- AIAA/ASME/SIAM/APS

Ist NATIONAL

FLUID DYNAMICS CONGRESS
JULY 25-28, 1988
CINCINNATI, OHIO

PART 1

A COLLECTION OF TECHNICAL PAPERS
CINCINNATI, OHIO
JULY 25-28, 1988

P For permission to copy or republish, contact:
The American Institute of Aeronautics and Astronautics,
g 370 L’Enfant Promenade, SW

-Washington, DC 20024-2518




SOME OBSERVATIONS ON THE INFLUENCE OF LONGITUDINAL VORTICES IN A
LID-DRIVEN CAVITY FLOW

88-3654-CP

Ajay K. Prasad,! Chin-Yuan Perng' and Jeffrey R. Kosell?

Environmental Fluid Mechanics Laboratory
Department of Civil Engineering
Stanford University
Stanford, CA 94305

Abstract

This paper describes a joint physical and numerical investigation
into a lid-driven cavity flow at a Reynolds number (based on the cav-
ity width and the lid-velocity) of 3200, and Spanwise Aspect Ratios
(SAR; the ratio of the cavity length to its width) of 1:1, 0.5:1 and
0.25:1. The experimental techniques consisted of flow visualization
(with polystyrene micro-spheres) of specific planes in the cavity, as
well as velocity measurements using laser-Doppler anemometry along
the horizontal and vertical center-lines at the symmetry plane of the
cavity. The numerical results were obtained using SEAFLOSI1-I, which
employs the implicit Euler scheme for time-stepping and a quadratic
upwind scheme (QUICK) to finite difference the convective terms in
the Navier-Stokes equations. First, we demonstrate that SEAFLOSI-I
reproduces the qualitative and quantitative aspects observed and mea-
sured in our physical experiments. We then use the spatially-intensive
data of the simulations to complement the temporally-intensive data
of the experiments, in order to examine more closely the characteris-
tics of the Taylor-Gértler-Like (TGL) vortices, and the interaction of
the TGL vortices, the Downstream Secondary Eddy (DSE), and the
corner vortices, with each other, and their influence on momentum
transfer within the cavity.

Our observations reveal that the DSE is larger in the immedinte
vicinity of the corner vortices (found at the endwalls) and in the region
of the TGL vortices. This is because the TGL vortices entrain fluid
from the DSE. Because the formation of the TGL vortices is contin-
gent on the presence of a concave separation surface at the DSE, the
entrainment process described above resulls in a complex “feedback”
process between the TGL vortices and the DSE. This leads to a tem-
poral variation in the local size of the DSE and a spanwise meandering
of the TGL vortices for cavities of SAR > 0.5:1.

Nomenclature
B cavity width
D cavity height or depth
L cavity length or span
Re Reynolds number based on lid-velocity and cavity width
U velocity in the horizontal (X) direction
g lid-velocity
v velocity in the vertical (Y) direction
T horizontal co-ordinate axis aligned with cavity width
X non-dimensionalized x co-ordinate
v vertical co-ordinate axis aligned with cavity depth
Y non-dimensionalized y co-ordinate
z hurizontal co-ordinate axis aligned with cavity length
Z non-dimensionalized z co-ordinate
v kinematic viscosity of water
Abbreviations
DAR  Depthwise Aspect Ratio

DSE  Downstream Secondary Eddy

DSW Downstream Side Wall
SAR  Spanwise Aspect Ratio
TGL  Taylor-Gértler Like
USW  Upstream Side Wall
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Introduction

