Integral Solution for the Mean Flow Profiles of Turbulent Jets, Plumes, and Wakes

Amit Agrawal
e-mail: agrawaa@me.udel.edu

Ajay K. Prasad
e-mail: prasad@me.udel.edu

Department of Mechanical Engineering,
University of Delaware,
Newark, DE 19716

Introduction

Jets, plumes, and wakes are examples of free shear flows. A jet is produced when fluid exits a nozzle with some initial momentum. On the other hand, plumes are driven purely by buoyancy addition at the source. Jets and plumes spread laterally by engulfing (entraining) ambient fluid. The momentum contained within the jet remains constant at any streamwise cross section, whereas the momentum contained within the plume increases monotonically with the streamwise coordinate while maintaining a constant buoyancy. The width of jets and plumes increases at the cost of velocity. Wakes are produced behind an object placed in a freestream, and manifest themselves in the form of a velocity deficit profile.

Jets, plumes, and wakes exhibit self-similarity beyond a certain downstream distance such that a characteristic length and velocity can be used to scale all distances and velocities in the flow. Analyses and measurements have traditionally focused on the self-similar region because fewer independent variables are involved making it easier to interpret the results. For jets, plumes and wakes, the time-averaged centerline velocity is generally chosen as the characteristic velocity, the time-averaged centerline temperature differential (with respect to the ambient) is used as the characteristic temperature scale, whereas the cross-stream distances are scaled with the local width. Although more analysis is available for planar cases, it is somewhat easier to setup experimentally an axisymmetric jet, plume, or wake, compared to their planar counterparts. Consequently, more experimental data is available for the axisymmetric case, [1–5].

In the self-similar region of the flows under consideration, the traditional approach is to first perform an order of magnitude analysis of the Navier-Stokes equations. A boundary layer approximation is usually applied, allowing a substantial reduction in the number of terms. The resulting terms are then scaled using the appropriate length, velocity, and temperature scales. Further, by invoking conservation of momentum and buoyancy for jets and plumes, respectively, one can obtain the streamwise variation of width, centerline velocity and temperature, [6]. Because the number of unknowns exceeds the number of equations by one, the analysis fails to provide the cross-stream variation of these quantities. Of key interest is the functional form of the streamwise velocity in the cross-stream direction.

One approach to close the system of equations is to assume that the eddy viscosity (ν_T) is constant in the cross-stream direction, [6–10]. The equations are then solved to obtain the required functional form. With this approach, one obtains $U_j/U_c = \text{sech}^2(\alpha z)$ for a plane jet where $A = 0.706$, and $(1 + B \xi^2)^{-2}$ for a round jet where $B = 0.661$. [7]. The intent of this paper is to follow the opposite approach, i.e., we select a functional form for the streamwise velocity profile based on experimental data to close the system of equations, and subsequently derive expressions for several useful quantities (including ν_T, which can show a cross-stream variation depending on the choice of the functional form).

Numerous experimental and numerical studies on free shear flows have been undertaken by various groups in the past. Most of these studies measure (or compute) the streamwise velocity profile, and fit a simple mathematical expression to the data. The literature reveals that many researchers, [1–3,11–16] prefer the Gaussian function to approximate the streamwise velocity and temperature profiles. Our own measurements of axisymmetric jets also reveal that overall the Gaussian profile is a superior fit to the data. As an example, we plot in Fig. 1 the normalized streamwise velocity data for an axisymmetric jet of water issuing from a 2-mm orifice into a large tank; data were acquired using two-dimensional PIV at $110 \leq z/d \leq 175$ (see [17] for experimental details). The computed profile for Reynolds stress is compared with experimental measurements made by the authors later in the paper to provide additional validation for the choice of the Gaussian streamwise velocity profile. For these reasons, we preferred the Gaussian profile to the other choices as the input functional form for our analysis. Some previous researchers have employed an approach similar to ours to verify certain difficult measurements—for example, Wygnanski and Fiedler [5] and Gutmark and Wygnanski [18] verified their measurements of Reynolds stress against values computed from their streamwise velocity profile using an integrop approach.
Perhaps because the primary aim of these researchers was to verify measurements, they did not exploit integral theories to its full extent, nor did they discuss the properties of the expressions that they derived. In fact, explicit expressions for even basic quantities are not readily available in the literature. The aim of this paper is to extract a complete set of results from the integral method. We derive a host of useful expressions and explore their properties in physical terms. As we show, several interesting features of the flow can be obtained, and some probable misconceptions can be corrected in this manner. Further, upon contrasting appropriate solutions (for example jets versus plumes, axisymmetric versus planar), our approach yields some new insights.

The basic approach adopted here comprises the following three steps. First, we assume an analytical expression for the mean streamwise velocity \(U \) (and temperature). Second, the expression for \(U \) is substituted into the continuity equation along with the assumption of the centerline velocity variation, and integrated to determine the mean cross-stream velocity profile. Third, the expressions for \(U \) and \(V \) are substituted into the simplified momentum (and energy) equations, and integrated to determine the Reynolds stress (and velocity-temperature correlations). These expressions can then be applied to derive a number of useful quantities. Integral methods are shown here to be successful in reproducing experimental results for standard jets, plumes and wakes (axisymmetric and planar) which are commonly used as model flows in a variety of situations. Our results should serve as a useful reference for such studies. However, it should be remembered that integral methods may have restricted application to more complex turbulent flows, \[13\], where it is difficult to assign profile shapes, and relate entrainment rates to local influences in complex environments.

