view cannot resolve the out-of-plane
dimension of the object field. Instead, the out-of-plane
component is actually projected on to the object plane and
causes a perspective error in the in-plane component.
When measuring three-dimensional particle displace-
ments, one may characterize this situation as having three
unknowns (Ax, Ay, Az) with the single view providing only
two equations. The addition of a second, different view,
provides two additional equations which may be used to
solve for the three-dimensional information. Our eyes re-
cord two such off-axis views simultaneously and the brain
is able to combine the two views together in real time to
provide three-dimensional vision.

This review paper only considers the measurement of
three-dimensional vectors on planar domains. According
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to the classification proposed by Hinsch (1995) a mea-
surement system can be labeled as (k, I, m) where

k =1,2,3 indicates the number of velocity components
measured, I = 0,1,2, 3 indicates the number of spatial
dimensions of the measurement domain, and m = 0, 1
indicates instantaneous or continuous time recording,
respectively. The focus of this review is exclusively on the
(3, 2, 0) method. In particular, we will examine in detail
stereoscopic techniques that employ high-density corre-
lation PIV. Alternative (3, 2, 0) methods that employ other
(non-stereoscopic) strategies will also be mentioned; new
users are confronted with a variety of choices and it is
useful to compare and contrast stereoscopic PIV with such
other methods.

All stereoscopic systems, despite the wide variety in
configurations, must satisfy the basic requirement of re-
cording two simultaneous, but different views of the same
object. The two views are then combined using one of an
assortment of algorithms to reconstruct the three-dimen-
sional field. This review paper is organized as follows.
First, we will examine the need for stereoscopic systems by
analyzing the shortcomings of conventional single camera
PIV, and describe how these shortcomings may be over-
come by the addition of a second camera. Next, we will
review several stereoscopic configurations that have been
used along with their relative merits. In this section, we
will also mention alternative (non-stereoscopic) methods
of obtaining three-dimensional vectors on planar domains.
Next, the error analysis of stereoscopic systems will be
discussed. Finally, the important topic of reconstruction of
the three dimensional field will be presented.

Figure 1 shows the conventional single camera PIV ar-
rangement wherein the camera axis is perpendicular to the
illuminated plane in order to obtain the in-plane velocity
components. A particle with initial position x; = (x, y,0)
forms an image at X; = (—My,x, —M,y,0) where the
nominal magnification, M, = d;/d,. Here, d, is the object
distance to the middle of the light sheet, and d; is the
corresponding image distance. It should be noted that
Fig. 1 depicts the motion of only one particle, and sec-
ondly, that this particle is initially located exactly on the
object plane (z = 0, the mid-plane of the light sheet). In
reality, each PIV measurement averages the motion of all
particles lying in an interrogation volume produced by the
intersection of the light sheet with the back-projection of
the interrogation spot onto the object plane. Second, these
particles cannot obviously be constrained to start their
motions from the object plane (z = 0) in a real flow.
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Fig. 1. Error in the measurement of in-plane displacements due
out-of-plane motion using a single camera

However, as shown by Prasad and Adrian (1993a), the
process of integrating the contributions of multiple par-
ticles embedded uniformly throughout the interrogation
volume reduces the physical problem to the s1tuat10n de-
p1cted in Fig. 1 with an error of order (Az,/d,)* where Az,
is the thickness of the light sheet. For a typical PIV re-
cording, Az, ~ 1 mm and d, is hundreds of millimeters,
so this error is negligible. Therefore, subsequent figures
and analysis in this paper will only consider the motion of
a single particle whose initial location is at z = 0.
Referring again to Fig. 1, when the particle under con-
sideration moves to a final position of
xf = (x + Ax, y + Ay, Az) it forms an image at
X = (—Mg¢(x + Ax), —M¢(y + Ay), 0) where
Mg = di/(d, — Az). The resulting image displacement
vector, as recorded on the image plane, is:

AX = X; — X;
_ <_Mn Ax + xAz/d,

Ay + yAz/d,
Sl Bl s V R AP el B |
1—Az/d, ’ ’ )

"1 - Az/d,

(1)
Figure 1 shows that particles which are not located directly
on the camera axis and which experience out-of-plane
motion, Az, will record displacements, AX, which do not
match the true in-plane displacements, (Ax, Ay). Rather,

AX maps back to an apparent in-plane displacement of
Ax' = —AX/M,, on the object plane, i.e.,
o)

Ax — AX Ax +xAz/d, Ay+ yAz/d,
1—Az/d, ' 1—Az/d,
The relative error between the true and the apparent in-
plane displacement, ¢, is called the perspective error.
Ax' Ay
=gl = <E‘ Ny )

= <g tan 0x,¥tan 0},>
Ax Y%

(2)

where 0, and 0, are projections of 0 on the x-z and y-z
planes respectively. Perspective error can significantly
contaminate in-plane measurements when the relative out-
of-plane component is large, as well as when the angle
subtended by the particle to the camera-axis, 0, is large.
For example, an off-axis angle of 5° subtended by the edge
of the region of interest to the lens (6 in Fig. 1) in single
camera PIV can cause an error of about 10% in the in-
plane measurement when the in-plane and out-of-plane
displacements are of similar magnitude. Relatively larger
out-of-plane displacements will produce proportionally
greater perspective errors. This result was also provided by
Jacquot and Rastogi (1981) for the displacement of solid
surfaces.

Stereoscopic PIV eliminates this problem by acquiring
two simultaneous views along different off-axis directions
as shown in Fig. 2. The apparent displacements recorded
by each camera, AX; and AX,, are later combined to ob-
tain the correct in-plane displacement, (Ax, Ay), and more
importantly, the out-of-plane displacement, Az.

2

Stereoscopic configurations

Commonly used stereoscopic systems may be broadly
classified according to (i) translation systems, also known
as lateral displacement, and (ii) rotational systems, also
known as angular displacement (Fig. 3). These major
systems will be addressed first along with their variations.
Additional stereoscopic configurations which cannot be
strictly classified as translational or rotational systems will
be discussed next. Finally, we will mention alternative
(non-stereoscopic) methods of obtaining three-dimen-
sional vectors on planar domains at the end of this section.