Shenr-driven flows in cavities are often encountered in engineer-
ing situations, as in the case of rectangular cut-outs on the surface
of nircraft bodies and heat-exchangers. Shear-driven cavity flows are
also interesting from a more fundamental standpoint, because they
are rich in complex, three-dimensional (3-d) phenomena. A special
case of such flows is the lid-driven flow in a rectangular cavity. A
regular geometry and well-posed boundary conditions make this flow
an attractive test-case for numerical schemes, as described by de Vahl
Davis and Mallinson,! Tuann and Olson,? and Koseff and Street.” As
a result, over the years, this flow has been simulated repeatedly, but
with a large variation in results. For example, the two-dimensional
(2-d) simulations of Ghia et al.,* Olson and Tuann,® and Nallasamy
and Krishna Prasad,” among others, were inconsistent in that the size
of the Downstream Secondary Eddy (DSE) varied in trend and mag-
nitude from one simulation to another as a function of the Reynolds
number (Re = UpB/v, where Uy is the lid-velocity, B is the width
of the cavity, and v is the kinematic viscosity of the working fluid).
Second, numerically stable simulations at higher Re, which were facili-
tated by upwind-differencing the convective terms, often led to results
containing spurious numerical diffusion.

In an effort to resolve some of the discrepancies reported in the lit-
erature, Kosefl and Street™™® conducted a series of experiments in a
lid-driven cavity flow. They confirmed that the flow exhibits both local
and global 3-d features. Locally, they found that the Taylor-Gortler-
Like (TGL) vortices, which form in the region of the DSE (Figure 1),
and the corner vortices which form along the cavity endwalls, interact
quite strongly with the primary circulation cell and thereby influence
the distribution of momentum within the entire eavity, On a global
scale, they found that the three-dimensionality results from the ad-
justment of the primary flow to the no-slip conditions imposed by the
end-walls, resulting in a “weaker” flow as compared with a pure 2-d
flow. In addition, they found that at a Spanwise Aspect Ratio (SAR:
the ratio of the length L to the width B, (Figure 1)) of 3:1, the DSE
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Figure 1  Definitions for the lid-driven cavity flow



increased in size as Re increased to 10,000, but at SAR's of 1:1 and 2:1
the DSE reduced in size with increasing Re, for Re > 2000. Further-
more, dye-streak studies seemed to indicate that spiralling spanwise
motions were present in the DSE, leading to the entrainment of the
fluid from the DSE into the corner vortex,

At the time Kosefl and Street performed these experiments, no
accurate 3-d numerical simulation of this flow existed. It was quite
apparent, however, that because of the demonstrated (and in some
sense, unexpected) complexity of this flow that the spatial limitations
on the data available from the physical experiments was constraining
a more complete understanding of the flow. Freitas et al.,”"'° using the
REMIXCS code, obtained the first 3-d simulation of the Re = 3200
flow which reproduced the TGL vortices observed in the physical ex-
periments. However, their simulations proved to be computationally
expensive. More recently, a time-accurate simulation scheme, the
Stanford EnvironmentAl Fluid Mechanics LabOratory Simulator, Ver-
sion 1, Implicit (SEAFLOSI-I) has been developed, which (as will
be demonstrated) has not only reproduced all the observed flow fea-
tures, but has also achieved excellent agreement with measurements
from physical experiments. Moreover, SEAFLOSI-I has demonstrated
a five-fold gain in computational speed over the REMIXCS code.
Consequently, we are now able to combine the information from the
spatially-intensive data of the numerical experiments, the temporally-
intensive data of the physical experiments, and our flow-visualization
photographs to gain a broader understanding of the physics of the lid-
driven cavity flow. Specifically, we wish to examine more closely the
characteristics of the TGL vortices, and the interaction of the TGL
vortices, the DSE, and the corner vortices, with each other, and their
influence on momentum transfer within the cavity.

The Re = 3200 flow, for which a significant amount of physical
and numerical data exist, was chosen as the test-case. Physical exper-
iments, using flow-visualization and laser-Doppler anemometer (LDA)
velocity measurements, and numerical simulations were performed for
this flow at SAR's of 0.25:1, 0.5:1 and 1:1. Our approach was first to
validate and verify our numerical scheme by comparing time-averaged
velocity profiles measured in the symmetry plane (see Figure 1) with
those obtained from the numerical simulations. Once this was done
successfully, the numerical code itsell could be used as an experimen-
tal facility to explore the flows in a manner which was not feasible
physically.