The relevant governing equations for jets and wakes are the continuity and the streamwise momentum equation. The two additional momentum equations, cross stream and azimuthal, relate pressure with the fluctuating components of velocity, and the fluctuating components of velocity with themselves, respectively; in this paper, we are not interested in exploring these relationships. For plumes, an additional equation for temperature is required. By symmetry considerations, both the cross-stream velocity and the Reynolds stress are zero at the centerline. We have used this condition throughout this paper to evaluate the constant of integration.

Turbulent Jets

Axisymmetric Jets. The continuity equation for the time-averaged velocities in cylindrical coordinates (see Fig. 2 for the coordinate system used in this paper) is

\[
\frac{1}{r} \frac{\partial rV}{\partial r} + \frac{\partial U}{\partial z} = 0. \tag{1}
\]

In the self-similar region, the simplified streamwise momentum equation can be obtained using an order of magnitude analysis as, \[6\],

\[
V \frac{\partial U}{\partial r} + U \frac{\partial U}{\partial z} + \frac{1}{r} \frac{\partial rU}{\partial z} = 0 \tag{2}
\]

where the overbar denotes time-averaged quantities.

For the self-similar axisymmetric jet, \(U \), varies as \(z^{-1} \), while \(b \) increases linearly with \(z \), \[6\]. By approximating the streamwise velocity at any downstream location by a Gaussian, \[3,11–13,17\], (see also Fig. 1)

\[
U(r, z) = U_c(z) \exp(-r^2/2b^2(z))
\]

\[
= U_c(z) \exp(-r^2/2c^2z^2)
\]

\[
= U_c(z) \exp(-\xi^2),
\]

one can solve for \(V \) by substituting Eqs. (3) into (1):

\[
\overline{V} \overline{U_c} = \frac{c}{2\xi} (-1 + \exp(-\xi^2) + 2\xi \exp(-\xi^2)) \tag{4}
\]

Fig. 2 Coordinate system for planar \((x, z)\) and axisymmetric \((r, z)\) jets, plumes, and wake. For wakes, \(U\) represents the velocity defect.

\(V(\xi)/U_c \) is plotted in Fig. 3 and reveals that, contrary to the connotation of an inflow implied by the term “entrainment,” the cross-stream flow in the vicinity of the centerline is actually outward, i.e., \(V(\xi)/U_c \geq 0 \) for \(0 \leq \xi \leq 1.12 \). \(V(\xi)/U_c = 0 \) at the centerline, reaches a maximum of 0.018 at \(\xi = 0.54 \) and declines back to zero at \(\xi = 1.12 \). The reason for such an outflow is that the centerline velocity decreases as \(z^{-1} \), and not because of the Gaussian streamwise velocity profile assumption. \(V(\xi)/U_c < 0 \) (i.e., inward) for \(\xi > 1.12 \), reaches a minimum of \(-0.022\) at \(\xi = 2.08 \) and asymptotes to 0 as \(\xi \rightarrow \infty \). It should be pointed out that \(V \rightarrow 0 \) much more slowly than \(U \), i.e., although the central region is dominated by the axial component of velocity, the cross-stream flow predominates far away from it.

According to \[11\], the entrainment coefficient \(\alpha \) can be defined using the incremental volume flux as

\[
\frac{d\mu}{dz} = 2\pi b U_c \alpha \tag{5}
\]

where \(\mu \) for axisymmetric jets is given by

\[
\mu = \int_0^\infty 2\pi U(r) dr.
\]
It is readily seen that $d\mu/dz$ is the incremental volume flux entering the jet through a circular control surface at large r, i.e.,

$$
d\mu dz = \lim_{r \to \infty} -2\pi r V.
$$

From Eq. (4), V/U_c for large ξ can be approximated as $-c/2\xi$. Our result gives

$$
d\mu dz = 2\pi r c U_c/2\xi = 2\pi b U_c c/2, \quad (6)
$$

By equating Eqs. (5) and (6), we get $a = c/2 = 0.0535$, which is the same value as obtained by [11]. From Fig. 3, it is seen that Turner’s [11] statement: “the inflow velocity at the ‘edge’ of the flow is some fraction α of the maximum mean upward velocity,” is not strictly correct, because V/U_c never reaches 0.0535 for any value of ξ. However, it is easily shown, [19], that the inward extension of the curve $c/2\xi$ (the asymptotic curve for V/U_c at large ξ) intersects the jet edge ($\xi=1$) with a value of $c/2$.

Equation (4) can also be derived using a control volume approach—by equating the difference of volume flux at two successive downstream stations to the incoming fluid volume. As seen in Fig. 3 the maximum value of V is just 2% of U_c, making it rather difficult to measure precisely, and therefore it is less frequently presented in the literature, [4,5].

The V profile can be used to directly determine the spread rate, c. Researchers in the past have determined c by curve fitting experimental data for U. However, determining c from the experimental profile for V may be advantageous since the location and height of the extrema can be unambiguously determined. However, as stated above, the experimental uncertainty in V can be substantial. (A comparison of the derived cross-stream velocity profile with the experimental data is provided in [20]).

One can insert the time-averaged profiles for U and V into Eq. (2), to obtain the time-averaged profile for Reynolds stress \overline{uv} as

$$
\overline{uv}/U_c = c/2\xi (\exp(-\xi^2) - \exp(-2\xi^2)). \quad (7)
$$

The maximum for Reynolds stress lies at $\xi=0.58$ (Fig. 4). Wygnanski and Fiedler [5] provide a plot for Reynolds stress by integrating their streamwise velocity profile. However, they do not provide an explicit expression for it.

