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Abstract. Direct numerical simulations of an axisymmetric jet with off-source volumetric heat
addition are presented in this paper. The system solved here involves a three-way coupling between
velocity, concentration and temperature. The computations are performed on a spherical coordinate
system, and application of a traction free boundary condition at the lateral edges allows physical
entrainment into the computational domain. The Reynolds and Richardson numbers based on local
scales employed in the simulations are 1000 and 12 respectively. A strong effect of heat addition
on the jet is apparent. Heating causes acceleration of the jet, and an increased dilution due to an
increase in entrainment. Further, the streamwise velocity profile is distorted, and the cross-stream
velocity is inward for all radial locations for the heated jet. Interestingly, the maximum temperature
is realized off-axis and a short distance upstream of the exit of the heat injection zone (HIZ). The
temperature width is intermediate between the scalar and velocity widths in the HIZ. Normalized
rms of the concentration and temperature increases in the HIZ, whereas that of streamwise, cross-
stream and tangential velocities increases rapidly after decreasing. Both mass flux and entrainment
are larger for the heated jet as compared to their unheated counterparts. The buoyancy flux increases
monotonically in the HIZ, and subsequently remains constant.

Key words: buoyancy flux, cumulus clouds, direct numerical simulation (DNS), entrainment, jets
and plumes, mass flux, off-source volumetric heating.

1. Introduction

An interesting and well known phenomenon is observed in cumulus clouds: as
the heated column of air (plume) rises through the atmosphere and passes through
the cloud base (the vertical location at which water vapor begins to condense to
form droplets, thus rendering the cloud visible), its entrainment behavior changes
drastically. Field observations of Colorado cumuli [19] clearly show that entrained
air in a cumulus cloud originates either from the cloud base or from the cloud
top, i.e., lateral entrainment of ambient air into the cloud virtually shuts down,
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in contrast to the normal (as expected for an ordinary plume) lateral entrainment
at elevations below the cloud base. If one applies the standard plume value of the
entrainment coefficient of 0.083 to model a cloud, one can either predict the vertical
rise of the cloud, or its water vapor content correctly, but not both [24]. See [22]
for more discussion on entrainment in geophysical flows, and [12] for an excellent
review of entrainment in cumulus clouds.

Bhat and Narasimha [6] suggested that this reduced entrainment is linked to the
release of latent heat of condensation (and the concomitant addition of buoyancy)
that commences at the cloud base and continues as the cloud ascends beyond it.
They constructed a laboratory analogue consisting of an upward-pointed turbulent
axisymmetric jet� to simulate the ascending cloud, and a device to inject volu-
metric heat in an off-source manner to simulate the latent heat release effect in
cumulus clouds. The jet fluid (water) was selectively heated in the experiment in
the following manner. A small amount of acid was added to the jet fluid to make
it electrically conducting, while the ambient fluid was deionized (non-conducting)
water. At some downstream distance, the jet was passed through a series of elec-
trically energized wire grids, such that a current flowed only through the body of
the jet, resulting in selective ohmic heating of the jet fluid. Agrawal et al. [2, 3]
applied wholefield measurement techniques for velocity and temperature to the
volumetrically heated jet problem within the heat injection zone (HIZ), and also
extended the range of the non-dimensional heating parameter. The results in [2, 3]
such as the reduction in scalar width and the disruption of coherent structures were
in agreement with those in [6]. However, there was disagreement on the issues of
rms and mass flux. See [3] for a detailed comparison between previous and our
experimental results, and [10] for detailed discussion on normal jets and plumes.

Our goal here is to undertake direct numerical simulations (DNS) of a turbu-
lent jet with off-source buoyancy addition. Specifically, we wish to examine the
behavior of the jet under a much stronger heating rate. The study would shed
light on the effect of buoyancy addition on entrainment and other characteristics
of free-shear flows. Experimental measurements on volumetrically heated jets are
particularly difficult because the heating grids can obstruct the view and cast glare
and shadows, and because experimental run times are restricted by the eventual
recirculation from the top of the jet fluid into the ambient fluid which destroys
their differential conductivities. Furthermore, it is difficult to experimentally attain
large accelerations due to the excessively large input power required. In contrast,
DNS studies permit the calculation of all the flow characteristics and allow an
easier control of the parameters. However compared to experiments, fewer DNS
studies of free shear flows have been performed in the past chiefly because it
is difficult to define the computational domain due to an absence of clear flow
boundaries. Second, these flows develop along the spatial coordinate, and the ex-
panding physical boundaries of the flow must be suitably addressed. Boersma et

� Clouds are perhaps better modeled as plumes rather than jets. However, jets are easier to create
in the laboratory and are therefore somewhat better characterized than plumes in the literature.
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al. [9] and Lubbers et al. [16] circumvented these difficulties by choosing a large
computational domain and applying appropriate boundary conditions. Their code
therefore correctly replicated the mean and turbulent characteristics of velocity and
scalar concentration for an axisymmetric turbulent jet. The code of [9, 16] has been
appropriately modified for the purpose of the present study.

A literature survey immediately reveals that very few DNS studies have been
undertaken on free-shear flows with off-source buoyancy addition. For example,
Basu and Narasimha [5] performed DNS computations at Re = 1600 to investigate
the effect of heating on jets, and the effect of different heating profiles on the
jet. Their formulation consisted of a temporal analogue of the spatial problem.
Therefore, they actually solved a temporally evolving cylindrical mixing layer;
consequently, their characteristic local Reynolds number decreased with time. Fur-
ther, their heating profile was not coupled with the instantaneous concentration
field. Basu and Narasimha found a reduction in the normalized fluctuations with
heat addition. They found that a narrow heating profile affects the jet much more
strongly, and found an increase in vorticity with heat addition for all cases investi-
gated. They also found large expulsive motions at certain transverse cross-sections,
and attributed this as the reason for reduced entrainment in a heated jet. Their
computations employed periodic boundary conditions along the axial coordinate,
and therefore could not conclusively provide evidence for a change in entrainment
rate with heat injection.