In this paper, the results from the joint physical and numerical ex-
perimental study are presented. The presentation of the main results
is preceded by a description of our experimental facilities and instru-
mentation and a description of the code verification procedure. The
paper ends with a summary and conclusions.

Facility

Figure 2 shows the lid-driven cavity facility in its assembled form.
It consists of two attached “shoe-hoxes”. The lower box, fabricated
from 12.5 mm thick plexiglas, is the cavity area of interest, while the
upper box houses the drive system. It consists of a variable speed
motor connected by a chain drive to one of a pair of rollers. The “lid"
is a copper belt, 0.08 mm thick, and is mounted on and driven by the
two rollers. During operation, the belt continuously touches the up-
per edges of the lower box, thus minimizing the influx and outflow of
fluid. The belt speed can be varied to produce Reynolds numbers up
to 15,000. However, at a particular setting the belt speed is constant
to +0.25%. The belt is in continuous contact with a heat exchanger
plate, and the lower boundary of the cavity also consists of another
such plate. By circulating water of the same temperature through
both these plates, an isothermal condition can be maintained in the
cavity, Furthermore, heat transfer to the surroundings through the
vertical walls of the cavity is minimized by maintaining the u.prmt-
ing temperature as close to the haratary ambient temperature as
possible, and by adding insulation in the form of double-glazing and
styrofonm. The
perature differential hetween the upper and lower boundaries of the

* precantions are necessitated by the fact that a tem-

cavity as small ns 0.05 K could lead to erroneous results.

In the experiments described herein, we maintained a Depthwise
Aspect Ratio (DAR) of 1:1 (DAR = D/B, where Dis the cavity depth;
in these experiments D = B = 150 mm). By using false insert walls,
we obtained spanwise-aspect-ratios of 0.25:1 (L = 37.5 mm), 0.5:1
(L =75 mm), and 1:1 (L = 150 mm).
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Flow Visualization Techniques

Polystyrene micro-spheres were used to visualize the flow strue-
tures, in the manner described by Rhee et al.'' These micro-spheres
range in size from 100-200m, have a high reflectivity, and a specific
gravity of about 1.03. They, therefore, remain suspended in water
for sufficiently long periods of time and can be easily advected by the
flow, providing representative pathlines. It was found that the opti-
mal concentration of the micro-spheres in water was about 0.1 gm/Itr.
A 1000W projector lamp, together with a slit-and-lens assembly pro-
vided 3 imm thick sheets of light with which specific planes in the cavity
were illuminated. Photographs were taken using 4-second exposures
to extract flow details with sufficient clarity.

In order to help the reader identify the various planes in which
the photographs were taken, we now introduce a suitable co-ordinate
system (Figure 3). In this system, the origin is located at the geometric
center of the cavity, Each of the three axes is non-dimensionalized by
the appropriate cavity dimension, such that X = z/B, Y = y/D and

Z = z/L. Thus, the plane ¥ = 0.5 comprises the lid, whereas the
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plane Y = —0.5 forms the lower cavity boundary. Similarly, the plane
X = 05 and X = —0.5 form the Downstream and Upstream Side
Walls respectively. The planes Z = 0.5 and Z = —0.5 represent the
end-walls, while the symmetry plane is the plane Z = 0. As shown in
Figures 1 and 3, the recirculating flow is set up by the lid-motion in
the Y = 0.5 plane, in the positive X direction.

Velocity Measurements

Instantaneous velocity measurements in the symmetry plane along
the horizontal and vertical center-lines were obtained using a two-
component DANTEC 55X modular optical laser-Doppler anemometer
(LDA) system, operated in the forward scatter mode. Each of the two
channels used a DANTEC type 55N12 Frequency shifter and a DAN-
TEC type 55N21 Frequency Tracker to perform the signal processing,
A combination of a low tracker-frequency range and the amplification
of the tracker-output voltage reduced the overall error in the measured
velocity to about +£0.4 mm/s. An HP2100 data acquisition system was
used to sample the velocity signal at a rate of 100 Hz, for a period of
5.46 minutes at each measuring point. The velocity signal was low-pass
filtered at 40 Hz prior to digitization.