Figure 4 also shows our experimentally measured Reynolds stress for a (water) jet at $Re=3000$ using PIV. The experimental data can be compared with the analytical result based on the Gaussian profile and the one derived using the $(1+B\xi^2)^{-2}$ profile, [7], where $B=0.661$. We see that the latter result does not match as well, justifying the selection of the Gaussian profile for our analysis. Additionally, our analytical result matches very well with the Reynolds stress data of [5,18].

Planar Jets. It is worthwhile to compare the results for an axisymmetric jet against a planar jet. For planar jets the continuity and momentum equations are, respectively, [6]:

$$
\frac{\partial V}{\partial x} + \frac{\partial U}{\partial z} = 0, \quad (8)
$$

$$
V \frac{\partial U}{\partial x} + U \frac{\partial \overline{v}}{\partial z} + \frac{\partial \overline{uv}}{\partial x} = 0. \quad (9)
$$

Like axisymmetric jets, planar jets have a linear spread rate and are well approximated by a Gaussian velocity profile, [13,15], (given again by Eq. (3) where ξ is now $x/h_l(z)$, but now the centerline velocity decays as $z^{-1/2}$, [6]. Integrating Eq. (8) using (3) we obtain

$$
\overline{V} / U_c = \frac{c}{4} (4\xi \exp(-\xi^2) - \sqrt{\pi} \text{erf}(\xi)). \quad (10)
$$

This expression has also been obtained by [15]. Similar to the axisymmetric case, we find an outflow near the jet axis, and an inflow far away from it. The maximum outflow occurs around $\xi=0.5$ (which is very close to the axisymmetric case) and the flow turns inward for $\xi=0.99$-this value is slightly smaller than for axisymmetric jets (Fig. 3).

Similar to the axisymmetric case we can define the coefficient of entrainment following Turner [11]:

$$
d\mu dz = 2\pi U_c \xi, \quad (11)
$$

where μ is now given by

$$
\mu = \int_0^\infty U dx.
$$

Inserting Eq. (3) and differentiating with respect to z, we obtain
Fig. 5 Dominant kinetic energy production term profiles for jets (— axisymmetric jet, — planar jet)

\[\frac{d\mu}{dz} = \frac{\sqrt{\pi}}{2} U_c \varepsilon. \]

(12)

Equating Eqs. (11) and (12), we get \(\alpha = \sqrt{\pi} c/4 = 0.041 \) (from Fig. 5 of Gutmark and Wygnanski [18], we estimate \(c = 0.092 \)). It should be pointed out that the cross-stream velocity does become equal to \(\alpha U_c \) for large \(\xi \). Turner’s [11] statement that the inflow velocity at the edge of the jet equals \(\alpha U_c \) is thus seen to apply strictly in the case of planar free-shear flows.

Ramaprian and Chandrasekhara [15] measured \(\alpha \) for planar jets as \(\alpha = V_r/U_r = 0.045 \). The slight discrepancy might be due to the fact that their measurements, [15], were made rather close to the nozzle (\(5 \leq z/d \leq 60 \)) and therefore, the jet might not have achieved complete self-similarity.

As before, the momentum Eq. (9) along with the expressions for \(U \) and \(V \) can be used to solve for the Reynolds stress as

\[\frac{\overline{uv}}{U_c^2} = \frac{\sqrt{\pi} c}{4} \exp\left(-\xi^2\right) \text{erf}(\xi). \]

(13)

The plot looks similar to that of axisymmetric jets with a maximum at \(\xi = 0.62 \) and 0 for \(\xi = 0 \) and large \(\xi \) (Fig. 4). In fact, the maxima lie at almost the same \(\xi \) and are of nearly the same magnitude. Although \(U \) profiles for the two cases considered above are similar, their \(V \) and the governing Eqs. (2) and (9) are very different. Thus it is not expected that \(u'v' \) would look so similar. This similarity is due to the fact that \(U \partial U/\partial z \) is the dominating term, and behaves similarly for the two cases.

The dilution rate can be computed from

\[\frac{1}{\mu} \frac{d\mu}{dz} = \frac{c}{b} \quad \text{(axisymmetric jets)} \]

(14)

and

\[\frac{1}{\mu} \frac{d\mu}{dz} = \frac{c}{2b} \quad \text{(planar jets)}. \]

(15)

Because the spread rates for the two cases are virtually identical, it is obvious that axisymmetric jets dilute twice as rapidly as their planar counterparts (axisymmetric jets entrain circumferentially, while planar jets entrain from the two sides only). Greater mixing in the axisymmetric jets is consistent with the faster decay of their centerline velocity with downstream distance. It should be pointed out that, since \(b \sim z \), \(1/\mu (d\mu/dz) \sim z^{-1} \), i.e., the dilution rate keeps decreasing with downstream distance.

Fig. 6 Cross-stream variation of eddy viscosity for jets (— axisymmetric jet, — planar jet)

The complete turbulent kinetic energy equation can be found in the literature (e.g., for axisymmetric jets see [5]). The dominant kinetic energy production term is \(\overline{u'v'} \partial U/\partial z \). Using Eqs. (3), (7), and (13) we can write

\[\frac{\overline{u'v'} \partial U}{U_c^2} = c \left(\exp(-2\xi^2) - \exp(-3\xi^2) \right) \]

(axisymmetric jets)

and

\[\frac{\overline{u'v'} \partial U}{U_c^2} = \frac{\sqrt{\pi} c}{2} \exp(-2\xi^2) \text{erf}(\xi) \]

(planar jets).

The production term has a maximum around \(\xi = 0.6 \) (close to the maximum of the \(\overline{uu'} \) term) and reduces to zero for large \(\xi \) (Fig. 5).