2.1

Translation systems

In the translation system, the axes of both cameras are
placed parallel to each other, such that they are both or-
thogonal to the light sheet. This system is depicted in
Fig. 2 and in Fig. 3a. Although Fig. 2 shows the two
cameras to be symmetric with respect to the system axis,
such symmetry is not necessary — for example, the sepa-
ration of each lens from the system axis and/or the mag-
nification of each camera could be different. However,
symmetric systems are more conveniently implemented.
The translation configuration was described by Jacquot
and Rastogi (1981), Sinha (1988), Gauthier and Rieth-
muller (1988), and Lawson and Wu (1997a), and was used
for measurements by Arroyo and Greated (1991), Sinha
and Kuhlman (1992), Prasad and Adrian (1993a, b), Syn-
nergren (1997), Soloff et al. (1997), Liu et al. (1997), and
Lecerf et al. (1999).

The primary advantage of the translation method is its
simplicity. Because the object plane, lens plane, and image
plane are all parallel to each other, the image field enjoys
uniform magnification. Furthermore, in the absence of
refractive-index jumps along the optical path from the lens
to the object plane (such as that caused by recording
through a thick liquid layer, for example), the particle
image quality is not compromised. Good image focus is
achieved without the need to reduce the aperture beyond
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Fig. 3a, b. Two basic configurations for stereoscopic PIV sys-
tems: a translation method, b angular-displacement method

Fig. 2. Schematic of stereocamera in the translation con-
figuration

what is used in single camera PIV (i.e., the depth-of-field
requirement is unchanged). The two views can be readily
superposed without additional manipulations that a non-
uniform magnification would necessitate. In addition, the
spatial resolution of the combined field will be identical to
that of the two individual views.

One of the objections raised by Gauthier and Riethmuller
(1988) to the translation method is the small “common
area” viewed by each camera. However, the common area
can be maximized by off-setting each sensor frame away
from the lens-axis (see Fig. 3a) such that:

D= (1+M,)S

where D is the distance between the centers of the sensors,
and S is the distance between the camera-lens axes. It
should be noted, however, that such an off-set may be
difficult to enforce with CCD cameras due to vignetting
caused by the camera body.

A more serious difficulty with the translation system is
that there is an upper bound to the off-axis angle 0 sub-
tended by the center of the region of interest to the center
of the lens (see Fig. 3a). This restriction arises purely from
the design of the lens; if the lenses are separated by a value
that is too large for a given d,, the lens performance de-
grades as it is forced to operate at the outer limit of its
specification. It will be shown later that the relative error
in the out-of-plane component decreases when the off-axis
angle increases, implying that the translation system is
somewhat limited in the accuracy of the out-of-plane
component. Results obtained by Prasad and Adrian
(1993a), Arroyo and Greated (1991), and Soloff et al.
(1997) indicate that the out-of-plane error exceeds the in-
plane error by a factor of 3 to 4 for typical translation
systems, corresponding to a half-angle 0 ~ 15°. In the case
of Prasad and Adrian (1993a), the in-plane and out-of-
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plane rms errors amounted to 1 um and 4 pm respectively, f-numbers, and the second caused some non-uniformity

at an object distance of 247 mm.

The geometric relationship between the true particle
displacements (Ax, Ay, and Az), and the apparent dis-
placements measured by camera no. 1 (AX;, AY;), and
camera no. 2 (AX,, AY,) can be easily derived by exam-
ining Fig. 2 and are presented below.

—do(AX; — AX;)

A2 = 1S — (AXs — AX) ®)
AXi(x — §/2) — AXy(x + S/2)
Ax = 4
x M,S — (AX; — AX,) (4)
—yAz AY; + AY, [Az
Ay = 22
V= Td, T oM, |4, ()

As mentioned in Sect. 1, the two views provide four
equations for three unknowns. The additional equation
may be used to improve the accuracy of Ay as has been
done above by averaging the Ay determined by each
camera. Similar equations for translation systems have
been provided by other workers mentioned earlier.

A variation on the conventional translation arrange-
ment used by Arroyo and Greated (1991) involved the
placement of one pair of mirrors M; between the object
plane and the lens plane, and a second pair between the
lens plane and the image plane M,. These mirrors fold the
light scattered along off-axis angles such that the two views
are recorded adjacent to each other on the same sensor.
The center of the region of interest O’ maps to two adja-
cent regions O} and O} as shown in Fig. 4. This system
requires only one lens and one sensor.

Prasad and Adrian (1993a, b) applied the translation
configuration to liquid flows, wherein the object plane
resided within a thick liquid layer. The refractive index
jump at the liquid-air interface caused some difficulties: (i)
aberrations due to the interface caused particle images to
be radially distorted, and (ii) the plane over which parti-
cles could be obtained in acceptable focus was no longer
parallel to the object plane but had to be tilted at some
angle to it. The first problem forced the use of small

Object Plane o'

M, M,

Lens Plane

Image Plane ‘

(O 0,

Fig. 4. Translation configuration using a single camera (adapted
from Arroyo and Greated 1991)

in the magnification. Therefore, the basic advantages of
using the translation system were somewhat diminished in
this application. Prasad and Adrian (1993a) implemented
modifications in hardware and software to successfully
accomplish the three-dimensional measurements below a
disk rotating in a tank of glycerine. Using the same ar-
rangement, Prasad and Adrian (1993b) obtained three-
dimensional measurements in turbulent thermal convec-
tion at a Rayleigh number of about 2 x 107.

2.2

Rotational systems

The restriction on 6 imposed by the translation ar-
rangement is removed in rotational systems. As shown in
Fig. 3b the two camera axes are no longer parallel to each
other but are rotated such that the two axes intersect the
object plane at the system axis. Now the angle 0 may be
increased to much larger values without incurring prob-
lems associated with lens performance, thereby allowing
greater accuracy in the out-of-plane component. Howev-
er, the magnification is no longer uniform over the field
of view. Furthermore, as shown in Fig. 3b, the image
plane has to be further rotated with respect to the lens
plane by an angle o such that the object plane, lens plane
and image plane are colinear. This requirement, known
as the Scheimpflug condition (Altenhofen 1952) ensures
that all particles in the object field will be in good focus
in the image plane. However, the Scheimpflug condition
exacerbates the non-uniformity in magnification. Figure 5
illustrates the variation in magnification across the object
plane for a Scheimpflug system, for off-axis half-angles of
(a) 15°, (b) 30°, and (c) 45°, and nominal magnifications
M,, between 0.2 and 1.0 in steps of 0.2. (For the Sche-
impflug system M, = tano/ tan 0.) The distance along the
horizontal axis in the object plane, x, is normalized by
the nominal object distance d, (see Fig. 3b) and the re-
sulting local magnification is normalized by the nominal
magnification (realized at x/d, = 0). It is apparent that
the non-uniformity increases with |x|, 0, and M,. The
data in Fig. 5 pertains only to the x-axis; for a given x,
the non-uniformity increases with distance from the x-
axis.