Numerical Simulation
SEAFLOS1-1 Computer Code

SEAFLOSI-I solves a weak form of the Navier-Stokes equations
in primitive variables using a finite-volume formulation and the stag-
gered grid system. The implicit Euler scheme is used for time-stepping.
SEAFLOSI-I incorporates two key features: (1) the 1CCG (Incom-
plete Choleskey decomposition, Conjugate Gradient) method, and (2)
a modified QUICK (Quadratic Upwind Interpolation for Convective
Kinematics) formulation for non-uniform grid systems. In addition, an
MG (Multigrid) version of SEAFLOS1-I is also available. The ICCG
method and the MG technique are extremely efficient in solving the
pressure equation. In the modified QUICK, grid weighting factors have
been included to account for the non-uniformity of the grid system and
more accurately represent the convective terms in the discretized N-
S equations. Details regarding the code can be found in Perng and
Street.!?

) iti latio

A nonuniform grid of 35 x 35 x 20 (20 points in the spanwise di-
rection) was used to simulate the isothermal, foreed convection flows
in only half of the actual cavity (from the symmetry plane to the
endwall). The adequacy of a half-cavity simulation was confirmed by
performing a full cavity simulation with a 33 x 33 x 35 nonuniform
grid and observing that the resulting vector plots were perfectly sym-
metric about the symmetry plane. Therefore, by taking advantage of
this property, we were able to significantly reduce our computational
costs.

Code Verification

Figure 4 allows a comparison of the experimentally measured and
numerically simulated horizontal (U) and vertical (V) velocities along
the vertical (X = 0) and horizontal (¥ = 0) center-lines, respectively,
of the symmetry (Z = 0) plane of a cavity of SAR = 1:1. During
experiments, the flow was allowed to attain a fully-developed state
(the flow never does reach a complete steady-state) and then velocities
were measured using the LDA system. Using SEAFLOSI-I, a time-
accurate solution (starting from rest) of the first 13 minutes of the flow
was obtained. The simulated velocity profiles in Figure 4 represent the
mean values based on the flow field during the time period of T to 10
minutes after start-up. We readily observe that the comparison is
excellent.

In order to confirm that the simulation also reproduces the salient
flow features, the visualization pictures obtained for the plane Xi=
0.37 (ie, a plane 20 mm from the DSW and parallel to it) may be
compared with a particle-track (“exposure-time” = 8 sec.) plot of
the simulated results at a time of 9 minutes after start-up. From the
simulated results in Figure 5 and the visualization picture in Figure
6(b), we observe that the model succeeds in accurately simulating
the size and location of the important flow features such as the TGL
vortices and the corner vortices.
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In addition to the flow at an SAR of 11 and Re = 3200, we also
observed a close agreement between mensured velocity profiles and
visualization pictures, and the corresponding profiles and particle track
plots from the simulations for flows at SAR's of 0.5:1 and 0.25:1 and
Re = 3200. This leads us to believe that the SEAFLOS1-1 scheme
is an ideal complement to the physical experiment program and can,
therefore, play a major role in characterising the complexities of these
flows.