As will be evident from the governing equations, the system solved here in-
volves a three-way coupling between velocity, concentration and temperature. Such
a system is both numerically challenging and interesting, and a numerical solu-
tion of this type of problem has not been previously reported to the best of our
knowledge. We have not attempted to replicate moist, compressible convection that
prevails in the atmosphere. In addition, the range of scales that exists here is much
smaller than in clouds due to the much smaller value of Reynolds number employed
in our simulations. Also, computational constraints described subsequently require
us to employ a Richardson number which is about one order of magnitude higher
than in clouds. Despite these shortcomings, our numerical simulation shows some
features that are qualitatively similar to cumulus clouds. These results can further
serve as a benchmark for modeling and computational efforts of buoyancy-added
free-shear flows.

2. Computational Details

We will now provide details of the simulations by examining the dimensional and
non-dimensional versions of the governing equations, the resulting non-dimensional
parameters and their prescribed values, the geometry of the computational domain,
the computational scheme, and the initial and boundary conditions.
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2.1. GOVERNING EQUATIONS

The governing equations for the problem are the equations for mass and energy
conservation, and momentum and scalar transport equations. The fluid properties
are assumed to be constant, and the Boussinesq approximation is used to restrict
the effect of variation of density with temperature exclusively to the body force
term. These equations are:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν∇2u + gβ(T − Ts), (2)

∂C

∂t
+ (u · ∇)C = αD∇2C, (3)

∂T

∂t
+ (u · ∇)T = α∇2T +

{
q ′′′(C)

ρCp
in HIZ,

0 otherwise.
(4)

In the above equations, u is the velocity vector, ρ is the fluid density at Ts , p is
the pressure, ν is the kinematic viscosity, T is the temperature, Ts is the reference
temperature which was chosen as the initial temperature, g is the gravitational
vector, β is the coefficient of thermal expansion, C is the scalar concentration, α is
the thermal diffusivity, αD is the scalar diffusivity, q ′′′ is the volumetric power, and
Cp is the specific heat.

Note the presence of a source term in both the momentum and energy equations.
The magnitude of the local heat injection (or the strength of the energy source term)
is a function of the local scalar concentration. This replicates the experimental
situation in which the presence of acid lowers the local electrical resistance and
increases the ohmic heating rate. Further, heating is confined to the jet fluid which
corresponds to a non-zero value of scalar concentration, i.e., selective heating of
the jet fluid occurs.

The presence of the gβ�T term in the momentum equation which suggests a
plume-like behavior has to be interpreted with care. A plume experiences buoyancy
addition only at its source, and not off-source as in the present study. Consequently,
�T is zero in the pre-HIZ region, and a jet-like behavior applies in this region.
Moreover, the temperature can increase with the axial coordinate in the HIZ, unlike
for a plume which experiences an axial decay in temperature at the centerline. It is
however not immediately obvious whether the behavior will be closer to a jet or a
plume at the exit of the HIZ, although it is known that a jet with buoyancy addition
will eventually evolve into a plume [20].

Advection of the scalar depends on the velocity components. As seen above, the
velocities are dependent on the local temperature in the HIZ (and post-HIZ); the
temperature rise in turn depends on the scalar concentration in the HIZ. Therefore,
there is a three-way coupling between temperature, velocities, and scalar concen-
tration in the HIZ. Such a three-way coupling of the momentum, scalar and energy
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equations has not been attempted by previous DNS investigations of heated jets.
For example, Basu and Narasimha [5] did not solve for the scalar field and instead
used a time-averaged heat injection profile in their computations.

However, in the post-HIZ, only the velocity and temperature are coupled. This
difference in the amount of coupling in the HIZ and post-HIZ is apparent in the
different behaviors for the two regions.

2.1.1. Non-Dimensional Governing Equations

Orifice scales are employed for non-dimensionalization. Therefore, all distances
are normalized by the orifice diameter, d, velocities by the velocity at the orifice
exit, U0, and concentration by the concentration at the orifice exit, C0. Time is
non-dimensionalized as

t ′ = t
U0

d
.

Pressure is non-dimensionalized as

p′ = p

ρU 2
0

.

Using the non-dimensional scheme and dropping the primes for convenience,
the governing equations may be written as follows.

∇ · u = 0, (5)

∂u

∂t
+ (u · ∇)u = −∇p + 1

Re
∇2u + gβθ0d

U 2
0

θ, (6)

∂C

∂t
+ (u · ∇)C = 1

Sc Re
∇2C, (7)

∂θ

∂t
+ (u · ∇)θ = 1

Pr Re
∇2θ +

{
q ′′′(C)

ρCp

d
U0θ0

in HIZ,
0 otherwise,

(8)

where θ = (T − Ts)/θ0, Re is the Reynolds number (= U0d/ν), Pr is the Prandtl
number (= ν/α), and Sc is the Schmidt number (= ν/αD). θ0 is a temperature scale
that will be described shortly. We have set Re = 1000 to approximately match the
value used in our experiments. On the other hand, we set Pr = 1, and Sc = 1 which
do not match our experiments which have Pr = 6 and Sc ≈ 40. Our choice of Pr
and Sc was essentially determined by computational constraints – the computations
become very expensive for larger values of Pr and Sc.
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2.2. NON-DIMENSIONAL PARAMETERS

Defining the Grashof number as

Gr = gβθ0d
3

ν2
,

the momentum source term may be rewritten as

gβθ0d

U 2
0

θ = Gr

Re2
θ. (9)

Similarly, within the HIZ the non-dimensional energy source term is

q ′′′(C)

ρCp

d

U0θ0
,

where q ′′′(C) is the volumetric heat generation within the HIZ. We will assume that
the local rate of heat generation is directly proportional to the local acid concentra-
tion (which is a reasonably close approximation to the experimental situation). In
non-dimensional form, we can write

q ′′′(C)

ρCp

d

U0θ0
= kC, (10)

where k is a non-dimensional constant with an appropriate value. The value of k

essentially sets the rate at which heat is injected into the body of the jet. As will
be seen shortly, increasing k is equivalent to increasing the value of Richardson
number.

