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ABSTRACT 

This paper examines the passive dynamics of quadrupedal bounding. First, an unexpected 

difference between local and global behavior of the forward speed versus touchdown angle in the 

self-stabilized Spring Loaded Inverted Pendulum (SLIP) model is exposed and discussed. Next, 

the stability properties of a simplified sagittal plane model of our Scout II quadrupedal robot are 

investigated. Despite its simplicity, this model captures the targeted steady state behavior of 

Scout II without dependence on the fine details of the robot structure. Two variations of the 

bounding gait, which are observed experimentally in Scout II, are considered. Surprisingly, 

numerical return map studies reveal that passive generation of a large variety of cyclic bounding 

motion is possible. Most strikingly, local stability analysis shows that the dynamics of the open 

loop passive system alone can confer stability of the motion! These results can be used in 

developing a general control methodology for legged robots, resulting from the synthesis of 

feedforward and feedback models that take advantage of the mechanical system, and might 

explain the success of simple, open loop bounding controllers on our experimental robot. 

KEY WORDS – Passive dynamics, bounding gait, dynamic running, quadrupedal robot. 

1 INTRODUCTION 

Mobility and versatility are the most important reasons for building legged robots, instead of 

wheeled and tracked ones, and for studying legged locomotion. Animals exhibit impressive 

performance in handling rough terrain, and they can reach a much larger fraction of the earth 

landmass on foot than existing wheeled vehicles. Most mobile robotic applications can benefit 

from the improved mobility and versatility that legs offer. 

Early attempts to design legged platforms resulted in slow moving, statically stable 

robots; these robot designs are still the most prevalent today, see [5] for a survey. In this paper, 

however, we restrict our attention to dynamically stable legged robots. Twenty years ago Raibert 

set the stage with his groundbreaking work on dynamic legged robots by introducing a three-part 

controller for stabilizing running on his one-, two-, and four-legged machines, [31]. His 

controllers, although very simple, resulted in high performance, robust running with different 

gaits, such as the trot, the pace, and the bound. Inspired by Raibert’s work, Buehler and his 
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collaborators at McGill’s Ambulatory Robotics Laboratory (ARL) designed and built power 

autonomous one-, four-, and six-legged platforms, which demonstrate walking and running in a 

dynamic fashion; see [7] for an overview. Minimal actuation, coupled with a suitably designed 

mechanical system featuring compliant legs, and simple control laws that excite the natural 

dynamics of the mechatronic system are the underlying fundamental principles exemplified by 

ARL’s robots. 

Other design and control approaches for dynamically stable running robots have been 

proposed, including the Patrush and Tekken robotic quadrupeds by Kimura and his collaborators, 

[13], [20]. Based on principles from neurobiology, they implemented bounding by transitioning 

from pronking in Patrush by combining compliant legs with a neural oscillator network, [20]. 

More recently, Fukuoka et al. proposed a controller based on a Central Pattern Generator (CPG) 

that alters its active phase based on sensory feedback and results in adaptive dynamic walking on 

irregular terrain, [13]. Following a different design approach, Cham et al. introduced Sprawlita, a 

spectacularly robust dynamic hexapod, capable of running with speeds over four body lengths 

per second on irregular terrains with hip height obstacles, [10]. The authors employed a novel 

manufacturing technique to construct a biomimetic mechanism with actuators, sensors and 

wiring embedded in the robot’s body and limbs. 

Despite their morphological and design differences these robots walk and run using 

control laws without intense feedback. For instance, recent research on our quadrupedal robot 

Scout II (Fig. 1) demonstrated that simple controllers, requiring only touchdown detection and 

local feedback from motor encoders, can be used to stabilize running, [29], [30]. These 

controllers simply position the legs at a fixed touchdown angle during the flight phase, and result 

in stable bounding with speeds up to 1.3 m/s. A slightly modified control strategy was 

successfully implemented on Scout II to result in the first ever reported robot gallop gait, [30], 

[38]. Similar design and control ideas as found in Scout II have subsequently been implemented 

to generate bounding in a modified (one actuator per leg) version of the SONY AIBO dog, [40], 

and in the one-actuator-per-leg hexapedal RHex, [8] (see [32] for design and control details). 

Recently RHex traversed irregular terrain with speeds over five body lengths per second and 

reduced specific resistance, [39]. Once again the controller employs only local feedback from 

encoders, necessary for the leg recirculation strategy, while the parameters for some of its gaits 

are determined via Nelder-Mead optimization, [39]. 



 

Fig. 1.  Scout II: A high performance, power autonomous, four-legged robot with one 

actuator per leg. 

On the other hand, Stanford’s Sprawlita runs without any sensory feedback at all, [10]. 

Leg placement in the sagittal plane is achieved via a passive compliant hip joint, acting in a 

manner analogous to that of the trochanter-femur joint of a cockroach, while the legs are 

equipped with prismatic actuators (pneumatic pistons) and behave mainly as thrusters, [10]. 

Furthermore, an extreme case, where no control action is needed, was first presented by McGeer 

in his pioneering work on passive walking, [23]. McGeer built a gravity-powered biped, which 

was able to walk on inclined surfaces without the need of sensors and actuators. He also 

expanded his analysis to passive bipedal running in [22], without, though, providing 

experimental results. 