Observations

The Downstream Secondary Eddy

From Figure 6(a), one can infer the location of the “separation”
line on the Downstream Side Wall (DSW; plane X = 0.5), which is
the locus of points at which the fluid descending along the wall sepa-
tates from it. As this fluid approaches the lower boundary the adverse
pressure gradient due to this eolid surface results in a reduction in the
vorticity being advected down the wall in the boundary layer. At some
distance from the lower boundary, the net vorticity is zero (see Figures
7(a) and (b)), and the fluid separates, resulting in a secondary corner
eddy (the DSE). The question, therefore, arises as to why the “sepa-
ration point” is higher in the region of the corner and TGL vortices.
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Figure 6(a) provides us with some clues. From this picture, it appears
that the corner and TGL vortices are inducing spanwise motions in
the DSE resulting in the entrainment of the fluid in the DSE into the
vortical structures. These spanwise motions reduce the effect of the
adverse pressure gradient in the region between the vortices hecause
they bleed away fluid of vorticity opposite in sign to that of the de-
scending boundary layer, thus causing a lower “separation point” in
this region. Furthermore, by comparing Figures (a) and (b), it is
apparent that not only is the motion spanwise in the region immedi-
ately behind the TGL vortices, but a strong “upwnash” is also evident.
This “upwnash”, then, acts in the same sense ns the adverse pressure
gradient, augmenting the opposing vorlicity on the DSW, and causing
the separation to occur higher up on the DSW. Figures 7(a) and (b}
show the distribution of vorticity from our simulations, without and
with the presence of a TGL vortex pair in the symmetry plane. We
observe that the presence of a vortex pair pushes the null-vorticity
contour higher up on the DSW, which lends support to our hypoth-
esis. In addition, the fluid adjacent to the endwalls separates earlier,
because it faces deceleration caused by not one, but two walls. It may
be concluded, therefore, that the size of the DSE is greatest in the
immediate region of the endwalls, and in the regions where the TGL
vortices are present. This is certainly the case for SAR's of 1:1 and

0.5:1.
This same explanation also accounts for the larger-sized DSE ob-

served in the symmetry plane in the cavity of SAR of 0.25:1, which is
counter to the trend reported by Kosefl and Street® at SAR's of 1:1
and 2:1 (see Introduction). At this very small SAR, no TGL vortices
are present. Furthermore, the corner vortices seem to be weaker (Fig-
ure 9), and are unable to entrain substantial quantities of fluid from
the DSE. Thus, the effect of the adverse pressure gradient along the
DSW is not reduced by spanwise “bleeding”, resulting in an earlier
separation, and consequently, a larger DSE.

Critical point theory provides us with an alternative means of
studying the DSE region. Although Figures 6{a) and (b) show that
the flow in the lid-driven cavity is extremely complex, certain “critical
points” can be readily discerned in these visualizations. Perry et al.'?
define a critical point as “a point in a flow field at which the instanta-
neous streamline slope is indeterminate.” In 2-d flows, eritical points
oceur in the form of centers and saddles, while in 3-d flows, foci and
nodes are also found.

Figure 6(c) and (d) are hand-drawn phase portraits of the flows
in Figures 6{a) and (b) respectively. Saddles are marked as “S7, foci
as “F", and surface- (or half-) saddles as “S™. Figure 6(c) shows
the streamlines (actually, pathlines; however, given the slowly-varving
nature of the flow, we use these terms interchangeably for the purposes
of this discussion) in a plane (X = 0.47) 5 mm away from the DSW. In
this plane, the phase portrait is quite symmetric. We have a saddle in
the symmetry plane, and one more on either side. All the separatrices
(trajectories that emanate from the saddles) end up in foei, one of
which is located on either side of each saddle. Connecting the critical
points in Figure 6(c) by a smooth curve produces the “separation”
line. The fluid elements above this line have a downward component
of velocity, while below the line, the reverse is true. Obviously, these
fluid elements that move upwards belong to the DSE. Therelore, we
see that the DSE varies quite significantly in size as a function of the
spanwise co-ordinate.

Figure 6(d) is a phase portrait of the flow in a plane (X = 0.37)
20 mm away from the DSW, and a comparison with Figure fi(c) shows
an interesting evolution of the streamlines, and the associated critical
points. The flow still retains most ofits symmetric character. The two
outer foci of Figure 6(c) have now descended to the lower boundary of
the cavity and form the corner vortices. This results in the formation
of surface saddles (stagnation points) adjacent to the corner vorlices,
which in turn perturb the flow sufficiently to create two new foci. Each
of these combines with the previously existing ones (the inner two foci
of Figure 6(c)) indicating two pairs of TGL vortices. By superimposing
Figure 6(cd) on (c), we see that very close to the endwalls (the planes
Z = 0.5 and Z = —0.5) and directly above the TGL vortex pairs, the
separation oceurs earlier, resulting in a large-sized DSE. Conversely,
in the regions above the twe auter, and the central surface saddles,

the DSE is smaller.