The total heat supplied to the HIZ can be obtained by integrating the volumetric
heat generation over the volume of the HIZ (VHIZ).

Q =
∫

VHIZ

q ′′′(C) dV.

We can now integrate both sides of Equation (10) over the volume of the HIZ to
obtain

Q

ρCp

d

U0θ0
= k

∫
VHIZ

C dV = kI, (11)

where

I =
∫

VHIZ

C dV. (12)

It is now possible to define a Richardson number as

Ri = gβ

ρCp

Q

dU 3
0

. (13)
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Using Equations (9), (11) and (13) it is also easily shown that

Ri Re2

Gr
= kI

d3
.

In our simulations, we fixed the value of Gr/Re2 at 0.0468. The value of Ri cannot
be set a priori because I can be determined only in post-processing. Note that I

is a complicated function of k as well. We set k = 1 in our simulations. For our
chosen geometry of the HIZ and the distribution of C therein, we obtain I ≈ 8d3

from post-processing, which implies that Ri is about 0.4. It is now straightforward
to compute the Richardson number based on local scales (Ri∗) as follows:

Ri∗ = Ri
U 3

0 d

U 3∗ b∗
,

where U∗ and b∗ are the local velocity and length scales at the entry to the HIZ. We
estimate Ri∗ to be about 12.

Note that this value of Ri∗ is higher than that employed in the experiments
which had Ri∗ = 0.3 [2, 3]. Such a high value was necessary because the jet takes
much longer to achieve stationarity for lower values of Ri. It will be explained
shortly that the initial thermal takes much longer to exit the computational domain,
increasing the computational cost for small values of Ri. Despite the mismatch in
Ri∗, there is good general agreement between the computational and experimental
results.

Note that the temperature scale θ0 can be related to the temperature rise experi-
enced by the jet fluid as it transits the HIZ, i.e.,

θ0 = Q

µCp

, (14)

where µ is a suitable average value of the changing mass flux of the jet within the
HIZ. Let µ = f µ0, where µ0 is the mass flux at the nozzle exit (µ0 = πd2U0ρ/4)
and f is a factor that depends on the simulation conditions. From Equations (11)
and (14) one can show that

f = 4

π

kI

d3
. (15)

We will show in the results section that the numerical value of f for our chosen
conditions is consistent with our expectations.

2.3. COMPUTATIONAL GEOMETRY AND NUMERICAL SCHEME

We use DNS to provide a solution of Equations (6)–(8). These equations have been
recast in spherical coordinates (for example, see [7]) for the purpose of these com-
putations with, r, θ, φ denoting the radial, azimuthal, and tangential directions.� A

� These directions correspond respectively to the streamwise, cross-stream, and out of plane
components in the experimental setup of [2, 3].
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Figure 1. The computational domain (adapted from [9, 16]).

spherical geometry is superior to a cylindrical domain because it allows a more ef-
ficient utilization of the computational grid. The computational domain is a conical
volume segment of a spherical shell (Figure 1). The computational domain spans
between 50 and 93 nozzle diameters in the streamwise direction as measured from
the origin of the spherical coordinate system. The lateral edge of the domain is
angled at π/40 to the centerline. The chosen angle is close to the spreading rate of
a jet, implying that the distance between the lateral edges of the jet and the lateral
boundaries of the computational domain remains roughly the same for all axial
locations.

The governing equations are discretized in this spherical coordinate system on a
three-dimensional staggered grid with help of a second order finite volume method.
The singularity at the centerline (pole) of the system is removed by the finite
volume method because all terms in the equations are multiplied by the Jacobian
r2 sin θ (for example, see [17]). The grid is non-uniform in the streamwise direction
which allows for accurate calculation near the orifice without using too many grid
points in the far-field. Therefore, this coordinate system allows for a well balanced
numerical resolution both near the inflow as well as in the far field of the jet.

The scalar field is discretized with a Total Variation Diminishing (TVD) scheme.
Such a scheme has to be used because standard finite difference methods can cause
an overshoot of the scalar concentration, i.e. values higher than the source concen-
tration or even negative values, which is unphysical. The numerical scheme for the
scalar is based on a limiter which interpolates the values of the concentration at the
cell faces. Here we use the following limiter, see [15]

ci+1/2 = ci + 1

2
φ(ri+1/2)(ci − ci−1), ri+1/2 = ci+1 − ci

ci − ci−1
,

φ(r) = max

(
0, min

(
2r, min

(
1

3
,

2

3
r, 2

)))
,

where ci+1/2 is the concentration at the cell face. A standard second order scheme
would give ci+1/2 = (ci +ci+1)/2. The scheme is known as the κ−1/3 scheme and
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has a global accuracy O(h2), where h is the gridspacing. Additional details may be
found in [15, 25].

We use the second order Adams–Bashforth method for time integration. This
method gives a prediction for the velocity at the new time level, here denoted by
u∗

u∗ = un + �t

(
3

2
F(un) − 1

2
F(un−1)

)
, with F = −A − P + D,

where u is the velocity vector and F denotes the sum of advection (A), diffusion
(D) and pressure (P ) operators and �t is the time step of the numerical scheme.
The velocity u∗ is in general not divergence free and therefore has to be corrected
to obtain un+1. This is done with help of the pressure correction method in which
an additional step is taken to obtain un+1

un+1 = u∗ − �t∇pc,

where pc is the pressure correction. Taking the divergence of the equation above
and assuming that ∇·(un+1) = 0 gives a Poisson equation ∇2pc = ∇·u. This Pois-
son equation is solved with a fast Poisson solver [9]. Once the pressure correction
is known, the calculation of un+1 is straightforward.