In a loose sense, the experimental findings in robotics are in qualitative agreement with 

developments in biology. For instance, experimental evidence suggests that the high level 

nervous system is not required for steady state level walking and running, and that mechanisms 

entirely located within the spinal cord are responsible for generating the rhythmic motions of the 

legs during locomotion, [24], [26]. Furthermore, locomotion is possible even when feedback 

from the afferent pathways is denied2 (de-afferented spinal walking), [24]. On the other hand, 

recent research in physiology indicates that, during rapid locomotion, the control is dominated by 

the mechanical system, [14], [21]. To explore the role of the mechanical system in control, 

Kubow and Full developed a simple, two-dimensional, dynamic model of a hexapedal runner 
                                                 
 
2 However, when the afferent nerves are intact, sensory input reinforces and modulates the centrally generated 

pattern, [24]. 
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(death-head cockroach, Blaberous discoidalis), [21]. The model had no equivalent of nervous 

feedback among any of its components and it was found to be inherently stable. This work first 

revealed the significance of mechanical feedback in simplifying neural control, by demonstrating 

that stability could result from leg moment arm changes alone. Therefore, one can assume that 

intense control action relying on complex feedback from a multitude of sensory receptors is not 

necessary to generate and sustain walking and running. 

In an attempt to set the basis for a systematic approach in studying legged locomotion 

Full and Koditschek introduced the templates and anchors modeling and control hierarchy, [14]. 

Schmitt and Holmes proposed the Lateral Leg Spring (LLS) template to analyze the horizontal 

dynamics of sprawled postured animals, [35]. Surprisingly they found that, despite its 

conservative nature, the LLS template exhibits some degree of asymptotic stability without the 

need of feedback control laws. To study the basic properties of sagittal plane running, the Spring 

Loaded Inverted Pendulum (SLIP) template has been proposed (see [36] and references therein) 

which, despite its structural simplicity, was found to sufficiently encode the task-level behavior 

of animals and robots, [14]. Recent research conducted independently by Seyfarth et al., [37], 

and Ghigliazza et al., [15], showed that when the SLIP is supplied with the appropriate initial 

conditions, and for certain touchdown angles, not only does it follow a cyclic motion, but it also 

tolerates small perturbations without the need of a feedback control law. The inherent stability of 

SLIP and LLS models is a very interesting property since, as is known from mechanics, systems 

described by autonomous, conservative, holonomically constrained flows cannot be 

asymptotically stable3. However, Altendorfer et al. in [3] showed that the stable behavior of 

piecewise holonomic conservative systems is a consequence of their hybrid nature. 

The formal connection between templates, such as the SLIP, and more elaborate models, 

which enjoy a more faithful correspondence to the morphology of the robot, has not yet been 

fully investigated; for preliminary results, see [33]. Furthermore, as was shown in [11], 

controllers specifically derived for the SLIP will have to be modified in order to be successful in 

inducing stable running in more complete models that include pitch dynamics and comprise 

 
 
3 By Liouville’s theorem (see [34], p. 122), the incompressibility of the phase fluid precludes the existence of 

asymptotically stable equilibria in Hamiltonian systems, for if such points existed, they would reduce a finite 

volume in the phase space to a single point. 



energy losses. However, simplified models have been proved to be helpful in the design of 

controllers that exploit the passive dynamics of the system, resulting in considerable energy 

savings, which is a critical requirement for autonomous legged locomotion. A notable example 

of such controllers is ARL’s Monopod II, see [1], [2]. Monopod II exploits the passive dynamics 

through the use of leg and hip compliance to keep energy expenditure for maintaining the 

vertical and hip oscillations at a minimum. Proper initial conditions and selection of compliant 

elements, together with a controller that synchronizes the vertical and hip oscillations, result in 

motions close to passive dynamic operation with a dramatic decrease in energy requirements; 

70% reduction in specific resistance measured in experiments, [2]. 

Other models have also been proposed to study sagittal running of dynamically stable 

quadrupeds. Murphy and Raibert studied pronking and bounding using a model with kneed legs, 

whose lengths were controllable, [25]. They discovered that active attitude control in bounding is 

not necessary when the body’s moment of inertia is smaller than the mass times the square of 

half the hip spacing (see also [31], p. 193). Following that work, Berkemeier showed that 

Murphy’s result applies to a simple, linearized, running-in-place model, and that it can be 

extended to pronking under appropriate conditions, [4]. These models ([4], [25]) are both 

actuated and comprise energy losses. To the best of the authors’ knowledge, only Brown 

investigated the conditions for obtaining passive cyclic motion in [6]. He studied two limiting 

cases of system behavior: the grounded and the flight regimes, and found that the system in 

either regimes can passively trot, gallop or bound under the appropriate initial conditions, only4 

when its properties – mass , moment of inertia m I , and half hip spacing  – have the particular 

relationship . 

L
2/ 1I mL =

In this paper, motivated by the experimental findings in our robot and in others, we 

attempt to provide an explanation for simple control laws being adequate in stabilizing complex 

running tasks such as bounding. It is the simplicity of Scout II’s design and control together with 

its experimental success that initiated our attempts for this study. Our analysis departs from the 

recent developments regarding the self-stabilization property of the SLIP briefly described in 

Section 3, where it is shown that self-stabilization cannot be immediately applied to improve the 

                                                 
 
4 However, in Sections 5, 6, it will be shown that a conservative model of Scout II can passively pronk and bound 

despite the fact that its parameters satisfy the inequality 2/ 1I mL < . 
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existing intuitive control algorithms. To investigate passive stability in Scout II, a simple 

mechanical model that encodes the targeted task-level behavior (steady state bounding) is 

proposed in Section 4. The model is unactuated and conservative, so that the properties of the 

natural dynamics of Scout II can be revealed. In that respect, it represents an extension of the 

SLIP suitable for studying bounding, in which pitching is a very important component of the 

motion that is not captured by point-mass models like the SLIP.  