The Taylor-Gortler-Like vortices

The preceding section demonstrates that the TGL vortices interact
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strongly with the DSE. At large SAR (2:1 or 3:1), the TGL vortex
pairs display a significant degree of unsteadiness. That is, they vary
in number and meander in the spanwise direction (Koseff and Street,
1984a). As the SAR is reduced, both these trends are suppressed. At
an SAR of 1:1, the TGL pairs do exhibit a meander, but almost always
only two pairs are observed (Figure 6(b)). At an SAR of 0.5:1 only
one pair, which is “locked™ in position and bisected by the symmelry
plane, is observed (Figure 8, visunlization plane X = 0.37). The
is pair was confirmed by examining a sequence of

immobility of th
cecond intervals over several minutes) and

photographs (taken at 16
noting that the flow pattern was virtually unchanged. Finally, at an
SAR of 0.25:1, the TGL vortex pairs do not form at all; instead the
two corner vortices completely occupy the span of the cavity (Figure
9. visualization plane X = 0.37); these, again, are very stahle.
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Figures 10(a) and (b) demonstiate one of the effects of a TGL
vortex pair on the overall flow. Figure 10{n) is a visualization of the
symmetry (Z = 0) plane for an SAR of 0.5:1 (ie, this plane now bisects
a TGL vortex pair, and is therefore most strongly alfected by it), while
Figure 10(h) is a view of the symmetry plane at an SAR of 0.25:1 (no
TGL vortices present), In Figure 10{a) it can be seen that the DSE
has ruptured. Now, the TGL vortices entrain both the fAuid moving
down the DSW as well as the low momentum fluid contained in the
DSE. The resulting stream has a strong upward component into the
core of the cavity. In contrast, Figure 10{h) shows that in the absence
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of the TGL vortices, the fluid flowing over the DSE, continues parallel
to the lower boundary of the cavity, without an upward tilt.

This suggests that by examining the spanwise variation of the U-
and V-velocities, close to the lower boundary of the cavity, the location
of & TGL vortex pair could be detected by a drop in the magnitude
of the U-velocity and a corresponding rise in the V-velocity. Figure
11 displays the spanwise U- and V-velocity profiles, calculated from
our numerical simulations, for an SAR of 1:1, averaged over two one-
minute periods (10-11 and 12-13 minutes after start-up) and at a dis-
tance of 7 mm above the lower boundary. In our co-ordinate system,
this corresponds to the line ¥ = _0.45 in the plane X = 0. This loca-
tion was chosen beeause it coincides with the peak in the U-velocity
profile nlong the vertical center-line (Figure 4). The “wake" effect
of the TGL pair is obvious from Figure 11-each region of U-velocity
deficit (lower magnitude) corresponds to the location of a TGL vortex
pair, with matching peaks in the V-velocity profile. In addition, this
figure reveals the unsteadiness of the flow due to the spanwise meander
of the TGL vortices. However, Figure 12 shows the contrasting nature
of the flow at an SAR of 0.5:1. This is a plot of the simulated spanwise
variation of the U-velocity, at 9 and 10 minutes after start-up, each
representing a 30 second average. The two interesting features of this
plot are: first, there is almost no variation of the profile with time,
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indicating a relatively steady nature, and second, the “wake” effect is
not as strong as in the case of higher SAR.

The meandering nature of the TGL vortices at an SAR of 1:1
is further demonstrated in Figure 13 by means of vorticity contours
obtained from our simulations. These contours represent curves of
constant vorticity in the X = 0 plane at two instants of time: 10 and 12
minutes after start-up. The substantial difference in the location of the
vortex centers in the two plots provides evidence for the unsteadiness
of the flow at this SAR.