The computational grid consists of 270×80×48 points in the r, θ, φ directions
respectively. As mentioned earlier, this discretization scheme is able to follow the
streamwise spreading of the jet and to allow a well-balanced resolution of the flow
field with a reasonable number of grid points. In fact, Boersma et al. [9] have used
a similar grid resolution as in the present computations, and showed that the reso-
lution is adequate for resolving all the scales in the flow. Using a similar analysis,
we will show here that we are resolving length scales which are comparable to the
Kolmogorov length scale, η [18].

The Kolmogorov length scale, η = (ν3/ε)1/4 where the dissipation energy, ε

can be estimated from ε = 0.5U 3
c /(z−z0), where Uc is the local centerline velocity

[14]. From the above equation, η/d is estimated to vary as 0.13, 0.09, 0.09 at
z/d = 20, 30 and 40 in our computation. The grid resolution (�R/d, R�θ/d,
R sin θ�φ/d) near the centerline at these axial locations are, respectively, (0.17,
0.07, 0.015), (0.21, 0.08, 0.017), and (0.26, 0.09, 0.02). So all the grid spacings
are of the same order as the Kolmogorov length scale, implying that we are indeed
resolving sufficient energy of the energy spectrum. Further, because Sc = Pr = 1,
the concentration and temperature scales are also sufficiently resolved.

The time step for the computation is calculated from the following criterion:

�t = 0.15
∣∣ur

r

∣∣ + ∣∣ uθ

r�θ

∣∣ +
∣∣∣ uφ

r sin θ�φ

∣∣∣ + ν

((
1

�r

)2 + (
1

r�θ

)2 +
(

1
r sin θ�φ

)2
) .

The non-dimensional time step used in the simulations was approximately 10−3.
This time step is also sufficiently smaller than the advection time scale of the
smallest eddies, implying sufficient temporal resulotion as well.
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For the results presented in this paper, the statistical average is performed over
approximately 40 and 12 eddy turnover times near the orifice exit and end of the
HIZ respectively (the time scale of the flow becomes large with increasing distance
to the jet nozzle).

As shown in Figure 1, the jet orifice is confined to a central area of radius equal
to 10 grid units in the cross-stream direction on the lower spherical surface of the
computational domain, i.e., the orifice area is 1/64 of the total lower surface area.
The domain extends from 0 ≤ z/d ≤ 43 in the streamwise direction, and the HIZ
is located between 23 ≤ z/d ≤ 31. The ratio of the streamwise length of the HIZ
to the nominal jet width is ≈ 3 and matches that of the experiments [2, 6]. The
computations extend beyond the HIZ to capture the jet behavior upon exiting the
HIZ. However the results for the last few d’s are not reliable due to the influence
of the outflow boundary condition.

2.4. INITIAL AND BOUNDARY CONDITIONS

The boundary conditions for the inflow, outflow and lateral boundaries of the jet
have been discussed in detail in [9, 16]. Therefore, these are only briefly discussed
here.

2.4.1. Inflow Boundary

The axial velocity component and concentration are equal to U0 and C0 at the jet
orifice, and zero everywhere else on the boundary, i.e., we have a top-hat profile
at the orifice for these two quantities. A small sinusoidal perturbational with an
amplitude equal to 2% of the velocity at the orifice is also added to enable an
easier transition to turbulent flow. The frequency of the perturbation expressed in
non-dimensional terms corresponds to a Strouhal number of 0.3 which is close to
the natural frequency of the jet. The pressure on the inflow plane is left free.

2.4.2. Outflow Boundary

At the outflow, we apply the boundary conditions proposed by Akselvoll and Moin
[4]. These are

∂ur

∂t
= −Ū

∂ur

∂r
,

∂uθ

∂t
= −Ū

∂uθ

∂r
,

∂uφ

∂t
= −Ū

∂uφ

∂r
,

∂C

∂t
= −Ū

∂C

∂r
,
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∂T

∂t
= −Ū

∂T

∂r
.

Here, Ū is the mean streamwise velocity over the outflow boundary. Note that as
the underlying coordinate system is spherical, we have written the velocity compo-
nents in terms of radial, azimuthal and tangential velocities. As stated earlier, these
velocity components correspond respectively to the streamwise (U ), cross-stream
(V ), and out of plane (W ) components in the experimental setup of [2, 3].

2.4.3. Lateral Boundary

Traction free boundary conditions are applied on the lateral boundaries [13]. Math-
ematically,

σij .nj = 0 with σij = −pδij + ν

(
∂ui

∂xj

+ ∂uj

∂xi

)
,

where σij is the stress tensor, and nj is the unit normal on the boundary, and δij

is the Kronecker delta. This boundary condition has been evaluated extensively
(see [8, 9] for details) for a turbulent jet. The main advantage of this traction-free
condition over a free-slip or no-slip boundary condition is that a velocity across the
boundary is allowed, thereby allowing physical entrainment into the computational
domain. The gradient of concentration along the normal of the lateral boundary is
set to zero.

It should be noted that the lateral boundary condition is stable for fluid flow-
ing into the computational domain only if the cell Reynolds number at the lateral
boundary, defined as

Rec = uθr�θ

ν

is smaller than 2. However, this is not a serious constraint because usually the
cross-stream velocity is small, and therefore grid refinement near the lateral edges
is not required.

2.4.4. Initial Condition

A self-similar jet as in [9] was first obtained. This was achieved by allowing the jet
to develop in a quiescent environment for a long time. Heat injection began only
after the jet had achieved complete self-similarity. Our results confirm that even the
second order moments have reached self-similarity before the jet entered the HIZ.