Identifying conditions that permit the generation of passive running cycles and studying 

their stability properties constitutes the central contribution of this paper. To do so, a Poincaré 

return map, whose fixed points describe the cyclic bounding motion, is derived and studied 

numerically. Two variations of the bounding gait, which are of experimental interest in Scout II, 

are analyzed. It is found that both can be passively generated as a response of the system to an 

appropriate set of initial conditions. Most strikingly, a regime where the system is self-stabilized 

against small perturbations from the nominal conditions is identified. These results show that 

bounding is essentially a natural mode of the system, and that only minor control action and 

energy are required keep the robot running. 

It must be emphasized that the practical motivation for studying the passive dynamics is 

threefold. First, if the system remains close to its passive behavior, then the actuators have less 

work to do to maintain the motion, and energy efficiency, a very important issue in mobile 

robots, is improved (an example of how this principle is applied conceptually and in experiments 

is provided by the ARL Monopod II, [1], [2]). Second, if there are operating regimes where the 

system is passively stable, then active stabilization is not required, or else will require less 

control effort and sensing. Finally, passive dynamics can be used as a design tool to specify the 

desirable behavior of complex, underactuated dynamical systems, where reference trajectory 

tracking is not possible. It is important to note that, the purpose of this paper is not to propose a 

model of Scout II that achieves a faithful correspondence to the robot’s structure and function, 

and is suitable for constructing accurate simulations that reproduce exactly the data collected in 

experiments. Such a model was presented in detail in [29]. Rather, in this paper a simplified 

model is analyzed, which encodes the targeted behavior and reveals the basic properties of 

quadrupedal bounding, without dependence on the fine details of the robot structure. 

It is worth mentioning that, since our original work on the stability analysis of the passive 

dynamics of quadrupedal bounding, first reported in [27], [28] and [30], other researchers, see 



 
 
 

 
8 

[19] or [41] for example, have adopted similar approaches to study running, revealing similar 

aspects of the passive dynamics of their robotic quadrupeds, and confirming our early results, 

which are anticipated to facilitate the design of legged locomotion controllers that take advantage 

of the system’s natural dynamics. 

2 EXPERIMENTS WITH SCOUT II: THE BOUNDING GAIT 

Scout II has been designed for power autonomous operation: The hip assemblies contain the 

actuators and batteries, and the body houses all computing, interfacing and power distribution. 

The most significant feature of Scout II is the fact that it uses a single actuator per leg located at 

the hip joint. Each leg assembly consists of a lower and an upper leg, connected via a spring to 

form a compliant prismatic joint. Thus, each leg has two degrees of freedom (DOF): the hip DOF 

(actuated), and the linear compliant DOF (passive); for details regarding the design of Scout II 

see [29] and references therein. 

In bounding, Scout II uses its front and back legs in pairs, thus the essentials of the 

motion take place in the sagittal plane. According to the virtual leg concept, [31], the back and 

front physical leg pairs can be replaced by single back and front virtual legs, respectively. Each 

of the back and front virtual legs detects three leg states – “flight”, “stance-retraction” and 

“stance-brake”, which are separated by touchdown, sweep limit, and liftoff events respectively, 

see Fig. 2. During the “flight” state, the controller places the leg to a desired, fixed throughout 

the gait, touchdown angle. Then, during the “stance-retraction” state, the leg is swept back by 

applying a torque according to the saturation limitations of the motor, until the sweep limit is 

reached. In the “stance-brake” state the leg is kept at the sweep limit angle. There is no actively 

controlled coupling between the back and front virtual legs – the bounding motion is purely the 

result of the controller interaction through the multi-body dynamic system. Furthermore, it must 

be emphasized that state changes are made based on data from only two types of sensors: the 

legs’ linear potentiometers, which are used to detect touchdown and liftoff, and the legs’ motor 

encoders, which allow state transition when the pre-specified sweep limit angle is reached. 

This controller, documented in detail in [29], results in the bounding gait presented in 

Fig. 3, where two variations in the footfall pattern can be observed. In the first variation, which is 

referred to as bounding with double stance, the front leg touchdown occurs directly after the back 

leg touchdown event, thus there is a portion of the cycle where both the front and back legs are in 



stance (double leg stance phase), see Fig. 3. On the other hand, in the second bounding variation, 

which is referred to as bounding without double stance, the front leg touchdown occurs after the 

back leg liftoff event, thus the back and front leg stance phases are separated by a double flight 

phase, as the dashed line shows in Fig. 3. In experiments, the robot converges to either of the two 

variations depending on the system’s energy content at steady state; for instance, at higher 

speeds and pitch rates the robot shows preference for the bounding without double stance. 

CONTROL ACTION
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Fig. 2.  The virtual leg state machine and corresponding commanded torques ( maxτ  and A  

are the offset and the slope of the motor’s torque speed line; for details see [29], where the 

gains and set points are also presented). 
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Fig. 3.  Bounding phases and events with and without double leg stance. 
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Scout II is a nonlinear, highly underactuated, system that exhibits intermittent dynamics. 

The complexity is further increased by the limited ability in applying hip torques due to actuator 

and friction constraints, and by the existence of unilateral ground forces. On the other hand, 

running is generally considered a complex task involving the coordination of many limbs and 

redundant degrees of freedom, and in general, it cannot be encoded in a set of outputs following 

pre-specified desired trajectories, imposed on the system using the actuator inputs5. 