In addition to non-uniformity, the angular displace-
ment arrangement depicted in Fig. 3b produces image
fields which are oppositely stretched. This effect is shown
in Fig. 6, where square interrogation spots in the image
plane map to oppositely stretched, and differently located,
trapezoids in the object plane. Obviously, a reverse map-
ping would cause a cartesian grid in the object plane to be
oppositely stretched in each image plane as well. As in-
dicated by the shaded regions, it is impossible to directly
combine information from each view in the image plane
without first interpolating the data on to a common grid. It
should be noted that the two distorted grids in Fig. 6 are
maximally overlapped, in that, their vertical edges coin-
cide. In order to achieve such a maximum overlap, the two
cameras will need to be moved somewhat closer together
than Fig. 3a indicates, such that their axes intersect not at
the object plane but in front of it (Westerweel and van
Oord 1999).
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Fig. 6. Opposite stretching of a cartesian grid in the image plane
when mapped onto the object plane

It is possible to employ the angular displacement con-
figuration without enforcing the Scheimpflug condition
(by setting « = 0) which reduces somewhat the non-uni-
formity in magnification. In this case, particles can be
obtained in good focus only by ensuring that the depth-of-
field oz of the system is large enough to account for the
varying object distance. Adrian (1991) gives:

oz = 4(1 + M; ) f* )

where M,, is the camera magnification, and 4 is the
wavelength of the illuminating laser. For a given magnifi-
cation, a large depth-of-field can only be obtained at the
cost of increasing the f-number, f#, implying that a
smaller fraction of the light scattered by the particles will
reach the sensor. Such a system was described by Gauthier
and Riethmuller (1988) and employed by Westerweel and
Nieuwstadt (1991), Grant et al. (1991), and Lawson and
Wu (1997b). The Scheimpflug condition was suggested by
Hinsch (1995), and Prasad and Jensen (1995), and subse-
quently employed by Zang and Prasad (1997), Willert
(1997), Bjorkquist (1998), Westerweel and van Oord
(1999), and Hill et al. (1999).

Willert (1997) used a variation of the Scheimpflug an-
gular displacement system in which the two cameras were
placed on either side of the light sheet (Fig. 7). Two ben-
efits accrue from this arrangement. First, by properly
orienting the direction of propagation of the illuminating
laser beam, it is possible to operate both cameras in for-
ward scatter. Because scattering efficiency is significantly
higher in forward scatter, both views can exploit higher
(and equal) signal-to-noise ratios. Second, Willert’s (1997)
arrangement implies that both views will be stretched
identically, rather than the opposite stretching for cameras
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Fig. 7. Stereoscopic arrangement with cameras on either side of
the light sheet (adapted from Willert 1997)

situated on the same side of the light sheet. However, the
task of interpolating both views on to a cartesian grid still
remains.

It is easily shown that the equations for the angular
displacement system can be reduced to a form that is
similar to the equations for the translation system. Such
equations are given by Westerweel and Nieuwstadt (1991)
and Lawson and Wu (1997a) for the non-Scheimpflug
angular displacement stereocamera, and by Zang and
Prasad (1997) for the Scheimpflug system. In fact, the
equations presented by Westerweel and van Oord (1999)
are identical to the translation equations. Willert (1997)
also presents similar equations for cameras placed on ei-
ther side of the light sheet.

On account of the large off-axis angles employed in
angular displacement systems, debilitating aberrations can
arise when recording is performed through a thick liquid
layer. In fact, such aberrations are sometimes visible at the
edges of the recorded domain even in single-camera PIV -
wherein the camera axis is orthogonal to the light sheet -
applied to a liquid flow (the edges may subtend an off-axis
angle as small as a few degrees). These aberrations severely
distort the particle images radially. Prasad and Jensen
(1995) used ray-tracing to produce a graphical represen-
tation of such radial distortions. They then proposed the
use of corrective optics in the form of a liquid prism to
alleviate this problem. As shown in Fig. 8, a liquid prism
(a thin-walled glass container which is filled with the test
liquid), is constructed and attached to the wall of the test-
section such that both cameras continue to enjoy an or-
thogonal orientation with respect to the liquid-air inter-
face. The prism is located symmetrically with respect to
the stereocamera, and orthogonal viewing is achieved
when the half-angle of the stereoscopic system 6 equals the
angle subtended by the inclined walls of the liquid prism
to the original interface. The nominal object distance for
the system in Fig. 8 is given by

1
d, :p(dl+dp)cos€)+du

The distances dj, dj, and d, are all indicated in Fig. 8. y is
the refractive index of the test-liquid.
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o

Fig. 8. Scheimpflug stereocamera with liquid prism (only one of
two cameras in shown; adapted from Prasad and Jensen 1995)

In the absence of a liquid-air interface, sharp images
are obtained when the object, lens, and image planes are
colinear, as indicated in Fig. 3b. In the presence of a lig-
uid-air interface, colinearity may not yield optimal images
due to radial distortion. A small adjustment in the angle o
and/or the nominal image distance will produce optimal
images. Prasad and Jensen’s (1995) ray-tracing analysis
showed that the liquid prism is extremely efficient at re-
ducing radial distortions arising from a liquid-air inter-
face.

A second major advantage is that the liquid prism en-
sures paraxial recording; in the absence of paraxial re-
cording, some amount of ray-tracing must be applied to
modify the equations used to reconstruct the three-di-
mensional field. For example, Prasad and Adrian (1993a)
have derived such modified equations for a situation in
which paraxial recording was not employed.