3. Results and Discussion

We will now present results from the simulations and discuss them in detail. The
results have been organized as instantaneous and time-averaged behavior, variation
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of the fluctuating quantities at the centerline, and streamwise variation of the in-
tegral quantities. Under each subheading, the results are further separated for the
three zones: pre-HIZ, HIZ, and post-HIZ.

3.1. INSTANTANEOUS AND TIME-AVERAGED CONTOURS

Figure 2a shows a contour plot for instantaneous scalar concentration in the jet.
(We have arbitrarily chosen one of the 24 axial planes for illustration.) Dyed fluid
can be seen ejecting from the orifice with a top-hat profile. The potential core is
apparent uptil about z/d = 5. The shear layer at the edge of the jet is seen to
roll up beginning around z/d = 2 to form ring vortices. The vortices appear to be
break up beyond z/d = 7. The scalar concentration drops continuously with both
the axial and radial coordinates. In fact, the drop is quite monotonic, and is due to
the dilution of jet fluid caused by entrainment of ambient fluid as the jet proceeds
downstream.

The drop in scalar concentration appears somewhat sharper in the HIZ and
beyond it, and suggests an increased amount of entrainment for these regions.
(The HIZ corresponds to 23 ≤ z/d ≤ 31.) Note, that the contour levels have
been deliberately chosen to be non-uniform to highlight the concentration values
in the HIZ and beyond. The jet appears to ascend like a column in the HIZ, i.e.,
with little lateral spread [2, 6]. We have included an instantaneous laser induced
fluorescence (LIF) image of the heated jet in Figure 3 for comparison with the
simulated instantaneous scalar concentration field of Figure 2a. Although there is
a difference between the parameters (as indicated in the caption of Figure 3), the
general agreement between the experimental and numerical results is very good.

Figure 2b shows a contour plot for instantaneous streamwise velocity. The ve-
locity width of the jet is seen to continuously increase downstream, although there
is some indication of the velocity width being constant in the HIZ. The velocity at
the jet centerline however shows a non-monotonic variation – decreasing first and
then increasing, contrary to the centerline velocity of a normal jet which decreases
with the axial coordinate. Heat injection first arrests the decay of the centerline
velocity and then causes the jet to accelerate. A similar observation has been made
experimentally [2, 6]. (We refer the reader to [2, 3] for a comparison with exper-
imental data. The mismatch in the flow parameters between the experiments and
simulation should be kept in mind while comparing the results.)

The contour plot for temperature in Figure 2c indicates that the temperature
is unaffected before the HIZ is encountered. This is expected because initially
the temperatures of the jet and ambient fluids are identical. Volumetric heating
is encountered upon entering the HIZ, and therefore a temperature rise starts to
develop from the beginning of the HIZ. Due to a direct coupling between the
temperature rise and concentration, the temperature field in the HIZ appears to
be well correlated with the scalar field (compare Figure 2a with Figure 2c). Note
that Figures 2a–2c correspond to the same simulation time. The temperature field,
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Figure 3. An LIF image representing instantaneous scalar concentration for comparison with
Figure 2a. The experiment corresponds to Re = 2000, Ri∗ = 0.5, with the HIZ located
between 195 ≤ z/d ≤ 260. The dark band in the image is part of the support for the six wire
grids which are visible further downstream. Note that the illuminating laser sheet is directed
downward from the top of the tank and its focal plane is situated within the HIZ, resulting in
a peak intensity in this region.

although highly correlated with the concentration field, appears uncorrelated with
the velocity field. The maximum temperature appears to occur within the HIZ, and
temperature decreases as expected in the post-HIZ.

A thermal-like structure formed for the initial time steps after heat addition
began. A vortex-ring was apparent at the head of this thermal. The lateral spread
rate of the thermal as it traveled downstream appeared to be larger than for normal
jets. The formation and travel of the thermal corresponds to the transient part of
this problem. However, the jet soon achieved stationarity once the thermal exited
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the computational domain. The plots for average quantities presented here do not
include this transitory flow condition.

Figure 4a shows a contour plot for time-averaged scalar concentration in the jet.
This plot was obtained after averaging in the azimuthal direction as well, therefore
only one half-plane needs to be shown. The ring vortices in Figure 2a are not evi-
dent after time-averaging. The potential core is still apparent uptil about z/d = 5.
The large dilution in the HIZ is also apparent from the low value of concentration in
this region, and beyond it. The scalar flux is directly related to both the mass flux
and scalar concentration. As seen in a subsequent figure, the mass flux is rather
large in this region. This implies that the volume averaged concentration in the
HIZ has to drop to conserve the scalar flux.

Figure 4b shows a contour plot for time-averaged streamwise velocity. For a
decelerating velocity field the contours will tend to converge towards the jet cen-
terline, and this is evident in the pre-HIZ. Within the HIZ and beyond, the contours
clearly diverge away from the centerline and this is indicative of an accelerating
flow in these regions. A roughly constant velocity width in the HIZ is more evident
after averaging. An increasing streamwise velocity is seen in the post-HIZ. The ac-
celeration of the jet is due to the added buoyancy (as confirmed later the buoyancy
flux attains its maximum value towards the end of the HIZ).

Figure 4c shows a contour plot for time-averaged temperature. The temperature
width seems nearly uniform (also evident in Figure 2c). There is some evidence
of the maximum temperature occurring slightly off-axis. We will highlight this
off-axis temperature peak by presenting radial profiles (see Figure 6 below).