Despite this complexity, simple control laws requiring minimal sensing, such as the one 

presented in Fig. 2, were found to excite and stabilize periodic motions, resulting in robust and 

fast running. Indeed, the controller described above does not require any task-level feedback like 

forward velocity. The absence of forward velocity feedback in adjusting the back and front leg 

touchdown angles, which are kept constant throughout the motion, constitutes a significant 

difference between the controller described here and in [29], and Raibert’s bounding controller, 

[31]. Interestingly, as will be described in Section 3, Raibert’s velocity controller cannot predict 

the fact that stable cyclic motion can be achieved in the SLIP template by keeping the touchdown 

angle constant throughout the motion. 

In fact, Scout II’s controller, not only does not require any task-level feedback, but it also 

does not require any body state feedback: one only needs to know the position of the leg with 

respect to the body and its state (flight, stance-retraction and stance-brake). It is therefore natural 

to ask why such a complex system can accomplish such a complex task via minor control action. 

As outlined in this paper, a possible answer is that Scout II's unactuated, conservative dynamics 

already exhibits stable bounding cycles, and hence a simple controller is all that is needed for 

keeping the robot bounding. 

3 SELF-STABILIZATION IN THE SLIP: A STARTING POINT 

The purpose of this section is to motivate the analysis of the stability of the passive dynamics of 

quadrupedal bounding through a brief description of the self-stabilization property recently 

 
 
5 It must be pointed out that, for certain legged systems exhibiting one degree of underactuation, it is possible to 

define a set of outputs whose tracking guarantees the successful accomplishment of the task, [16]. However, Scout II 

not only exhibits two degrees of underactuation during the stance phases, but also certain outputs are related to the 

inputs via coupling terms that become singular during the motion, thus significantly reducing control affordance. 



discovered in the SLIP. Rather than analyzing the much studied SLIP ([3], [9], [11], [14], [15], 

[36], [37]), we turn our attention to its implications towards the control of legged robots. We 

demonstrate that the mechanism that results in self-stabilization is not yet fully understood, at 

least in a way that would immediately be applicable to improve the existing intuitive control 

algorithms. 

The SLIP, see Fig. 4, consists of a point mass atop a spring and it is passive (no torque 

inputs) and conservative (no energy losses). A stride of the SLIP can be divided into a stance 

phase, with the foothold fixed on the ground, and a flight phase, where the body follows a 

ballistic trajectory under the influence of gravity. In the flight phase, the springy leg 

kinematically obtains its desired position given by the touchdown angle tdγ , and in the stance 

phase, the mass moves forward by compressing and then decompressing the spring. The system 

is open loop since there is no feedback adjusting the touchdown angle according to the state. 

A simulation of the SLIP was constructed in Simulink™. The initial conditions include 

the forward speed x&  and the vertical height  at apex, while the touchdown angle y tdγ  is kept 

constant during the periodic motion. In agreement with other results in the literature (cf. [15], 

[37]), it was found that there exists a range of parameter values and initial conditions where the 

SLIP is asymptotically stable within a particular total energy level. 

m

0,  k l

Neutral Point

nx& 1nx +&

tdγ
Symmetric Stance

Phase

nx& 1nx +&=

 

Fig. 4.  Spring Loaded Inverted Pendulum (SLIP): Neutral point and symmetric stance 

phase ( , , ). 80 kgm = 0 1 ml = 20 kN/mk =

It is known that for a set of initial conditions, there exists a touchdown angle at which the 

system maintains its initial forward speed. As Raibert noted in [31], if the fixed point is 

perturbed by changing the touchdown angle, e.g. by decreasing it (steeper angles), then the 

system will accelerate in the first cycle. Thus, at the second step the forward speed will be 
 

 
 

 
11 



 
 
 

 
12 

                                                

greater than that at the first, and if the touchdown angle is kept constant and equal to the initial 

one, the system will accelerate in the subsequent steps and finally fail due to toe stubbing (the 

kinetic energy increases at the expense of the potential energy resulting in lower apex heights). 

However, when the parameters are within the self-stabilization regime, the system does not fall. 

This fact is not captured by Raibert’s linear steady state argument, based on which one would be 

unable to predict the self-stabilization behavior of the system. 

A question we address next regards the relationship between the forward speed at which 

the system converges, called the speed at convergence, and the touchdown angle. To this end, 

simulation runs have been performed, in which the initial apex height and initial forward velocity 

are fixed, thus the total energy is fixed, while the touchdown angle changes in a range where 

cyclic motion is achieved. For a given energy level, this results in a curve relating the speed at 

convergence to the touchdown angle. Subsequently, the apex height is kept constant, while the 

initial forward velocity varies between 5 and 7 m/s. This results in a family of constant energy 

curves, which are plotted in Fig. 5. It is interesting to see in Fig. 5 that in the self-stabilizing 

regime of the SLIP, an increase in the touchdown angle at constant energy results in a lower 

forward speed at convergence. This means that locally, for constant energy levels, higher 

forward speeds can be accommodated by smaller touchdown angles, which, at first glance, is not 

in agreement with the global behavior that higher speeds require larger (flatter) touchdown 

angles. This global behavior is also evident in Fig. 5, where it can be seen that forward speeds of 

about 5 m/s require touchdown angles in the range 21o-23.75o, while higher speeds, such as those 

about 7 m/s, require larger touchdown angles, which lie in the range 25.75o-30o. 