Finally, when the stereoscopic half-angle 6 is large en-
ough to approach a value at which total internal reflection
is imminent (49° for a ray emerging from water into air),
then a liquid prism constitutes a simple remedy (Wester-
weel and van Oord 1999).

The liquid prism was employed by Westerweel and van
Oord (1999) in a Scheimpflug system with half-angle
0 = 45° to a turbulent boundary layer.

2.3

Other stereoscopic configurations

Gaydon et al. (1997) proposed a “hybrid” stereocamera
which combines features of translational and rotational
systems. Essentially, the hybrid system uses a small



translation between the camera axes, as well as a small
inward rotation of the axes. The idea is to increase the off-
axis angle beyond what is possible in an equivalent purely
translation system, without increasing the non-uniformity
in magnification to the level experienced by an equivalent
purely rotational system. Gaydon et al. (1997) performed
an optimization procedure to determine the ideal geome-
try for their application and concluded that the combi-
nation of a large angular displacement and relatively small
translation gave the best result. They applied their ste-
reocamera to an air-jet oriented perpendicular to the light
sheet.

Grant et al. (1995) describe an in-line stereoscopic
system, in which the two camera axes actually coincide,
and are perpendicular to the object plane (similar to single
camera two-dimensional PIV). As indicated in Fig. 9, the
requirement for differing views is satisfied by using dif-
fering magnifications and object-distances for each cam-
era. The in-line arrangement was facilitated with the use of
a semi-silvered mirror placed along the common optical
axis. One advantage of this system is that each particle
forms images at the same angular location on each film,
which speeded up particle matching for their particle
tracking algorithm. However, the out-of-plane errors for
this arrangement are quite large, especially as one ap-
proaches the center of the view field; in fact, in some
neighborhood of the center, the technique cannot produce
useful results. For regions removed from the center of the
field of view, each camera views the same particle with
different off-axis angles, however, the difference in angles
is very small. Consequently, Grant et al. (1995) report out-
of-plane errors ga,/d, that are about 300 times larger than
those reported by Prasad and Adrian (1993a).

24

Non-stereoscopic configurations

Three-dimensional vectors can be obtained on planar
domains without resorting to stereoscopy. It is appropriate
to review some of these alternative methods and compare
them to stereoscopic PIV. We will limit the non-stereo-
scopic discussion to this section only which provides a
brief introduction. The reader is referred to the original
works for additional details.

Raffel et al. (1996) obtained three-dimensional vectors
with a single camera by correlating particle images be-
tween three spatially staggered, but overlapping, parallel
light sheets. This dual-plane correlation technique exploits
the height of the correlation peak, which depends on the
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Camera 2
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Fig. 9. An in-line stereoscopic arrangement (adapted from Grant
et al. 1995)

number of paired particle images, which inversely depends
on the out-of-plane velocity component. Greater the out-
of-plane velocity, greater the out-of-plane loss of pairs,
and lower the correlation signal. Because the technique
requires an out-of-plane loss of pairs to extract the out-of-
plane component, spatial resolution is somewhat com-
promised as more particles must be included in each in-
terrogation spot to increase the signal to noise ratio.
Simulations of dual-plane PIV conducted by Raffel et al.
(1996) revealed an error in the out-of-plane component
between 4 and 8% of Az,, the light sheet thickness

(Az, = 2mm in their case). The technique offers the ad-
vantage of easy implementation, especially if the illumi-
nating laser sheet possesses a time-invariant intensity
profile across its thickness (chopped CW lasers are better
suited owing to their greater beam-pointing stability).
Raffel et al. (1996) applied their technique to successfully
measure the three-dimensional flow under a disk rotating
in glycerine.

Another single camera technique was proposed by
Herpfer and Jeng (1995) wherein the out-of-plane velocity
was obtained by particle streaks. The in-plane velocity was
obtained by double-pulsing a pulsed laser with coinciding
sheets. A third laser sheet (centered with respect to, and
somewhat thicker than the double-pulsed sheets) from a
CW laser produces particle pathlines whose lengths are
determined by the sheet thickness. Thus, each particle is
recorded as a particle-pair superposed on its streak tra-
jectory. The streak length divided by the in-plane velocity
provided the residence time of the particle in the CW laser
sheet; the out-of-plane velocity was obtained by dividing
the CW sheet thickness with this residence time. Not all
streak/pair combinations were usable, but the probability
of valid combinations could be improved by tuning the
system parameters. However, the data density is rather low
as in most particle streak methods, and furthermore, the
method cannot be applied to complicated flows without a
large out-of-plane component.

Halloin and Jottrand (1994) provide a variation of the
above method in which particles were illuminated by
multiple bursts of light from a chopped Ar-Ion laser
formed into a sheet such that each particle produces a
streak consisting of a series of dashes. The laser bursts
were coded to determine which of the three types of
streaks were valid. The out-of-plane component is deter-
mined by counting the number of dashes in each valid
streak. For acceptable accuracy, at least five dashes are
required; the technique suffers from the usual particle
tracking limitations, as well as low dynamic range. Some
ambiguity results because the edges of the light sheet are
not sharp.

Willert and Gharib (1992) placed a mask containing
three pin holes in front of a single CCD camera equipped
with a 25 mm diameter lens to accomplish three-dimen-
sional measurements (these measurements were made
over a thin volume rather than a plane). Pinholes of 1 mm
diameter formed an equilateral triangle with 6 mm sides
and produced triplet images for each particle. The tech-
nique required the use of deliberate defocusing of the
image to determine the three-dimensional position of in-
dividual particles. For each triplet, a centroid was calcu-
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lated as well as the average separation between the corner
points. From this, they were able to deduce the three-di-
mensional trajectories of particles seeded into a vortex
ring impinging against a wall. Willert and Gharib (1992)
report an error in the out-of-plane measurement that was
40 times greater than the in-plane measurement. This large
error arises from the small off-axis angle ~ d/d, of this
method, where d is the pinhole separation. Furthermore,
data density is low because individual triplets must be
tracked. Although the forward-scatter arrangement used
here greatly increases the light scattering efficiency of the
particles, the mask blocks a sizable fraction of scattered
light from reaching the sensor.