Figure 5 shows a plot for time-averaged radial velocity. The velocity is indeed
small in the pre-HIZ. The time-averaged radial velocity profile in the pre-HIZ is
zero at the centerline and again experiences a zero-crossing at r/z ≈ 0.1, i.e.,
there is a region of outflow in the neighborhood of the axis, and a region of inflow
for larger radial locations in the pre-HIZ. The outflow near the jet axis is due to
the decay of the centerline velocity with the axial coordinate [1, 2]. However, heat
addition causes a dramatic change in the radial velocity profile. Figure 5 shows that
the radial velocities are large in magnitude and negative in the HIZ and post-HIZ.
In other words, the neighborhood of outflow surrounding the centerline vanishes
and the radial velocities turn inwards for all radial locations with the addition of
heat. A similar behavior was observed experimentally for a much smaller heating
rate [2]. This inflow is related to the streamwise acceleration of the jet with heat
addition. The absence of an outflow region and large magnitude of inflow velocity
suggests that the mass flux should increase at a faster rate than for normal jets for
the simulated conditions.

3.2. TIME-AVERAGED PROFILES

The profiles for time-averaged concentration, velocity and temperature at different
downstream locations for the jet reveal several interesting features. Note that once
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Figure 5. Time- and azimuthally-averaged profile for radial velocity. The HIZ is located
between 23 ≤ z/d ≤ 31.

again, the profiles are also averaged in the azimuthal plane to obtain smoother
curves. Although not shown, the time-averaged concentration profile shows a
Gaussian behavior in the pre-HIZ. However heat injection causes the concentration
profile to change in shape from a Gaussian to a double-peaked Gaussian in the HIZ
(Figure 6). (Note that we only see an off-axis peak in Figure 6, however if the data
were reflected on to the opposite side of the jet-axis, a second peak would appear
there. Therefore, the term “double-peaked Gaussian” introduced in [2] is retained
here.) The reason for this change in profile shape is provided below. Also note the
rather small value of the concentration in Figure 6.

Similar to the concentration profile, it was verified that the streamwise velocity
is well described by a Gaussian in the pre-HIZ. Heat injection causes a change in
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Figure 6. Time- and azimuthally-averaged profile at z/d = 32 for streamwise velocity,
temperature, and scalar concentration. The HIZ is located between 23 ≤ z/d ≤ 31.

the shape of the streamwise velocity profile. A double-peaked Gaussian can again
be discerned (Figure 6). Similarly, the time-averaged temperature profile shows an
interesting double-peak in the HIZ, i.e., the maximum temperature rise occurs some
distance away from the jet centerline as also noted above. A strong correlation
between the average concentration and temperature profiles is evident.

The reason for the change to a double-peaked shape of the temperature profile
is because of the two competing effects of heat injection and residence time in the
HIZ [2]. For a Gaussian velocity and scalar distribution, the fluid near the centerline
exhibits the highest scalar concentration but has the least residence time in the HIZ;
similarly, the fluid at the jet edge has the largest residence time but the smallest
scalar concentration. Now, the temperature rise increases with residence time, and
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Figure 7. Axial variation in the centerline streamwise velocity, temperature rise and concen-
tration. The vertical lines indicate the location of the HIZ.

the rate of heat injection (which is proportional to scalar concentration). These two
competing effects result in a temperature rise which is maximized away from the
jet centerline.

The centerline variation in average velocity, concentration and temperature for
the heated jet is shown in Figure 7. The curves exhibit a small amount of jitter
and some non-monotonic variations because of inadequate averaging. Values at
the centerline do not benefit from azimuthal averaging because azimuthal aver-
aging contributes nothing right at the centerline; therefore, these quantities are
essentially only time-averaged. Yet, it is apparent that the centerline variation of
these quantities is different in the pre-HIZ, HIZ and post-HIZ. Essentially, the jet



296 A. AGRAWAL ET AL.

behaves like a normal jet in the pre-HIZ, implying that Uc ∼ z−1, Cc ∼ z−1, and
θ = 0. The constants Bu and Bc characterizing the axial decay of the centerline
velocity and concentration are respectively 5.6 and 4.2 in excellent agreement with
previous researchers [23].

The decay of the centerline velocity for the jet is reversed after the jet enters the
HIZ – the jet actually accelerates in the HIZ. The centerline value of concentration
continuously drops in the HIZ to a value substantially smaller than for the unheated
jet. The temperature starts to rise at the beginning of the HIZ. In fact, the rise is very
rapid towards the beginning of the HIZ. The temperature rise is expected to reach a
maximum at the exit of the HIZ due to a continuous and cumulative addition of heat
during the passage of fluid through the HIZ. However it is found that the location
of maximum temperature rise unexpectedly occurs a short distance upstream of the
exit of the HIZ. So what causes this rather anomalous temperature behavior inside
the HIZ?

There are several dynamic factors which determine the overall behavior of the
jet as it passes through the HIZ. The dominant factor is the increased amount of
mixing of the ambient fluid with the jet fluid. The enhanced mixing can lower the
temperature distribution in the HIZ in three ways: (i) The ambient fluid is always
cooler than the jet fluid, and therefore mixing directly lowers the temperature of
the jet. (ii) Mixing lowers the scalar concentration in the jet which in turn reduces
the strength of the source term in the temperature equation. (iii) Temperature being
an active scalar, increases the velocities in the jet, thereby reducing the residence
time of the fluid in the HIZ, and therefore affect the temperature. It so happens
that the combined effect of these factors results in a temperature drop which more
than compensates for the temperature rise due to heat addition. The maximum
temperature is therefore attained before the fluid exits the HIZ.

The decay in the centerline concentration and temperature is apparent in the
post-HIZ. This is caused by mixing of the jet fluid with the non-acidified (i.e., no
scalar), cold ambient fluid. The velocity however seems to continuously increase
due to the presence of heated, buoyant fluid.