The fact that globally fixed points at higher speeds require greater (flatter) touchdown 

angles was reported by Raibert, [31], and it was used to control the forward speed of his robots 

based on a feedback control law. However, Fig. 5 suggests that in the absence of control, i.e. 

when the system is open loop, and for a constant energy level, a reduction in the touchdown 

angle results in an increase of the speed at convergence6. These findings illustrate that direct 

application of the above results in intuitive controllers is not trivial, [27]. Note that similar 

 
 
6 It must be mentioned here that the behavior shown in Fig. 5 refers to the particular values of initial speed, total 

energy and touchdown angle used in simulations, and may not be the same for all the possible combinations of 

values of these parameters. 



behavior may also hold in quadrupedal models, although the connection with Fig. 5 may not be 

straightforward. These issues, as well as the design of controllers that take into account these 

properties, are currently under consideration. 

Initial Forward Speed = 7 m/s

6.5 m/s

6 m/s

5.5 m/s

5 m/s

 

Fig. 5.  Forward speed at convergence versus touchdown angle at fixed points obtained for 

initial forward speeds from 5 to 7 m/s and for an apex height of 1 m. 

4 MODELING THE PASSIVE DYNAMICS OF BOUNDING 

Motivated by the stable behavior discovered in the conservative, open loop SLIP, an 

investigation of the passive dynamics of Scout II in the bounding gait is undertaken in this and 

the following sections. Despite its utility for describing running in animals and machines of 

various structures, [14], the SLIP does not capture the body pitch stabilization problem, which is 

a significant component of the motion in the bounding gait. To overcome this issue, a model for 

studying the passive dynamics of Scout II in bounding is developed in this section. The goals of 

the analysis are to determine the conditions required to permit steady state cyclic motion, to 

understand the fundamentals of the bounding gait followed by the robot, and to find ways to 

apply these results to improve the performance of dynamically stable robots such as Scout II. 

It is well known that legged robots belong in the category of hybrid systems and cannot 

be mathematically described by a single flow. A collection of continuous flows together with 

 
 
 

 
13 



discrete transformations governing transitions from one flow to the next are required to model 

the dynamics of such systems. In this paper we follow the terminology and notation used in [18]. 

Let  represent a finite index set enumerated by J α , and X̂α , Jα ∈ , a collection of charts. 

Here, we are interested in systems that are described by conservative, autonomous, 

holonomically constrained vector fields αf  with state variables ˆˆ
TT T Xα⎡ ⎤= ∈⎣ ⎦x q q&  and 

dynamics . Transitions from vector field ( )ˆ α=x f x& ˆ αf  to βf  are governed by discrete equations 

hβ
α , called threshold functions. Each threshold function specifies an event at its zero crossing. In 

this paper we are interested in studying the stability of certain orbits, whose appropriate 

projections are periodic on a recurring sequence of charts, and correspond to the bounding gait.  

The model for analyzing the passive dynamics of Scout II in the sagittal plane is 

presented in Fig. 6, while the associated parameters are given in Table I. Note that this model can 

also be used to study other sagittal plane running gaits such as pronking, pacing, or trotting, in 

which the pitch motion is important and cannot be modeled by point mass hoppers like the SLIP. 

The index set { }1, 2,3, 4J =  includes the four phases that compose the bounding gait 

described in Fig. 3. The indices 1, 2, 3, 4 refer to the flight, the back leg stance, the double leg 

stance and the front leg stance phase, respectively. The configuration space of each of the phases 

is parameterized by the Cartesian coordinates ( ) 2,x y R∈  of the torso’s COM and the torso’s 

pitch angle . Thus, all the charts have the same parameterization 1Sθ ∈ 2 1 3ˆ ˆX R S R Xα = × × = , 

Jα ∈  with state variables ˆ
T

x y x yθ θ⎡= ⎣x && & ⎤⎦ . To derive a simplified mathematical 

model for Scout II in all the phases, we assume massless legs. Also, a toe in contact with the 

ground is treated as a frictionless pin joint. In each phase, the equations of motion are obtained 

using the Lagrangian approach and can be brought in the form 

 
( ) ( ) ( )( )

ˆ ( )a
d
dt

⎡ ⎤⎡ ⎤
= = =⎢⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
-1

qq
x

q -M q F q + G q

&
&

&
ˆ⎥ f x , (1) 

where [ ]Tx y θ=q , see Fig. 6, and Jα ∈ ,  is the mass matrix, and  and  are the 

vectors of the elastic and the gravitational forces, respectively. 

M F G
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Fig. 6.  A template for studying sagittal plane running on Scout II. 

Table I. Basic Mechanical Properties of Scout II 
 Parameter Value Units 

 Body Mass, m  20.865 kg 

 Body Inertia, I  1.3 kg m2 

 Spring Constant, k  3520 N/m 

 Hip Separation, 2  0.552 m L

 Leg Rest Length,  0.323 m 0l

 

As was mentioned in Section 2, we consider two different phase sequences resulting in 

the two variations of the bounding gait shown in Fig. 3. These gaits have been observed in 

experiments with Scout II. The threshold functions, whose zero crossings determine the 

touchdown and liftoff events of the front and back virtual legs, are given by the following 

equations for the bounding with double stance (see Fig. 3), 

 2
1 0sin cos td

bh y L lθ γ= − − , (2a) 

 3
2 0sin cos td

fh y L lθ γ= + − , (2b) 

 4
3 bh l l0= − , (2c) 

 1
4 fh l l0= − , (2d) 

and by the following equations for the bounding without double stance (see Fig. 3), 

 2
1 0sin cos td

bh y L lθ γ= − − , (3a) 
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0 1
2 bh l l= − , (3b) 

 3
1 0sin cos td

fh y L lθ γ= + − , (3c) 

 1
3 fh l l0= − , (3d) 

where the superscript td  denotes touchdown, the subscripts b  and f  denote the back and front 

virtual legs respectively, and  is the uncompressed leg length, see Table I. In (2) and (3), 

zeroing of h

0l

β
α  corresponds to the event that signifies the transition from the flow describing 

phase α  to that describing phase β . All the other variables in (2) and (3) are defined in Fig. 6. 