Stolz and Kohler (1994) also employed defocusing to
extract the out-of-plane component. The light sheet was
oriented orthogonally to the camera axis as usual, but was
located beyond the focal plane such that particles always
remained out of focus. Particles in the light sheet closer to
the focal plane produced smaller images according to

w14+ M
M?2

Az=f AD

where AD is the change in the particle image diameter
caused by an out-of-plane displacement Az; M is the
nominal magnification and f# is the f-number. The
technique requires up to five consecutive exposures during
the particles’ residence in the light sheet in order to drive
the standard deviation in the out-of-plane velocity down to
10%. Again, the data density is rather low.

Cenedese and Paglialunga (1989) used parallel, partially
overlapping light sheets of different colors to extract the
out-of-plane velocity. Their beams had gaussian intensity
profiles with ¢ = 0.5 mm and a peak-to-peak separation of
0.2 mm. A particle travelling in the out-of-plane direction
would produce images with appropriately varying green
and blue intensities. The ratio of these intensities yields
the out-of-plane velocity.

In a similar manner, Dinkelacker et al. (1992) deter-
mined the out-of-plane component using particle tracking
inside a 3 mm thick light sheet whose intensity varied in
an exponential manner across its thickness. Thus,
by measuring the intensity of a particle image at two
instants in time, the out-of-plane displacement could be
calculated.

3

Error analysis

Arroyo and Greated (1991), Prasad and Adrian (1993a),
and Lawson and Wu (1997a) present error analyses for the
translation system. Lawson and Wu (1997a), and Zang and
Prasad (1997) present error analyses for the angular dis-
placement system (the latter included the Scheimpflug
condition in their angular displacement arrangement). Of
these, the results of Lawson and Wu (1997a) include the
variation of error with off-axis position.

Following standard methods of error analysis, the un-
certainties in the calculated displacements (Egs. 3-5) can
be related to the uncertainties in the geometric parameters
of the stereocamera. Assuming that each of the variables is
uncorrelated and distributed with a standard deviation, o,
and perfect registration, we have:
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Of the uncertainties listed above, oax; and gay,(j = 1,2)
arise purely from the interrogation of the PIV photograph.
They include random and bias errors as described by
Prasad et al. (1992). The remaining uncertainties, viz.,
Ox,0y,0s,0p,, and g, are due to errors in measuring the
various distances in the stereocamera. It is useful to study
the dependence of the error in the calculated displace-
ments resulting purely from PIV interrogation errors.
Assuming oax, = 0ax, = Oay, = Oay, = Oax, We have:

do
OAz = \/E {ﬁ] OAX

OAx =

% [ﬁ] oax  (for x = 0)

1|1

oAy R 7 i OAX (for y =0)

Thus, the relative error in the out-of-plane component (for
x =0,y = 0) reduces to:

S - tan 6 )

O'Az_%_zdo 1

O Ax G Ay

The relative error in the out-of-plane component is
therefore obtained very simply as the reciprocal of the
tangent of the off-axis half-angle 0 (Fig. 3). While

the above analysis pertains to the translation system, the
analysis of Zang and Prasad (1997) showed that

the Scheimpflug angular displacement system also
exhibits the identical variation of out-of-plane error with
0. The absolute value of in-plane error is smaller (by
1/+/2) than the corresponding value for the single camera
arrangement because two cameras contribute equally to
the final result. Of course, the stereo arrangement also
removes perspective error which can be quite sizable in
single camera PIV.

Lawson and Wu (1997a) present the variation in the
relative out-of-plane error as a function of the off-axis
position x/d,. As shown in Fig. 10a for the translation
system, the relative error decreases rapidly with off-axis
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Fig. 10a, b. Variation of out-of-plane to in-plane error ratio with
off-axis position (and y = 0,z = 0) for a translation system, and
b angular displacement system; data is from Lawson and Wu
(1997a)

position when §/2d, = tan 0 < 0.2, i.e., 0 < 10°, but be-
comes more-or-less invariant with larger off-axis angles.
For the angular displacement system (Fig. 10b) the error is
a weak function of off-axis position for the range analyzed
(5° < 0 < 45°).

In order to balance the in-plane and out-of-plane errors,
an off-axis half-angle of 45° is desirable; however, larger
angles cause greater non-uniformity in magnification. Hill
et al. (1999) used 0 = 20°, Willert (1997) used 6 = 35°,
and Westerweel and van Oord (1999) employed 0 = 45°;
Lawson and Wu (1997b) employed a range of 0 values up
to 45°.

It should be noted that, the above analysis completely
ignores registration error which results when the two
contributing views are improperly matched after back-
projection on to the object plane. Such a mismatch, or
misregistration, causes velocity information from differ-
ent regions of the illuminated field to get combined

leading to further errors. Misregistration will generally
become more severe as the non-uniformity in magnifi-
cation becomes large. Misregistration will depend on the
sophistication of the algorithm used to back-project the
image field into the object plane. While misregistration
can be minimized with care, it is virtually impossible to
completely eliminate it. In addition, registration errors
are compounded if the flow contains significant spatial
gradients.

Registration in expedited by placing markers in the flow
field, or by exploiting features along physical boundaries
in the field of view. Alternatively, Prasad and Adrian
(1993a, b) proposed a Moiré method to register negatives
from each camera. The current trend amongst stereo PIV
practitioners is to use a calibration target in the flow field.
In this case, registration is automatically accomplished
(within the limits imposed by the accuracy of back-pro-
jection).

4

Reconstruction methods

Each view in a stereo-pair must be individually interro-
gated, typically, by means of a correlation analysis re-
sulting in velocity data on a cartesian grid for each camera.
The process of mapping the displacements from each
image plane to the object plane and combining them to
obtain the three-dimensional data is called reconstruction.
The process of reconstruction can proceed along two dif-
ferent ways: (i) geometric reconstruction, and (ii) cali-
bration-based reconstruction. Calibration-based
reconstruction can be further classified as 2-d calibration-
based reconstruction in which calibration precedes and
simplifies geometric reconstruction, and 3-d calibration-
based reconstruction in which a knowledge of system ge-
ometry is rendered unnecessary.