The scalar, velocity and temperature widths for the jet are plotted in Figure 8.
The width is defined as the radial distance at which the value of the variable drops
to 1/e of the centerline value. Both the scalar and the velocity widths increase
linearly in the pre-HIZ. The ratio of scalar to velocity width is approximately 1.2
in agreement with previous measurements [22, 23]. This behavior for scalar and
velocity widths is expected for a normal jet.

A large increase in the scalar width can be noted just upstream of the HIZ.
A bulge in the scalar width has been observed experimentally at the beginning
of the HIZ for lower heating rates [3, 6]. Interestingly, the scalar width is less
than the velocity width in the HIZ, and becomes larger again in the post-HIZ. The
difference arises because concentration changes from an active scalar in the HIZ
to a passive scalar in the post-HIZ, and therefore begins to display a behavior in
post-HIZ consistent with normal jets and plumes.
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Figure 8. Axial variation in the velocity, scalar and temperature widths for the jet. The vertical
lines indicate the location of the HIZ.

The jet remains isothermal in the pre-HIZ, therefore, the temperature width is
undefined in this region. The temperature width is intermediate between the scalar
and velocity widths in the HIZ. As stated earlier, this is because temperature is
dependent on the rate of heat injection (concentration) and the residence time
(velocity) in the HIZ. In the post-HIZ the temperature width is smaller than the
velocity width which in turn is smaller than the concentration width, i.e., this ob-
servation is consistent with plumes. However, this observation itself does not imply
a plume-like behavior for the jet in the post-HIZ. The difference in the temperature
width for the two regions arises because the temperature is decoupled from the
concentration in the post-HIZ.
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Figure 9. Axial variation in the normalized fluctuations at the jet centerline for the streamwise
velocity and concentration. The vertical lines indicate the location of the HIZ.

3.3. PROFILES OF FLUCTUATING QUANTITIES

Figure 9 shows the normalized fluctuations for concentration, and the streamwise
velocity at the jet centerline, while Figure 10 depicts it for the radial and azimuthal
velocities and temperature. (We have divided these results into two plots for clar-
ity.) Normalization is performed by dividing by the mean centerline concentration,
streamwise velocity, or temperature as appropriate. It is immediately apparent
that the amount of jitter is much larger for these cases, owing to three causes:
(i) second-order moments take longer to converge than first-order moments, (ii) we
are normalizing by mean centerline values which themselves suffer from a small
amount of jitter, and (iii) as in the case of the mean centerline values, the rms
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Figure 10. Axial variation in the normalized fluctuations at the jet centerline for the radial and
azimuthal velocities, and temperature. The vertical lines indicate the location of the HIZ.

values of the centerline cannot benefit from azimuthal averaging. Nevertheless, it
is apparent that the rms values for concentration, radial and azimuthal velocities
are very small for the first five diameters of the jet, and correspond to the region of
the potential core. Beyond the potential core, the rms values gradually increase to
their fully developed values. The fully developed normalized rms for concentration
and for the three velocity components from our computations is approximately 0.2,
in good agreement with previous measurements [14]. As noted earlier, the data at
the centerline exhibits some jitter due to inadequate sampling. The zero rms for
temperature in the pre-HIZ reflects the isothermal conditions in this region.

The normalized rms for concentration, streamwise velocity and temperature
increases rapidly inside the HIZ (note that the streamwise rms velocity shows
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an initial decrease). Further, the temperature fluctuations are well correlated with
those of concentration similar to their mean values. This strong correlation in-
dicates that the temperature at a point in the HIZ is strongly dependent on the
local value of concentration (through the source term in the energy equation) at
least for the coefficients employed here. The large value of the normalized rms for
streamwise velocity indicates that relaminarization of the jet does not occur with
heat injection.

The experiments of Bhat and Narasimha [6] had revealed a complex behavior of
rms of streamwise velocity fluctuations. Specifically, [5, 6] had reported a decrease
in their normalized fluctuations, whereas the experimental findings in [3] have
indicated that the normalized rms for streamwise velocity increases. The present
computations, albeit at a higher heating rate, suggest a complex behavior of the rms
fluctuations for the streamwise velocity within the HIZ that possibly contributed to
the contradictory results reported earlier. To explain the rather dramatic increase
in normalized fluctuations for streamwise velocity in the latter part of the HIZ,
we propose that the jet fluid entering the HIZ could experience periods of higher
velocity followed by periods of slow moving fluid. Note that the same explanation
applies for the large fluctuations in scalar concentration and temperature.

The normalized rms for the cross-stream velocity component remains virtually
unchanged with heat addition. The rms of azimuthal velocity shows a decrease
in the HIZ and then rises to the original value. The initial decrease is because the
velocity fluctuations do not increase to the extent that the mean streamwise velocity
increases resulting in a drop of the normalized value. However, subsequently, the
fluctuations also increase leading to a nearly constant value for the normalized rms.

The normalized rms for concentration and temperature decreases somewhat
in the post-HIZ. However, the value is much higher than for a normal jet. This
indicates that although the mean values for concentration and temperature are
reducing, the fluctuations are reducing by a larger extent. Again note the strong
correlation between concentration and temperature. As explained above, these two
fields are very similar in the HIZ, and due to identical governing equations they will
be advected in a similar manner in the post-HIZ. The fluctuations for streamwise
velocity remain at almost the same value as in the HIZ. Similarly, the normalized
rms for both cross-stream and azimuthal velocity components remains virtually
unchanged from the value attained at the end of the HIZ.

3.4. MASS, MOMENTUM AND BUOYANCY FLUX

The contour plot for the concentration field, and the radial velocity profile has
suggested that the mass flux for the heated jet is larger than the corresponding
unheated case. The actual calculations for the mass flux for the heated jet are shown
in Figure 11. The mass and momentum fluxes were obtained by integrating the
streamwise velocity. The variation for the corresponding normal jet is also shown
in the figure. The mass flux for the heated jet increases linearly in the pre-HIZ as
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Figure 11. Variation of mass and momentum flux for a heated and a normal jet. The vertical
lines indicate the location of the HIZ.

expected for a turbulent axisymmetric jet. Further, the variation of mass flux in the
pre-HIZ compares well with previous findings. The small bulge in the mass flux
between 6 ≤ z/d ≤ 14 probably arises from the transition to turbulence.