Note that in the second variation of the bounding phase sequence, the dynamics of the double 

stance phase can be dropped in the calculation of the return map. 

To define the return map, we first consider a convenient point in the bounding running 

cycle. In this work we use the apex height in the double leg flight phase. We could select any 

other point in the cycle. However, the selection of the apex height allows for the touchdown 

angles of both the front and back virtual legs to explicitly appear in the definition of the return 

map as kinematic inputs available for control. We define the Poincaré section, [17], to be the 

hyperplane 

 { }0
ˆˆ ˆ | 0, sin cos ,  sin costd td

bX y y L l y L l0 fθ γ θΣ = ∈ = − > + >x & γ , (4) 

where the conditions 0sin cos td
by L lθ γ− >  and 0sin cos td

fy L lθ γ+ >  were added to indicate that 

the robot is in double leg flight (  becomes zero not only at the apex but also at the lowest 

height). The system is at its apex when its orbit pierces the hyperplane 

y&

Σ̂ . For the Poincaré map 

to be properly defined it is necessary that Σ̂  satisfies the transversality condition (cf. [17]) i.e. 

the inner product of the vector field and the hyperplane’s normal vector must never be zero. In 

the coordinates ( ,  ,  ,  ,  ,  x y x y )θ θ&& & , the normal vector to the hyperplane  is simply Σ̂

[ ]0 0 0 0 1 0 T=n . At apex the vector field is ( )1 apexˆ 0 0 0
T

x gθ⎡ ⎤= −⎣ ⎦f x && , where 

,x Rθ ∈&& , since when the system is in the double flight phase it follows a ballistic trajectory. 

Hence, , i.e. the transversality condition is satisfied. ( )1 apexˆ 0T g= − ≠n f x

We seek a function that maps the apex height states of the th stride to those of the 

) th stride. The states at the th apex height constitute the initial conditions for the cycle, 

n

( 1n + n



 
 
 

 
17 

based o

event  

n which we integrate the double flight phase equations, until the back leg touchdown 

occurs. This event triggers the back leg stance phase, whose dynamic equations are 

integrated using as initial conditions the final conditions of the previous phase (since massless 

legs are considered there are no impacts at touchdown). Successive forward integration of the 

dynamic equations of all the phases, according to (2) and (3) for the two variations of the 

bounding gait, yields the state vector x̂  at the ( )1n + th apex height, which is the value of the 

Poincaré return map evaluated at the n th apex height. If the state vector at the new apex height is 

identical to the initial the cycle is repetitive. 

Note though that the state vector contains the horizontal coordinate x  of the torso’s 

COM, which is a monotonically increasing f x  does not munc ime. Therefore, tion of t ap to itself 

after a cycle, and a function that has been obtained by integrating (1) according to (2) and (3) 

cannot have fixed points that correspond to the bounding gait. This issue can be resolved by 

projecting out the horizontal component x  of the state vector x̂ , which is not relevant to 

describing the running gait. A further dimensional reduction can be obtained by noticing that on 

the Poincaré section Σ̂  the variable y&  is identically zero (this dime sional reduction is inherent 

to the Poincaré method for stability, see 

n

[17]). After the projection ˆ: X XΠ → ; 

ˆ
T

y xθ θ⎡ ⎤=x x &a  of the state vector ˆˆ X⎣ ⎦
& ∈x  onto its non x  and y&  components, the task 

of studying passive bounding reduces to finding the fixed points of the return map  

ion with independent coordinates 1 2X R S R

P  acting on

the reduced Poincaré sect ∈ = × ×x  i.e. 

 ( )1 ,n n n+ =x P x u , (5) 

with 
Ttd td

b fγ γ⎡ ⎤= ⎣ ⎦u , and the subscript n  indicates the stride number. 

Equation (5) represents a nonlinear discrete tim

do not participate in the 

dynami

e system. As expected, despite the fact 

that the touchdown angles are not part of the state vector and they 

cs, they directly affect the value of the return map. The appearance of the touchdown 

angles in the right hand side of (5) is a consequence of the dependence of the threshold functions 

(2) and (3) on the touchdown angles’ values. It is apparent from (5) that the touchdown angles 

are kinematic inputs available for “cheap” control, since, in Scout II, it is very easy to place the 

legs at their target angles during the flight phase. The significance of the flight phase in the 

control of running has also been outlined in [3], where it was shown that, in the passive and 



conservative SLIP, the stance phase has no contribution to the stability of the gait, while 

different leg placement strategies during flight result in different stability properties. 

5 EXISTENCE OF PASSIVE BOUNDING CYCLES 

5.1 Fixed Points and their Properties 
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o determine the conditions required to permit steady 

state cyclic bounding motion of Scout II. In other words we want to find an argument  in (5) 

The goal of the analysis in this section is t

x

that maps onto itself, i.e. we want to solve the equation 

 ( ),− =x P x u 0 , (6) 

for all (experimentally) reasonable values of touchdown angles . Existence of solutions for (6) 

 not guaranteed, but seems to be the rule rather than th

e

mplexity of the equations 

preclud

 u

is e exception. 

The search space is 4-dimensional with two free paramet rs, since for different values of 

touchdown angles, different solutions may be obtained. The co

es describing P  as a nonlinear function by analytically integrating the dynamics. 