Again, the maxima of the production terms for axisymmetric and planar jets lie at almost the same \(\xi \). The magnitude of the turbulent kinetic energy term for axisymmetric jets is slightly larger than planar jets. The similarity of these terms is due to the fact that both \(\overline{uu'} \) and \(\partial U/\partial z \) resemble each other closely for the two cases considered here.

One can derive corresponding expressions for \(v_r \) for the axisymmetric and planar jets using

\[\overline{uv} = -v_r \frac{\partial U}{\partial r}. \]

(16)

as

\[v_r \text{sym} = \frac{c}{4} \frac{1 - \exp(-\xi^2)}{\xi^2}, \]

and

\[v_r \text{plan} = \frac{\sqrt{\pi} c}{8} \frac{\text{erf}(\xi)}{\xi}. \]

Because \(v_r \sim U_r b \) (product of the integral velocity and length scales), we can expect \(v_r \text{sym} \sim z^0 (b \sim z, \text{and } U_r \sim z^{-1} \) for axisymmetric jets) and, \(v_r \text{plan} \sim z^{1/2} (b \sim z, \text{and } U_r \sim z^{-1/2} \) for planar jets), i.e., not only is \(v_r \) a function of radius, it can also be a function of \(z \). Lessen [21] predicted identical \(z \)-dependences for \(v_r \) based on the principle of marginal instability. While the streamwise variation of \(v_r \) is well known, \(v_r \) is generally assumed to be independent of \(\xi \) [6–10]. The results presented next indicate that this need not be true.

The eddy viscosity \(v_r \) for the axisymmetric and planar cases are plotted in Fig. 6. \(v_r \) is a maximum at the center of the jet and decays to 0 for large \(\xi \). For the axisymmetric case we find that
$v_R(\xi=0)$ is 2.3 times greater than $v_R(\xi=\xi_c)$. (ξ_0v_2 represents the x^-2 point of the Gaussian.) For the planar case, this ratio is about 1.7. Townsend [8] also observes that v_R should diminish as the jet edge is approached because the measured velocity profiles approach zero more rapidly than the profiles calculated on the basis of constant v_R. Pope [9] states that v_R is within 15% of the value 0.028 over bulk of the (axisymmetric) jet, and therefore v_R can be assumed constant, independent of ξ.

Turbulent Plumes

Axisymmetric Plumes. The continuity equation remains the same as Eq. (1) for axisymmetric plumes, whereas a buoyancy term appears in the simplified momentum Eq. (2), [13,14]:

$$V \frac{\partial U}{\partial r} + U \frac{\partial U}{\partial z} + \frac{1}{r} \frac{\partial \rho u}{\partial r} = g \beta \theta.$$ \hspace{1cm} (17)

The $g \beta \theta$ term in Eq. (17) differentiates the plume from the jet. The temperature equation can be obtained starting from

$$V \frac{\partial U}{\partial r} + U \frac{\partial U}{\partial z} + \frac{1}{r} \frac{\partial \rho u}{\partial r} = \gamma \frac{\partial \theta}{\partial z} + \frac{1}{\rho} \frac{\partial \rho}{\partial r} \frac{\partial \theta}{\partial r} + \frac{\partial^2 \theta}{\partial z^2},$$

using scaling arguments (similar to jets), to finally arrive at (Eq. 13,14)

$$V \frac{\partial \theta}{\partial r} + U \frac{\partial \theta}{\partial z} + \frac{1}{r} \frac{\partial \rho u}{\partial r} \frac{\partial \theta}{\partial r} = 0.$$

A Gaussian profile is commonly used in the literature to approximate the distributions for velocity and temperature in plumes. [1,2,11,13,14,16]. From similarity considerations, the centerline velocity and temperature for axisymmetric plumes vary, respectively, as $z^{-5/3}$ and $z^{-5/3}$ while the width increases linearly, [6]. Therefore, the streamwise velocity is given by Eq. (3), while the temperature in the plume can be written as

$$\theta(r,z) = \theta_c(z) \exp(-r^2/c_T z^2) = \theta_c(z) \exp(-H^2 \xi^2),$$

where $c_T = c$, i.e., temperature and velocity need not spread at identical rates. In fact $c/c_0 = H$ is 1.2 for axisymmetric plumes, [11].

Once, from the continuity Eq. (1) and using the decay rate of the centerline velocity, one can derive

$$\frac{V}{U_c} = \frac{c}{\xi} \left(\frac{5}{6} + \frac{5}{6} \exp(-\xi^2) + \frac{5}{6} \exp(-2 \xi^2)\right).$$

The plot of V/U_c closely resembles axisymmetric jets—plumes experience outflow near the centerline, and an inflow far away from it. However, the maximum positive V is now just 0.4% of U_c for $\xi=0.33$, while the maximum negative value of 3.8% lies at $\xi=1.87$ (Fig. 7). The cross-stream velocity changes sign at $\xi=0.595$—much earlier than for jets. This is due to the presence of buoyancy. In fact, the presence of buoyancy in the plume creates contrasting effects near the center and far away from it when compared to the axisymmetric jet. Buoyancy causes the centerline velocity to decay less slowly than the jet. Consequently, the magnitude of the outflow near the centerline is smaller for the plume resulting in a smaller positive V. Secondly, because buoyancy is continuously increasing the momentum of the plume, there is a larger volume influx from its lateral surface. Hence, larger inflow velocities are seen far away from the centerline. This larger inflow is responsible for greater mixing in plumes. Sreenivas and Prasad [22] have proposed a model based on vortex dynamics to explain the greater entrainment in the plumes. It is again found that the inflow velocity never equals αU_c for axisymmetric plumes. The expression for V/U_c for axisymmetric plumes can also be found in [1] and the plot in [1,23].
The behavior of $\overline{u'v'}$ shown in Fig. 8 looks similar to $\overline{u'v'}$ of axisymmetric jets. In fact the maxima lie at almost the same $\xi (=0.6)$. As can be intuitively expected, Reynolds stress for plumes is larger than jets. Interestingly, this similarity in $\overline{u'v'}$ for axisymmetric jets and plumes can be inferred by noting that the above expression reduces to Eq. (7) for $H=1$ (although $H=1.2$ for axisymmetric plumes).