The mass flux for the heated jet increases rapidly once the jet enters the HIZ.
This suggests an increased amount of entrainment for the heated jet in the HIZ.
Further, the dilution rate for the heated jet in and even beyond the HIZ is much
larger than a normal jet, and in fact exceeds the dilution rate in the HIZ. The large
mass flux is related to acceleration of the heated jet. As the heated jet begins to
accelerate due to the added buoyancy, continuity dictates that a larger amount of
ambient fluid is drawn inwards to the centerline.
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We will now compare the mass flux of heated and unheated jets. The value of I

can be estimated from Equation (12), where the mean value of C can be obtained
from Figure 7. Inserting I ≈ 8d3 into Equation (15) we can estimate the value of
f as about 10, implying that the average mass flux through the HIZ is about 10µ0.
This matches well with the mid-HIZ mass flux value in Figure 11. Note that the
corresponding value for an unheated jet would be about 7.

It is also possible to compare the value of the entrainment coefficient α for the
heated jet relative to its unheated counterpart by using the following equation [22]

dµ

dz
= 2πbUcα,

and inserting the values of relative mass-flux gradients, velocity widths, and
centerline velocities from the respective plots. Our simulations indicate that the
entrainment coefficient increases substantially in the HIZ and beyond it. For exam-
ple, the entrainment coefficient for the heated jet approximately doubles at the end
of the HIZ relative to an unheated jet.

Thus, for the value of Ri used in this simulation (about 12) we find that both
mass flux and entrainment increase with heat addition. A direct comparison with
experiments is not possible owing to the smaller Ri (about 0.3) used therein. Nev-
ertheless, it is relevant to note that Bhat and Narasimha [6] reported a decrease in
mass flux and entrainment with heat addition, whereas the measurements of [3, 11]
indicated a larger mass flux for the heated jet. A larger mass flux with heating is
also predicted by the empirical model of [2].

Figure 11 also shows the momentum flux (calculated using the mean velocity)
variation for the heated jet. The momentum flux is nearly constant in the pre-HIZ,
as expected for a normal jet. Buoyancy addition in the HIZ results in a continuous
increase in the momentum flux for the jet in the HIZ. The added buoyancy drives
a continuous increase in the momentum flux in the post-HIZ (somewhat similar to
that in a plume). (A slight drop in the mass and momentum flux beyond z/d = 40
is due to the effect of the outflow boundary condition.)

Figure 11 also shows the axial buoyancy flux, B obtained by integrating the
product of streamwise velocity and temperature over the cross-sectional area of the
jet, i.e.,

B(z) =
2π∫

φ=0

∞∫
r=0

Uθr dr dφ,

where dφ is the incremental change in the azimuthal angle. The buoyancy flux
is zero due to isothermal conditions in the pre-HIZ. However the buoyancy flux
increases monotonically in the HIZ due to continuous heat addition into the jet.
Because buoyancy is neither added or removed in the post-HIZ, one expects the
buoyancy flux to be conserved in this region. Our computations indicate that this
is indeed true, i.e., a decrease in the product of velocity and temperature is exactly
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compensated by an increase in the cross-sectional area of the jet. Further, it can be
shown that the energy balance dictates that the buoyancy flux at the end of the HIZ
must equal Q/ρCp. This reduces to

Bend HIZ = kI

d3
.

As stated earlier, we found I ≈ 8d3, therefore Bend HIZ ≈ 8 (because k = 1). This
result is consistent with Figure 11.

4. Conclusions

A three-way coupled system involving momentum, temperature and scalar concen-
tration is solved using direct numerical simulations in a flow field consisting of an
off-source volumetrically heated jet. A strong jet acceleration is noted for the value
of the parameters chosen here, and this strong acceleration has a marked effect on
the jet behavior. These simulations complement previously reported experiments
which used laboratory analogues to explore cumulus cloud entrainment, where
such large accelerations were difficult to achieve.

The profiles for concentration, streamwise velocity and temperature are found
to be double-peaked Gaussians. Further, there is a strong correlation between con-
centration and temperature. The appearance of a double peaked Gaussian profile
is related to the competing effects of residence time and heat injection rate, and
elucidates the strong coupling between the three fields.

The centerline streamwise velocity decreases in the pre-HIZ, increases due to
the cumulative effect of heat addition in the HIZ, and then shows a non-monotonic
trend in the post-HIZ. The centerline concentration decreases monotonically
throughout. The centerline temperature attains its maximum value inside the HIZ,
while subsequent mixing of cold ambient fluid with the jet fluid results in a drop
in temperature. The radial velocity turns inward for all radial locations in the HIZ
due to the acceleration of the jet.

Heat injection causes an eventual increase in the normalized fluctuation of the
concentration, streamwise velocity and temperature, while that of the radial and
azimuthal velocities remains virtually unchanged. The mass and momentum fluxes
increase with heat addition. The entrainment rate is also larger for the heated jet as
compared to its unheated counterpart. The buoyancy flux behaves as theoretically
predicted.

Combining the insights gained experimentally and numerically at both low [2,
3] and high heating rates, it is evident that there is a change in the shape of U , V

and T profiles and an interesting evolution of these quantities along the centerline.
There is an eventual increase in the normalized rms of streamwise velocity. The
mass flux of the heated jet is larger than its unheated counterpart, and at least for
high heating rates, heating leads to increased entrainment. The insights gained by
these experiments and simulations have helped in the development of a conceptual
model for cumulus cloud entrainment [1].
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