Therefore, we resort to numerical evaluation of the return map, and use a Newton-Raphson 

method for finding its fixed points. Thus, an initial guess 0
nx  for the fixed point is assumed and 

then updated using the equation 

 ( )( ) ( )1
1k k k k

n n

−
+ k

n n n
⎡ ⎤= + −∇ −⎣ ⎦x

where  corresponds to the  apex height,  corresponds to the number of iterations, and the 

radient matrix (Jacobian) of the return map is given by 

x x I P x P x , (7) 

thn n k

g

 
y xθ θ

⎡ ⎤∂ ∂ ∂ ∂ ∂
=∇ = ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦&&

To find a solution, we evaluate (7) iteratively un

P P P P PP
x

. (8) 

til convergence (the error 

). The value of  at P k
nx1 510k k

n n
+ −

∞
− <x x  is calculated through the numerical integration of the 

dynami

was used in MAT

c equations during a complete cycle. To do that, the adaptive step Dormand-Price method 

LAB™ with 1 10e  and 1 9e− −  relative and absolute tolerances, respectively. 

To evaluate numerically the Jacobian of the return map, the related partial derivatives are 

approximated using central differences. Each iteration involves nine evaluations of the return 



map P : One corresponds to calculating P  at the nominal point k
nx , and eight to calculate the 

gradients. More specifically to compute the components ix∂ ∂P , 1, , 4i = K , of the gradient 

matrix ∇P , we need four evaluations of  at P k
n d−x x  (fore of the nominal point), and four at 

k

x  by some small scalar quantity 

n  (aft of the nominal point), where  is obtained by perturb  each of components of d+x x dx ing

ε  (in im e we used 1 6eplementing this schem ε = − ). 

g (7) is computationally intensive owever, if the initial guess is reasonableEvalua ; h

so

 

some v

tin 7 and a 

lution exists, this method finds it usu lly in less than eleven iterations. 

Using the above method, a large number of fixed points of the return map P  was found, 

for different initial guesses and different touchdown angles. All these

a

fixed points exhibited 

ery useful properties concerning the symmetry of the bounding motion. Fig. 7 illustrates 

the evolution of the states during one cycle of the bounding with double stance corresponding to 

a sample fixed point obtained for touchdown angles ( ) ( ),  = 16 deg,  14 degtd td
b fγ γ , with initial 

( )guess ( )&

after three iterations, is 

, , , 0.33 m,  0 deg,  1.3 m/s,  120 deg/sy xθ θ =& . The corresponding fixed point, found 

( ) ( ), , , 0.324 m,  0 deg,  1.39 m/s,  145.9 deg/sy xθ θ =&& . 

It can be seen from Fig. 7 that the passively generated bounding motion exhibits 

out the middle of the double stance phase. Furthermore, as shown in Fig. 

7, the p

symmetric properties ab

itch angle, θ , is zero at the apex height. These characteristics were present in all the fixed 

points found using the method described above and a large number of initial guesses. Fig. 8 

illustrates projections of closed bounding orbits of the fixed point presented in Fig. 7 on the 

tangent space showing periodicity. Although Figs. 7 and 8 correspond to bounding with double 

stance phase, the same properties have been observed for the bounding without double stance 

phase, with the difference that the double stance phase separating the back and front stance 

phases is replaced by a double flight phase. The corresponding plots for the bounding without 

double stance phase are not presented here due to space limitations. 

                                                 
 
7 Experimentally measured values of the states have been used as initial guesses for finding a fixed point of the 

return map. 
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Fig. 7.  Evolution of the states at bounding with double stance during one cycle. The 

vertical lines show the events: Back leg touchdown, front leg touchdown, back leg liftoff, 

and front leg liftoff. 

 

Fig. 8.  Projections of bounding orbits on the tangent space for the fixed point shown in Fig. 

7 (bounding with double leg stance). 

Fig. 9 presents the leg lengths and the leg angles for the back and front virtual legs during 

one cycle and for the fixed point of Fig. 7. Careful inspection of Fig. 9 reveals another important 

property of the fixed points. It can be seen that the touchdown angle of the front leg is equal to 

 
 
 

 
20 



the negative of the liftoff angle of the back leg, while the touchdown angle of the back leg is 

equal to the negative of the liftoff angle of the front leg i.e. 

 td lo
f bγ γ= − , td lo

b fγ γ= − , (9) 

where td  and lo  denote touchdown and liftoff, while b  and f  correspond to the back and front 

legs respectively. The same property has been observed for the bounding without double stance 

phase. It is interesting to note here that a property similar to (9) was found to hold in the SLIP 

model, where a necessary and sufficient8 condition for the existence of fixed points is the stance 

phase be symmetric i.e. the liftoff angle is equal to the negative of the touchdown angle, [36]. 

Note also, that the notion of symmetric stance phase has been used by Raibert to maintain or 

change the forward speed of his robots, [31]. 

 

Fig. 9.  Evolution of the leg length and angle during a bounding cycle with double stance. 

It must be emphasized that in all the results presented in this section the touchdown 

angles were parameters, which were kept constant. In Section 5.2, the search scheme will be 

modified using (9), so that the apex height and forward speed –instead of the touchdown 

angles— are constant parameters for the search. This modification allows for a more systematic 

way of calculating fixed points of the return map at specific forward speeds and apex heights. 