From the temperature Eq. (18) and using Eqs. (3), (19), and (20) one can obtain

$$\frac{\overline{u'\theta'}}{U_c \theta_c} = \frac{5c}{6\xi} \left(1 - \exp(-\xi^2)\exp(-H^2\xi^2)\right).$$

From the plot in Fig. 9 the cross-stream velocity-temperature correlation remains positive for all ξ with a maximum value of 0.026 at $\xi=0.51$.

The production term is obtained as

$$\frac{\overline{u'\theta'}}{U_c \theta_c} = \frac{c}{3} \left(5 \exp(-2\xi^2) - 3 \exp(-3\xi^2) - 2 \exp(-(H^2+1)\xi^2)\right).$$

This has a maximum of 0.020 around $\xi=0.6$ (Fig. 10). This plot matches that of axisymmetric jets quite closely with maxima at almost the same ξ. As expected the production term for the plumes is larger than jets for all ξ.

The dilution rate can be calculated from

$$\frac{1}{\mu} \frac{d\mu}{dz} = \frac{5c}{3b}.$$ \hspace{1cm} (23)

Comparing Eqs. (14) and (23), we find that entrainment, and hence dilution rate for axisymmetric plumes is about 1.6 times greater than for axisymmetric jets.

The normalized eddy viscosity can be obtained using Eq. (16) as

$$\frac{\nu_f}{U_c b} = \frac{c}{12\xi^2} \left(5 - 3 \exp(-\xi^2) - 2 \exp(-(H^2-1)\xi^2)\right).$$

Here again the variation with ξ is large. In fact, the ratio of $\nu_f(\xi=0)$ to $\nu_f(\xi=\xi)\geq2$ (Fig. 11). In addition, $\nu_f\sim\xi$. For plumes, a further assumption of constant (in cross-stream direction) eddy thermal diffusivity, γ_f has been made by the researchers in the past to obtain the functional forms of the similarity functions where
The continuity equation for planar plumes is the same as for planar jets (Eq. (8)), while the momentum equation can be derived by adding the buoyancy term to the planar jet momentum equation, \[V \frac{\partial U}{\partial x} + U \frac{\partial V}{\partial z} + \frac{\partial \theta}{\partial x} = g \beta \theta. \] (25)

The temperature equation in the self-similar regime is given by \[V \frac{\partial \theta}{\partial x} + U \frac{\partial \theta}{\partial z} = 0. \] (26)

Here the centerline temperature varies as \(z^{-1} \), while it is interesting to note that the centerline velocity does not change downstream, [6], i.e., presence of buoyancy prevents the decay of the centerline velocity. This has an interesting consequence for the cross-stream velocity, expressed mathematically as

\[\frac{V}{U_c} = \frac{c}{2} \left(2 \xi \exp(-\xi^2) - \sqrt{\pi} \operatorname{erf}(\xi) \right). \]

Unlike axisymmetric plumes, we find that planar plumes do not experience an outflow near the centerline; \(V/U_c \) is small for \(\xi<0.54 \) (less than 10% of its asymptotic value of 0.098) and remains negative throughout, i.e., the flow is always towards the axis (Fig. 7). Qualitatively the plot is similar to planar jets. Buoyancy causes planar plumes to entrain more than planar jets like their axisymmetric counterparts.

Similar to planar jets, we can obtain the coefficient of entrainment as

\[\alpha = \frac{\sqrt{\pi} c}{2}. \]

Using \(c = 0.11, [16] \), we obtain \(\alpha = 0.0975 \).

The Reynolds stress is given by

\[\frac{\bar{u} \bar{v}}{U_c^2} = \frac{\sqrt{\pi} c}{2} \left(\operatorname{erf}(\xi) \exp(-\xi^2) - \frac{\operatorname{erf}\left(\sqrt{2}\xi\right)}{\sqrt{2}} \right) + \frac{\sqrt{\pi} g \beta \theta_c}{2 H U_c^2} \frac{\xi}{\sqrt{2}}. \] (27)

Note that the constant of integration is zero in Eq. (27), and for similarity to exist \(g \beta \theta_c / U_c^2 \) should be a universal constant, [6]. The experimental data of Ramaprian and Chandrasekhara [16] indicates \(H = 1.2 \) (identical to axisymmetric plumes). We estimate the value of \(\sqrt{\pi} g \beta \theta_c / 2 H U_c^2 \) (denoting this by \(C \)) as 0.069 which gives \(\bar{u} \bar{v} = 0.036 \) at \(\xi = 0.63 \). (The maximum value is very close to the value of 0.035 predicted by Malin and Spalding [26]). For Ramaprian and Chandrasekhara’s [16] data we obtain \(C = 0.062 \), but we find that \(\bar{u} \bar{v} \) becomes negative for \(\xi > 1.6 \). As in the case of axisymmetric plumes, \(\bar{u} \bar{v} \) should remain positive for all \(\xi \) (this is also supported by the data of [16]). Hence, we will use \(C = 0.069 \) to obtain