4.1

Geometric reconstruction

In order to project the displacements from the image
plane, X, to the object plane, x, the following mapping is
needed:

x = £(X) (10)

In the case of a translation system enjoying uniform
magnification, the process of determining f is simplified.
Unlike Fig. 6 which depicts a system with non-uniform
magnification, the shaded areas for a symmetric transla-
tion system will coincide when mapped on to the object
plane. Equations (3)-(5) can be used directly to combine
the data after mapping. Input quantities are d,, My, and S
and the location and orientation of both sensors in three-
dimensional space. Furthermore, one needs to project a
given interrogation spot from the image plane on to the
object plane accurately (the x and y-locations are required
for determining Ax and Ay respectively). Such a recon-
struction technique requires a priori knowledge of the
complete recording geometry and is called geometric re-
construction (Fig. 11a). Geometric reconstruction was
used for translation systems applied to air flow (Arroyo
and Greated 1991) and translation tests in air (Prasad and
Adrian 1993a).
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1. Record PIV images on each camera.
2. Interrogate PIV image on each camera on a cartesian grid.

1. Place calibration target in object plane to coincide with laser sheet.
2. Record image of target on each camera.
3. Determine mapping between image planes and physical plane.

v
3. Use ray-tracing to project interrogation spot positions

A

and displacements from each camera to physical plane.

4. Remove calibration target and record PIV images on each camera.
5. Interrogate PIV image on each camera on a cartesian grid.

v
4. Determine common area and inscribe
new cartesian grid within it.

v

5. Interpolate projected data from each
camera on (0 new cartesian grid.

6. Combine data with equations using
knowledge of system geometry to
reconstruct (Ax, Ay, 4Az)

(a) geometric reconstruction

1. Place calibration target to coincide with laser sheet.
2. Record image of target on each camera.

\ 4
3. Move target in the out-of-plane direction three or more
times, and record image of target at multiple z-locations.

A 4

4. Determine mapping between the image
planes and three-dimensional physical space.

h 4
5. Remove calibration target and record PIV images on each camera.
Interrogate PIV image on each camera on a cartesian grid.

A

6. Invert mapping obtained by calibration to reconstruct
(Ax, 4y, A7) at any desired (x,y).

(c) 3-d calibration-based reconstruction

A

6. Use mapping to project interrogation spot positions
and displacements from each camera to physical plane.

A
7. Determine common area and inscribe
new cartesian grid within it.

4

8. Interpolate projected data from each
camera onto new cartesian grid.

A
9. Combine data with equations using
knowledge of system geometry to
reconstruct (Ax, Ay, Az)

(b) 2-d calibration-based reconstruction

Fig. 11a-c. Steps involved in: a geometric reconstruction; b 2-d calibration-based reconstruction; and ¢ 3-d calibration-based

reconstruction

Geometric reconstruction becomes rapidly more com-
plex when non-uniform magnifications are involved. Pra-
sad and Adrian (1993a, b) accomplished geometric
reconstruction for a translation system applied to a liquid
flow, wherein images contained significantly varying
magnification. They used a ray-tracing approach to map
points on the titled image plane, through the lens and a
thick liquid layer on to the object plane (the ray-tracing
program accounted for the refraction of the ray at the
liquid-air interface). The program required the depth of
the liquid layer, M,, d,, the image plane tilt angle, and also
the three-dimensional location of the film in each camera
as inputs.

The ray-tracing program mapped the four corners of
each cartesian interrogation grid into the object plane,
resulting in partially overlapping, oppositely stretched
trapezoids. First, the common area was determined and a
new, cartesian grid was inscribed. Next, the displacement
data from each cartesian grid in the image plane were
interpolated on to the grid points of the newly inscribed
grid in the object plane. Finally, the data from each
camera were combined, however, Egs. (3)-(5), could not
be applied directly. Modified equations were developed to
account for the refraction at the liquid-air interface
(Prasad and Adrian 1993a). Similarly, Zang and Prasad
(1997) used geometric reconstruction to evaluate the



performance of a Scheimpflug angular displacement
system.

Geometric reconstruction is possible only when the
geometry of the recording configuration is completely
known and can be mathematically modeled, although it
may be quite tedious. In some situations, such modeling
may be impossible (for example, lens nonlinearity, or a
misaligned CCD array). Furthermore, Eqs. (6)-(9) indi-
cate that uncertainties from inaccurate system alignment
such as gy, 0y, 05, 0p,, and g4, can increase the overall
measurement error. Incorporation of the Scheimpflug
condition and the presence of liquid-air interfaces can
render geometric reconstruction even more demanding
and error-prone. Therefore, it is worthwhile to consider
an alternate method based on calibration which is more
easily implemented and may produce more accurate re-
sults.

4.2

Calibration-based reconstruction

Calibration-based reconstruction may be further classified
into 2-d or 3-d calibration methods. In the former, a
mapping function is sought to relate each two-dimensional
image plane to the two-dimensional object plane. In the
latter, the mapping function provides a direct relationship
between a particle location in some 3-d neighborhood of
the object plane and its corresponding position on each
image plane. While 2-d calibration methods still require a
knowledge of the recording geometry to accomplish the
final step of applying the reconstruction equations, 3-d
calibration methods require no such input.

All calibration-based methods require the placement of
a target in the object plane. The calibration-target is usu-
ally a plate containing a collection of dots arranged on a
cartesian grid, or a cartesian grid with black line rulings.
For example, Willert (1997) and Lawson and Wu (1997a)
used rulings with 5 mm square spacing. Soloff et al. (1997)
used a 12 x 12 cartesian grid of 1 mm diameter white
circles with center-to-center spacing of 5 mm on a black
background. Similarly, Westerweel and van Oord (1999)
used a cartesian grid of black dots on a white background.
The author has used a professional imagesetter (such as
the Agfa Avantra 25) to print transparencies containing
cartesian grids of white dots on a black background with
resolutions of up to 3600 dpi. The target plate is placed
inside the test-section to coincide exactly with the light
sheet, and should be large enough to encompass the region
of interest during flow measurements.

The stereocamera is aligned in its final configuration,
and calibration commences by acquiring an image of the
calibration target on each camera. The location of the grid
points in the image plane is usually obtained by template-
matching; the template must match the characteristic
marks that represent the grid points on the original target.
For example, in the case of the a target containing rulings,
the intersection points are accurately located by cross-
correlating with a + correlation mask (Willert 1997). The
signal peak in the spatial cross-correlation plane is located
to sub-pixel accuracy by means of a curve-fit. (The same
steps are followed to obtain particle displacements during
PIV interrogations.)