The effect of the meandering of the TGL vortices on the mean and
s velocities wns obtained by conditionally sampling the experimen-
tally measured velocity at a location 7 mm above the lower boundary,
at the symmetry plane of a cavity of an SAR of 1:1 (ie, the point
(0,-0.45,0)). This was done as follows: First the maximum V-velocity
(Viax) in the entire record (5.46 minutes at 100 Hz) was determined.
Next, a cut-off fraction was chosen and the data was separated into
two categories—(i) “higher”: those data points whose V-velocities ex-
ceeded the product of Vyax and the cut-off fraction, and (ii) “lower™:
those that did not. Therefore, the first category isolates data-points
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Figure 13 Vorticity contours from simulation
(SAR=1:1, Plane X=0.37) at two
different times, showing unsteady

nature of TGL vortices

that were affected by the TGL vortices. Naturally, as the cut-off frac-
tion increases, this isolation becomes more acute. The local mean and
rms values for the U-velocity component were then calculated as was
the Reynolds shear stress for each of the two categories. Table 1 sum-
marizes our calculations for four different cut-off fractions: 0.3, 0.4,
0.5 and 0.6. Certain trends are immediately apparent from Table 1:

1. The mean U-velocity is consistently smaller when the V-velocity
is high. This agrees with the simulated velocity profiles in Figure
11.

. The difference between the rms velocities in the two categories in-
creases substantially as the cut-off fraction is increased. At small
cut-off values, a larger fraction of the data-points is included in
the “higher” category. Therefore, the “lower™ category contains
only those points that are least affected by the TGL vortices,
As a reeult, the fluctuntione are emnller leading to n lower value
of the rms velocity. However, as the cut-off value is increased,
more data-points are moved from the “higher” to the “lower”
category, including those affected by the TGL vortices. This re-
sults in a wider variation of the U-velocities and an increase in
the calculated rms velocity.
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3. An identical argument can be used to explain the trend in the
varintion of the shear stress with the cut-ofl fraction.

These observations provide further quantitative evidence that the
TGL vortex pairs are not stationary, but meander in a spanwise direc-
tion in and out of the plane of observation at an SAR of 1:1. However,
when the same analysis is performed on the velocity measured in a
similar location in the cavity of SAR of 0.5:1 (Table 2), no substantial
differences are evident in the calculated mean and rms velocities, and
the shear stress as a function of the cut-off fraction. This therefore
substantintes our pictorial evidence that at an SAR of 0.5:1, the TGL
vortex pair is “locked” into position, resulting in a relatively steady
flow.

Summary and Conclusions

278 and Freitas et al.™'? iden-

Previous studies by Koseff and Street
tified two necessary conditions for the existence of TGL vortices in the
lid-driven cavity flow: a concave separation surface, and the presence
of perturbations. The concave separation surface of the DSE provides
the necessary amplification of the perturbations (see Gortler'®) which
are pmd.ncrd by the Taylor instability present at start-up (see Kosefl
and Street,*) and the endwalls (the planes Z = 0.5 and Z = —0.5) in
the physical experiments, and by the endwalls only in the numerical
simulations, leading to the formation of the TGL vortices. The nu-
merical simulations of Kim and Moin'® demonstrate very nicely why
no TGL vortices form without the necessary perturbations. Their
3-d simulation was performed using periodic boundary conditions in
the spanwise direction instead of endwalls. It was only when a small
random perturbation was added to the flow that the TGL vortices

Cut-Off Fraction 0.3 0.4 0.5 0.6
Fraction of time 0.328 1 0.274 | 0.177 | 0.054
V-vel. > Cut-off

Lower Mean U-vel -5.87 | -5.73 | -5.46 | -H.18
Higher Mean U-vel | -3.48 | -3.37 | -3.36 | -3.44
Lower U-vel rms 0.547 | 0.741 1.03 1.21
Higher U-vel rms 0.515 | 0.440 | 0.399 | 0.384
Lower Shear Stress | 0.086 | 0.194 | 0.423 0.642
Higher Shear Stress | 0.038 | 0.003 | -0.009 | -0.007