\[\frac{\sqrt{\pi} g \beta \theta_c}{2 H U_c^2} = 0.069 = 0.71 \frac{\sqrt{\pi} c}{2} = \frac{\sqrt{\pi} c}{2} \sqrt{\xi}. \]

and \(g \beta \theta_c / U_c^2 = 0.093 \) which is very close to the value for axisymmetric plumes. Equation (27) can then be simplified to (see Fig. 8)

\[\frac{\bar{u} \bar{v}}{U_c^2} = \frac{\sqrt{\pi} c}{2} \left(\frac{\operatorname{erf}(\xi) \exp(-\xi^2)}{\sqrt{2}} - \frac{\operatorname{erf}\left(\sqrt{2}\xi\right)}{\sqrt{2}} + \frac{\operatorname{erf}(H \xi)}{\sqrt{2}} \right). \]

While it is known that \(H = 1.2 \), an interesting result is obtained by substituting \(H = \sqrt{2} \) in the above expression. Then, it is seen that \(\bar{u} \bar{v} \) for planar plumes is twice that of planar jets (Eq. 13).

The velocity-temperature correlation for planar plumes is given by

\[\frac{V}{U_c} \frac{\theta}{\theta_c} \frac{1}{\sqrt{\pi}} = \frac{\sqrt{\pi} g \beta \theta_c}{2 H U_c^2} \frac{\xi}{\sqrt{2}}. \]
As for axisymmetric plumes, the velocity–temperature correlation is also positive with a maximum of 0.035 at \(\xi = 0.53 \) (Fig. 9). Note that for both axisymmetric and planar plumes, the maximum value of \(\overline{w't'} \) is to the left of the maximum for \(\overline{uv} \).

We can obtain the production term as

\[
\frac{\overline{uv}}{U_c^3} \frac{\partial U}{\partial \xi} = \frac{\sqrt{\pi} c}{4 \xi \exp(-\xi^2)} \left(\text{erf}(\xi) \exp(-\xi^2) - \frac{\text{erf}(\sqrt{2} \xi) \exp(-\xi^2)}{\sqrt{2}} + \frac{\text{erf}(\xi \sqrt{2}) \exp(-\xi^2)}{\sqrt{2}} \right).
\]

As for jets and axisymmetric plumes, this term has a maximum value around \(\xi = 0.6 \) (Fig. 10). In fact, the maximum lies at almost the same location as the maximum of Reynolds stresses. It should be pointed out that unlike for jets, the production term for planar plumes is larger than their axisymmetric counterparts.

The dilution rate for planar plumes can be obtained as

\[
\frac{1}{\mu} \frac{d\mu}{dz} = c b.
\]

As expected, the dilution rate of planar plumes is higher than planar jets (compare Eqs. (15) with (28)). Interestingly, it is equal to the dilution rate of axisymmetric jets (Eqs. (14) and (28)).

Once again, we can derive expressions for \(\nu_T, \gamma_T, \) and \(\Pr_T \) and question the validity of assigning constant cross-stream values to them.

\[
\frac{\nu_T}{U_c b} = \frac{\sqrt{\pi} c}{4 \xi \exp(-\xi^2)} \left(\text{erf}(\xi) \exp(-\xi^2) - \frac{\text{erf}(\sqrt{2} \xi) \exp(-\xi^2)}{\sqrt{2}} + \frac{\text{erf}(\xi \sqrt{2}) \exp(-\xi^2)}{\sqrt{2}} \right).
\]

\[
\frac{\gamma_T}{U_c b} = \frac{\sqrt{\pi} c}{4 \xi \exp(-\xi^2)} \text{erf}(\xi),
\]

\[
\Pr_T = \frac{1}{H^2} \frac{\sqrt{2} \text{erf}(\xi) \exp(-\xi^2)}{\text{erf}(\sqrt{2} \xi) + \text{erf}(\xi \sqrt{2})}. \tag{29}
\]

Turbulent eddy viscosity and thermal diffusivity are plotted in Figs. 11 and 12, respectively. Both \(\nu_T \) and \(\gamma_T \sim \xi. \) \(\Pr_T \) has a maximum value of 0.82 (at the centerline) while it drops to 0.74 for \(\xi = 2 \) (Fig. 13). It is again reassuring to note that \(\Pr_T = 1 \) as predicted by physical arguments, [25].

Turbulent Wakes

Axisymmetric Wakes. Unlike jets and plumes, wakes have a nonlinear spread rate. The continuity equation for axisymmetric wakes remains the same as Eq. (1), while the momentum equation can be derived as for axisymmetric jets. However, here \(u' / U_c \) is of order unity, i.e., the velocity fluctuations are of the order of the velocity defect, [6]. This simplifies the momentum equation further:

\[
U_0 \frac{\partial U}{\partial \xi} + \frac{1}{r} \frac{\partial r u}{\partial r} = 0. \tag{29}
\]

It is interesting to note that \(V \) does not appear in the streamwise momentum equation. This is because in the momentum equation \(V \partial U / \partial r = \mathcal{O}(U_c^2 L) \), while \(U \partial U / \partial \xi = \mathcal{O}(U_0 U_c / L) \); since \(U_0 / U_c = \mathcal{O}(b / L) \), the former can be discarded.