2-d calibration methods

As mentioned earlier, 2-d calibration provides a mapping
between the two-dimensional object plane and each two-
dimensional image plane. 2-d calibration essentially
replaces the ray-tracing approach required in geometric
reconstruction. The result of this procedure is a set of
calibration data for each camera,

X; — f(Xi) (11)
where x; and X; are corresponding points on the object
and image planes respectively, and i (=1,2,...,n) is a

counter for the number of grid-points on the original 13

target. The next task is to determine the mapping func-
tion f. A first order mapping of the form

x =M, X+ C,
y=MY+C

cannot account for non-uniform magnifications, and other
non-linearities (M, C above are the magnification and shift
respectively).

Therefore, Westerweel and van Oord (1999) employed a
second order mapping:

x=aX +a Y+ asXY + a, X + asY + ag
¥ =b1X* + b Y* 4+ b3 XY + byX + bsY + bg

The coefficients ay,a,,...,a¢ and by, b, ..., bs can be
determined by solving the following equations using a
least squares solution:

a; b
a) X1 bz 4!
Al%| = | Bl = 2
ay b4 :
ds X, bs yn
- a6 - - b6 -
where
Xf Yf X7 X5 Y71
X% Y22 XY, X, Y, 1
=B= . ) ) ) ..
X2 Y: XY, X, Y, 1

As a result, any point in the image plane can be uniquely
mapped to a point in the object plane, and the calibra-
tion process is complete. The procedure can be easily
extended to higher-order as only a set of linear equations
must be solved.

Next, the calibration target is removed and stereo im-
ages of the flow are recorded and interrogated on a car-
tesian grid in the image plane. Using the same mapping
coefficients, the displacement data from each camera are
also projected into the object plane. The data are then
interpolated on to the final, cartesian grid in the object
plane using a routine which interpolates data from a non-
square grid to a square grid. The data are finally combined
using the standard equations to obtain Ax, Ay, and Az.

Willert (1997) employed two mapping methods and
compared the results from each. The first technique listed
below maps a rectangle into a trapezoid, i.e., the
straightness of lines is preserved:
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X = a”X + ale + ais
a3 X +asY + ass
_anX+anY +ax
= a3 X + asY + ass

The second technique uses higher-order terms and can
compensate for additional distortions:

‘e anX + anY + a3 + aX* + a;s Y + a16XY
a1 X + asY + as; + a3 X? + ass Y2 + a3 XY
_anX + anY + axy + ayuX® + apsY? + ayXY
’= a1 X + as, Y + ass + asX? 4 ass Y2 4 a3 XY

In the above, as; = 1. Willert (1997) reports that the de-
termination of the mapping coefficients by means of a
linear least-squares method is not straightforward. In-
stead, he used a nonlinear least-squares method to deter-
mine the 8 or 17 coefficients. Willert reports that the
second, higher-order method did not produce noticeably
better results in his case, which he attributes to the lack of
geometric distortions in the imaging lenses. In a signifi-
cant departure from other calibration-based reconstruc-
tion techniques, Willert (1997) used the image-to-object
mapping in a different, unique way: Instead of interro-
gating the particle images first and mapping the dis-
placements to the object field (as done by Westerweel and
Nieuwstadt (1991), Westerweel and van Oord (1999), and
others), he directly mapped the image fields containing
particle images to the object plane and performed the in-
terrogations there on the final cartesian grid. Subse-
quently, the displacements from each camera were
combined to produce the required three-dimensional
vectors.

2-d calibration-based reconstruction was used by
Westerweel and Nieuwstadt (1991), Willert (1997), Lawson
and Wu (1997b), Synnergren (1997), Westerweel and van
Oord (1999), and Lecerf et al. (1999). 2-d calibration
provides particles displacements as seen by each camera
on the final cartesian grid in the object plane without re-
quiring any knowledge of the recording geometry. How-
ever, as Fig. 11b shows, the final step of determining
(Ax, Ay, Az) uses reconstruction equations (see for ex-
ample, Eqs. 3-5) that still require some knowledge of the
geometry such as separation between lenses, object dis-
tance, the angular orientation of the camera axis to the
object plane (in the case of Willert 1997) and so on.
Therefore, it may be concluded that in 2-d calibration-
based reconstruction, calibration precedes and facilitates
the final reconstruction step wherein back-projected data
are combined using equations which still require the re-
cording geometry as inputs. As mentioned earlier, such
quantities pertaining to the recording geometry may be
difficult to measure, and could introduce errors. Further-
more, if recording is accomplished through a liquid-air
interface, the reconstruction equations will need to be
modified to account for refraction at the interface (unless a
liquid prism is used to restore paraxial recording, as in the
case of Westerweel and van Oord 1999). 3-d calibration-
based reconstruction, discussed next, provides an alter-
native approach.

3-d calibration methods
In contrast to 2-d calibration, the approach followed by
Soloff et al. (1997) does not require knowledge of the
system geometry at any stage during reconstruction
(Fig. 11c). This is because their procedure acquired cali-
bration data at not one, but three different z-locations:
(i) the calibration target was located at the object plane,
(ii) the target was placed slightly behind, but parallel to,
the object plane, and (iii) the target was placed in front of
the object plane. The z-separation between the calibration
planes was comparable to the light sheet thickness.

Then, the relationship between the three-dimensional
object field position x and its two-dimensional image field
for each camera X could be written as:

X = F(x) (12)

where F was approximated by the following polynomial
expression (Soloff et al. 1997):

f:(x) = ap +a;x; +axx; + azxz + a4xf

+ asx1x; + a6x§ + a7x1x3 + agxy X3

+ a9x3 + a10x; + a1 x7x; + A1pX1 X

+ a13x§ + al4x%x3 + a15X1XX3

+ a16x§x3 + 317X1X§ + 318X2X§
where a; are vector-valued coefficients determined by a
least squares approach: 4 sets of a; are required, one each
for Xil), Xél), Xiz), and ng), where the superscripts denote
cameras 1 and 2. In the above expression, (x,x;, x3) are
used to represent the physical coordinates in place of
(x,y,2), and (X;,X;) for the image plane coordinates
(X,Y). This polynomial has a cubic dependence in x; and
x, and a quadratic dependence on x5 (because only three z
planes were used in the calibration; additional planes in z
would permit higher order terms in x3).