All velocities in (mm/s); shear stress in (mm/s)?
“Lower” implies V-velocity is below Cut-off
“Higher” implies V-velocity is above Cut-off

Table 1: Variation of Mean and rms U-velocities and shear stress
for SAR 1:1

Cut-Off Fraction 0.3 0.4 0.5 0.6

Fraction of time 0.817 0.512 | 0.213 | 0.056
V-vel. > Cut-off

Lower Mean U-vel -4.60 -4.61 -4.63 -4.64
Higher Mean U-vel -4.65 -4.68 | -4.71 | -4.74
Lower U-vel rms 0.169 0.169 | 0.172 | 0.175
Higher U-vel rms 0.177 0.179 | 0.183 | 0.189
Lower Shear Stress | - 0.0004 | -0.001 | -0.003 | -0.004
Higher Shear Stress | -0.004 | -0.002 | -0.001 | 0.001

All velocities in (mm/s); shear stress in (mm/s)?
“Lower” implies V-velocity is below Cut-off
“Higher” implies V-velocity is above Cut-off

Table 2: Variation of Mean and rms U-velocities and shear stress
for SAR 0.5:1



formed. The Taylor instabilities, like the TGL vortices, cannot form
in the absence of perturbations. In our numerical simulation, the only
three-dimensional perturbations arise from the endwalls. In the few
seconds after start-up, these perturbations are unable to propagate
in the spanwise direction to a significant degree. Consequently, the
Taylor instabilities which are seen during the first 30 seconds after
start-up in the physical experiment, are not picked up by the numeri-
cal simulations.

In this present study, we have identified a third necessary condi-
tion, viz., a sufficiently large aspect ratio. For a given Re, the TGL
vortex pair has a preferred spanwise extent, or “wavelength”. Figure
8 indicates that this wavelength is about one half of the span of a
cavity of SAR 0.5:1. Therefore, in a cavity of SAR 1:1, we have two
pairs (Figure 6(b)), while at an SAR of 0.25:1, the TGL vortices are
completely suppressed (Figure 9). The number and size of the TGL
vorlices is also strongly dependent on the Re (which is an indication
of the velocity with which the fluid moves over the concave separation
surface). The present discussion refers to the Re = 3200 case only.

This study has also shown that there is a strong interaction be-
tween the DSE, the TGL vortices and the corner vortices, which pro-
duces much of the unsteadiness observed in the flow. At SAR greater
than 0.5:1, the TGL vortices meander in the spanwise direction and
form in different spanwise locations. These vortices entrain fluid from
the DSE, influencing, therefore, not only the spanwise variation in
the size of this eddy, but also the temporal variation in its size. The
TGL vortices entrain low momentum fluid from the DSE resulting in
“wake-like” regions in the spanwise U-velocity profiles. These regions
move as the TGL vortices move effectively distributing the lower U-
momentum;/ higher V-momentum in both the spanwise and vertical
directions. This process combined with the damping action of the end-
walls results in a overall “weakened” (as compared to 2-d simulations)
motion in the cavity.

At an SAR of 0.5:1, much of the unsteadiness observed at the higher
SAR values disappears. The TGL vortex pair is “locked™ in position
and the size of the DSE at the symmetry plane is fairly constant in
time. This occurs, we believe, because the weaker (overall motion
in the cavity is weaker due to endwall effects) TGL vortices entrain
less fluid from the DSE resulting in a more stable eddy structure. The
fact that the “wake” is much smaller in the U-velocity profile certainly
seems Lo suggest this.

From the above discussion it is clear that the endwalls are an im-
portant influence on the flow. A qualititive study on the effect of
the endwalls has been performed by Koseff and Street® and a more
quantitative study by Prasad and Koseff.'® This study which covers
Ite’s from 3200 to 10,000 and SAR's from 0.5:1 to 3:1 provides further
evidence on the unsteadiness of the this flow.
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