Using a Gaussian profile for the velocity defect, the streamwise velocity gradient is given by

\[
U(r, z) = U_0 - U_0 \exp(-r^2 b^2) = U_0 - U_0 \exp(-\xi^2). \tag{30}
\]

In the self-similar region \(U_c \) decreases as \(z^{-2/3} \), while \(b \) increases as \(z^{1/3} \), [6]. Keeping these in mind, we can obtain \(V \) from the continuity Eq. (1) as

\[
\frac{V}{U_c} = -\frac{b}{3z} \exp(-\xi^2). \tag{31}
\]

As for planar plumes, inflow occurs for all \(\xi \) with a maximum at \(\xi = 0.1 \).

Reynolds stress can be obtained using Eqs. (29) and (30) as

\[
\frac{\overline{uv}}{U_c^3} = \frac{b}{12 \xi^2} \left(1 - \exp(-2\xi^2) + 2\xi^2 \exp(-2\xi^2) \right) - \frac{4U_0}{U_c} \xi^2 \exp(-\xi^2). \tag{32}
\]

It should be mentioned that in this case the integration constant is nonzero (actually \(K = b/12 \xi \)). It is not possible to plot Eq. (32) without knowing \(U_0 / U_c \). However, since \(U_0 / U_c = \mathcal{O}(1) \), one can simplify the momentum equation by replacing \(r \partial U / \partial r \) by \(U_0 \partial U / \partial z \), [6], to obtain:

\[
\frac{U_0}{U_c} \frac{\partial U}{\partial z} + \frac{1}{r} \frac{\partial r u}{\partial r} = 0. \tag{33}
\]

On comparing Eqs. (1) and (33), we can see that they are identical (\(\overline{uv}/U_c \) replaces \(V \)). Hence it is not surprising to see

\[
\frac{\overline{uv}}{U_0 U_c} = \frac{b}{3z} \exp(-\xi^2), \tag{34}
\]

which is exactly the same expression as for \(V/u_c \). It should, however, be noted that \(\overline{uv} \) has been normalized with \(U_0 U_c \) and not \(U_c, \overline{uv}/U_0 U_c, \) and \(V / U_c \) are plotted in Fig. 14.

We will use the expression for \(\overline{uv} \) given by Eq. (32) to obtain the production term and the radial variation in turbulent eddy viscosity as

\[
\frac{\overline{uv}}{U_c^3} = \frac{b}{12 \xi^2} \left(1 - \exp(-2\xi^2) + 2\xi^2 \exp(-2\xi^2) \right) - \frac{4U_0}{U_c} \xi^2 \exp(-\xi^2), \tag{35}
\]
\[v_T = \frac{b}{U_c} \left(\frac{b}{2\epsilon^2 \exp(-\epsilon^2)} \left(1 - \exp(-2\epsilon^2) + 2\epsilon^2 \exp(-2\epsilon^2) - 4U_0 / U_c \epsilon^2 \exp(-\epsilon^2) \right) \right). \]

Planar Wakes. The continuity equation for planar wakes is given by Eq. (8) while the momentum equation is, [6],

\[\frac{\partial U}{\partial z} - \frac{\partial U}{\partial x} = 0. \quad (35) \]

\(U_c \) varies as \(z^{-1/2} \), while \(b \) increases as \(z^{1/2} \) for planar wakes, [6,21]. Integrating the continuity Eq. (8) gives

\[\frac{V}{U_c} = -\frac{b\xi}{2\epsilon} \exp(-\epsilon^2). \quad (36) \]

Comparing Eqs. (31) and (36), we see that the inward velocity is very similar. However, the decay with \(z \) is slightly different for the two cases.

Reynolds stress can be obtained from the momentum Eq. (35) using Eq. (30):

\[\frac{\bar{u}\bar{v}}{U_c^2} = \frac{b}{16\epsilon} \left(-4\xi \exp(-2\epsilon^2) + \sqrt{2}\pi \exp(\sqrt{\pi} \xi) \right) \]

\[-\frac{8U_0}{U_c} \frac{\epsilon \exp(-\epsilon^2)}{z}. \]

The production term is

\[\frac{\bar{u}\bar{v}}{U_c^2} \left(\frac{\partial U}{\partial \xi} \right) = \frac{b}{8\epsilon} \left(-4\xi \exp(-2\epsilon^2) + \sqrt{2}\pi \exp(\sqrt{\pi} \xi) \right) \]

\[-\frac{8U_0}{U_c} \frac{\epsilon \exp(-\epsilon^2)}{z}. \]

\(v_T \) can be obtained as

\[\frac{v_T}{U_c b} = \frac{b}{32\epsilon} \left(\frac{b}{2\epsilon^2 \exp(-\epsilon^2)} \left(1 - \exp(-2\epsilon^2) + \sqrt{2}\pi \exp(\sqrt{\pi} \xi) \right) \right) \]

\[-\frac{8U_0}{U_c} \frac{\epsilon \exp(-\epsilon^2)}{z}. \]

Simplifying the momentum equation as was done with axisymmetric wakes, and using it to obtain the simplified Reynolds stress

\[\frac{\bar{u}\bar{v}}{U_c^2} = -\frac{b\xi}{2\epsilon} \exp(-\epsilon^2), \quad (37) \]

which, as expected, is the same expression as for \(V/U_c \) for planar wakes (Fig. 14). It is not possible to compare the production terms for the axisymmetric and planar wakes because \(U_0 \) is unknown. However, if we use the simplified expressions for the Reynolds stress (Eqs. (34) and (37)), we can write the production terms as

\[\frac{\bar{u}\bar{v}}{U_0 U_c^2} \left(\frac{2b\xi^2 \exp(-2\epsilon^2)}{3z} \right) \quad \text{(axisymmetric wakes)} \]

\[\frac{\bar{u}\bar{v}}{U_0 U_c^2} \left(\frac{b\xi^2 \exp(-2\epsilon^2)}{z} \right) \quad \text{(planar wakes)} \]

These two terms differ just by a constant.