Following the analysis of Soloff et al. (1997), the particle

image displacement given by
AX = F(x + Ax) — F(x)
may be approximated as
AX =~ VF(x)Ax

where
OF;
(VF)i' =——=F;
J ax]- J
where i = 1,2 and j = 1,2, 3. Then,
1 1 1
][RR ]
1 1 1 x
ax(" | _ BBy BS || "
Ax® | T F2 g o || (13)
X12 F1,1 F1,2 Fy3 Axs
ax? ][RR

The required three-dimensional displacements are deter-
mined from this final expression. Equation (13) reiterates
the observation in Sects. 1 and 2 that the stereoscopic
arrangement provides four equations for three unknowns.
In typical symmetric stereocameras, symmetry consider-
ations reveal that the second and fourth equations in



Eq. (13) may be averaged to improve the accuracy of Ax,
as indicated in Sect. 2. If such a reduction is not obvious in
more general situations, Eq. (13) may be solved using a
least-squares approach (Soloff et al. 1997).

In summary, the approach followed by Soloff et al.
(1997) does not require the input of the recording geom-
etry at any stage, and is therefore best suited for recording
geometries which cannot be easily mathematically mod-
eled.

Soloff et al.’s (1997) 3-d calibration approach was ap-
plied by Hill et al. (1999) to the flow around a Rushton
turbine. However, Hill et al. used five z-planes for cali-
bration instead of three planes used by Soloff et al. (1997)
which allowed a quartic fit in z, whereas a cubic fit was
retained for the in-plane coordinates. Similarly, Bjorkquist
(1998) employed up to nine z-planes separated by 0.5 mm
for 3-d calibration.

4.3

Current trends and recommendations

While large-format film remains an indispensable medium
for situations demanding very high spatial resolution, the
popular trend in PIV today is to use CCD sensors as the
recording medium. For a stereoscopic system employing a
Scheimpflug condition, a mechanism is needed to allow
the user to tilt the camera lens-axis with respect to the
CCD sensor axis. Willert (1997), and Westerweel and van
Oord (1999) used a specially built “tilt-adapter” to set the
correct angle. Commercial systems such as TSI (1998) and
Dantec (1998) also include such a tilt-adapter to satisfy the
Scheimpflug condition; both systems use calibration-based
reconstruction, which according to recent literature, is the
preferred a reconstruction method.

On a cautionary note, Willert (1997) reports that for
all calibration-based methods, it is crucial to ensure that
the target plate during calibration coincides exactly with
the laser sheet during flow recording. Willert’s unique
approach of mapping the particle image fields directly to
the object plane enabled him to test the accuracy of
alignment in a straightforward manner. The procedure
consisted of recording two views of the flow at the same
time instant using a single laser pulse, mapping each
particle image field to the object plane, and cross-corre-
lating the mapped images from camera 1 with that of
camera 2. An ideal alignment should produce a field with
every vector having zero magnitude. However, his mea-
sured vector field showed deviations in excess of 10 pixels
towards the edges, although the reconstructed grids
overlapped better than 1 pixel. In his configuration, a ro-
tation of less than 0.6° was sufficient to produce a mea-
sured horizontal misalignment of ten pixels, leading to a
misregistration between the two camera views of up to
1 mm. Willert (1997) recommends the use of a more re-
liable calibration scheme which can ensure a better
alignment of the calibration target with the light sheet.

The current literature does not reveal any other inves-
tigations of errors due to such misalignments. There exists
a need for a thorough error-analysis of 2-d and 3-d cali-
bration-based reconstruction systems.

In general, calibration-based reconstruction allows for
greater ease and flexibility while setting up the stereo-

scopic PIV experiment. Consider a purely geometric
method in which one needs to measure the recording ge-
ometry completely, including S, d,, 0, and also the loca-
tion and orientation of both sensors in three-dimensional
space. In contrast, for 2-d calibration-based methods, the
sensors’ locations and orientations are rendered unnec-
essary by the process of calibration, which greatly sim-
plifies the implementation. Consequently, 2-d calibration
methods are immune to certain image plane imperfections
and misalignments which could adversely affect geometric
reconstruction. Because the remaining geometric quanti-
ties are required as inputs in the reconstruction equations,
2-d calibration-based stereocameras must still be fabri-
cated with requisite care. For 3-d calibration-based
methods, an explicit knowledge of system geometry is
completely unnecessary as this information is automati-
cally incorporated into the object-space = image-plane
mapping function. For the latter purely calibration-based
methods, one need not, for example, ensure even a high
degree of symmetry between the two cameras. Such im-
perfections are rendered harmless by the process of 3-d
calibration.
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5

Summary

The principle of stereoscopic PIV has been presented. The
technique of using two cameras has been compared and
contrasted with non-stereoscopic methods to obtain three-
dimensional vectors on planar domains. Amongst the two
broad classes of stereoscopic arrangements, the Sche-
impflug angular displacement method offers higher accu-
racy, but at the cost of non-uniform magnification. The
error in the out-of-plane component relative to the in-
plane component is equal to 1/ tan 0 where 0 is the in-
cluded half-angle. Two reconstruction methods have been
reviewed - geometric, and calibration-based (2-d as well as
3-d). Geometric reconstruction requires a complete
knowledge of the recording geometry. In contrast, 2-d
calibration-based reconstruction requires only a partial
knowledge of the recording geometry, whereas 3-d cali-
bration-based reconstruction requires no such knowl-
edge. Calibration-based reconstruction is simpler to
implement and may be less susceptible to errors than
geometric reconstruction, especially if the recording
geometry is complex (involving liquid-air inter-faces or
non- uniform magnifications). In some cases where the
recording geometry cannot be mathematically modeled,
calibration is unavoidable. The current trend in stereo-
scopic PIV seems to favour the use of CCD cameras
arranged in the Scheimpflug angular displacement
configuration and the use of calibration-based recon-
struction.
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