The simplified expressions for \(v_T \) (using Eqs. (16), (30), (34), and (37)) are

\[v_T^{\text{axisym}} = \frac{U_0 b^2}{6\epsilon}. \]

Since \(U_0 \) is invariant with \(z \), we obtain \(v_T^{\text{axisym wake}} \sim z^{-1/3} \) while \(v_T^{\text{planar wake}} \sim z^0 \), in agreement with Lessen’s predictions, [21]. Remarkably, the dependence of \(v_T \) on \(\xi \) disappears for wakes.

Conclusions

A comprehensive analysis has been conducted for six standard cases (axisymmetric and planar jets, plumes, and wakes). Expressions for cross-stream velocity, Reynolds stress, and turbulent kinetic energy production terms are derived for these cases assuming a Gaussian streamwise velocity distribution. The plots are compared amongst themselves and provide several insights.

1. Expressions for cross-stream velocity indicate outflow for jets and axisymmetric plumes near the axis, while inflow occurs in the far field. Planar plumes do not experience any such outflow. Outflow of fluid near the axis is a natural consequence of the decay of the centerline velocity with downstream distance (and not because of the assumed Gaussian velocity profile). The decay rates of axisymmetric jets, planar jets, and axisymmetric plumes are, respectively, \(z^{-1} \), \(z^{-1/3} \), and \(z^{-1/3} \), while the radial extents of outflow are \(r/b \sim 1 \), 0.99, 0.59. Moreover, the decay rate for planar plumes varies as \(z^0 \) and do not experience any outflow. Thus, a higher decay rate correlates with a larger radial extent of outflow. See Agrawal et al. [20] for more discussion on the coupling between the decay of the centerline velocity and the radial extent of the outflow.

2. Expressions for the entrainment coefficients of planar jets and plumes are developed along the lines of their axisymmetric counterparts. It is found that for planar jets and plumes \(V_e = aU_c \); this is, however, not true for axisymmetric cases. Hence, contrary to conventional belief, the entrainment velocity should not be equated to \(aU_c \) for axisymmetric jets and plumes.

3. The value of the universal constant \(g_1 b \theta / U_c^2 \) is estimated as 0.096 and 0.093 for axisymmetric and planar plumes, respectively.

4. Reynolds stress and the dominant turbulent kinetic energy production term for jets and plumes are qualitatively the same with a maximum around \(\xi = 0.6 \). Magnitudes for jets and axisymmetric plumes are nearly the same. These are much smaller than for planar plumes.

5. Unlike plumes and jets, the normalized cross-stream velocity and Reynolds stresses for wakes are functions of downstream distance. In addition, the turbulent kinetic energy production term for axisymmetric and planar wakes has the same cross-stream distribution.

6. Cross-stream variations for \(v_T \), \(\gamma_T \), and \(P_T \) are shown to be significant, therefore, the use of constant values of \(v_T \) and \(\gamma_T \) in the cross-stream direction is unjustified. \(P_T \) is found to lie between 0.9 and 0.7 for axisymmetric and planar plumes.

7. Our analysis reveals that the eddy viscosity is independent of the cross-stream coordinate for axisymmetric and planar wakes.

Acknowledgments

This work was supported by National Science Foundation, under grant NSF-ATM-9714810. We thank Prof. Pablo Huq of the College of Marine Studies, University of Delaware, for encouraging us to undertake this study and helpful discussions.

Nomenclature

- \(b \) = width (defined as \(U(b)/U_c = e^{-1} \) for jets and plumes, and \((U_0 - U(b))/U_c = e^{-1} \) for wakes)
- \(c \) = spread rate = \(db/dz \)
- \(c_T \) = spread rate for temperature
- \(d \) = diameter of the nozzle
- \(g \) = acceleration due to gravity
\[H = c T \]
\[K = \text{constant of integration} \]
\[L = \text{downstream distance scale} \]
\[p = \text{time-averaged pressure} \]
\[Pr_T = \text{turbulent Prandtl number} \]
\[r = \text{cross-stream coordinate used for axisymmetric case} \]
\[T = \text{temperature} \]
\[T' = \text{fluctuating temperature} \]
\[T_0 = \text{ambient fluid temperature (assumed constant)} \]
\[T_c = \text{time-averaged centerline temperature} \]
\[u, v = \text{fluctuating components of velocity} \]
\[u' = \text{fluctuating velocity scale} \]
\[U = \text{time-averaged streamwise velocity} \]
\[U_0 = \text{free stream velocity} \]
\[U_c = \text{time-averaged centerline velocity (for wakes—velocity defect at the centerline)} \]
\[V = \text{time-averaged cross-stream velocity} \]
\[V_c = \text{time-averaged entrainment velocity} \]
\[x = \text{cross-stream coordinate used for planar case} \]
\[z = \text{coordinate along the axis} \]
\[\alpha = \text{coefficient of entrainment} \]
\[\beta = \text{coefficient of thermal expansion} \]
\[\gamma = \text{thermal diffusivity} \]
\[\gamma_T = \text{turbulent thermal diffusivity} \]
\[\theta = T - T_0 \]
\[\theta' = T' - T_0 \]
\[\theta_c = T_c - T_0 \]
\[\mu = \text{volume flux} \]
\[\nu_T = \text{eddy viscosity} \]
\[\xi = \text{nondimensional cross-stream coordinate } (= r/b \text{ for axisymmetric case, } = x/b \text{ for planar case. See Fig. 2) } \]
\[\rho = \text{density} \]

References