                                                 
 
8 This statement was proved for the SLIP assuming that the gravitational force is very small compared to the spring 

force, [36]. 
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5.2 Continuums of Symmetric Fixed Points 

For Scout II's bounding running, a specific horizontal speed and a sufficient apex height that 

prevents toe stubbing are useful functional requirements. Therefore, the search scheme described 

above is modified in this section, so that the forward speed and apex height become its input 

parameters, specified according to running requirements and kept constant during the search. The 

touchdown angles are now considered to be “states” of the searching procedure, i.e. variables to 

be determined from it. By doing so, the search space states and the vector of the parameters 

(“inputs” to the search scheme) are respectively 

 , * Ttd td
b fθ θ γ γ⎡ ⎤= ⎣ ⎦x & [ ]* Ty x=u & , (10) 

and the return map whose fixed points are to be calculated becomes 
 ( )* * *

1 ,n n+ =x P x u*
n . (11) 

It is important to mention that the numerical integration of the equations of motion starting from 

the apex height event, results in the calculation of the liftoff angles ( )lo
b n
γ ,  and not of the 

touchdown angles of the legs at the next apex height event. This is a consequence of the 

assumption of massless legs. Thus, to calculate the gradients needed to implement the Newton-

Raphson scheme, the liftoff angles must be “mapped” to touchdown angles based on the 

symmetry described by (9) i.e. 

( )lo
f n

γ

 ( ) ( )
1

td lo
b fn n
γ γ

+
= −  and ( ) ( )

1

td lo
f n

γ
+
= − b n

γ . (12) 

Then, by using the Newton-Raphson algorithm, we update the initial guess until convergence is 

achieved. 

The above search scheme does not explicitly ensure that the following conditions are 

satisfied, 

 1n ny y+ = , 1n nx x+ =& & , (13) 

which are a direct consequence of the definition of a fixed point. Instead, in the new search 

scheme, we required that (12) holds. However, examination of the search results shows that, 

provided that (12) holds, (13) also holds. Note that this behavior is analogous to that of the SLIP, 

where the symmetric stance phase is a condition for a fixed point, [36]. 

Fig. 10 displays the back and front leg touchdown angles at fixed points calculated for 1 

m/s forward speed, 0.35 m apex height and varying pitch rate. It can be seen from Fig. 10, that 
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there exists a continuum of fixed points, which lie on two inner branches, accompanied by two 

outer branches. Fixed points lying in the shadow area correspond to the bounding gait with a 

double stance phase, while fixed points outside this area correspond to the bounding without a 

double stance phase (cf. Fig. 3). It is interesting to note that for both the inner and outer 

branches, and for some given forward speed and apex height, the system shows preference 

towards the bounding with double stance for low pitch rates. As the pitch rate, and thus the 

energy content of the system, increases, the duration of the double stance phase continuously 

decreases, until a point where it becomes zero. This point signifies the transition from the 

bounding with a double stance phase to the bounding without; no overlapping between the two 

variations of the bounding gait is present. It is important to mention that the same tendency has 

also been observed experimentally with Scout II. For lower system energies the robot converges 

to a bounding motion with a double stance phase. This fact indicates a qualitative agreement 

between experiments and the results of Fig. 10. 

Furthermore, the existence of the outer branches in Fig. 10 shows that there is a range of 

pitch rates where two different fixed points exist for the same forward speed, apex height and 

pitch rate. This is quite surprising, since the same total energy and the same distribution of that 

energy among the three modes of the motion –forward, vertical and pitch— results in two 

different motions depending on the touchdown angles. As can be seen from Fig. 11, the fixed 

points that lie on the inner branch correspond to a bounding motion similar to the one observed 

in experiments with Scout II: the front leg is brought in front of the torso. However, the fixed 

points that lie on the outer branch correspond to a motion where the front leg is brought towards 

the torso’s COM. The pattern of Fig. 11 b) resembles the dynamic walking gait implemented on 

Scout II, see [12], which is only present at lower speeds. 

In reading Fig. 10, it is useful to note that the region close to the vertical axis corresponds 

to pronking-like motions. Indeed, recall that, at the apex height the pitch angle is zero ( 0θ = ) 

always, (see Fig. 7 in Section 5.1). As we approach the vertical axis of Fig. 10 ( 0θ =& ), the 

touchdown angles of the front and back legs tend to become equal. A gait with 0θ = , 0θ =&  and 

equal touchdown angles for the front and back legs corresponds to the pronking gait, where the 

front and back legs strike and leave the ground in unison. Therefore, points near the vertical axis 

correspond to pronking-like motions. This observation will lead to some useful conclusions 
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regarding the stability of the bounding and the pronking gaits, which will be discussed in the 

next section. 
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Fig. 10.  Touchdown angles versus pitch rates at fixed points for 1 m/s forward speed and 

0.35 m apex height. The shadow region corresponds to bounding with double stance phase. 

 

Fig. 11.  Snapshots of bounding with double stance motions for to the inner and outer 

branches of Fig. 10. 
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Fig. 12 presents fixed points for forward speeds varying from 1 to 4 m/s and for a 0.35 m 

constant apex height. It can be seen that at higher speeds, the inner branches shift to higher 

values of the touchdown angles, i.e. larger touchdown angles are required to maintain higher 

steady state speeds, a fact which is in agreement with Raibert’s findings, [31]. In Fig. 12 the 

fixed points marked with “stars” correspond to the transition points from bounding with double 

stance to bounding without. As can be seen, at higher speeds the transition comes at lower pitch 

rates demonstrating the experimentally observed fact that at higher energies, the area 

corresponding to the bounding with double stance (shadow area in Fig. 10) shrinks. 
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Fig. 12.  Fixed points for a 0.35 m apex height and speeds from 1 to 4 m/s. Stars denote 

transition from bounding with to bounding without double stance phase. 

Of note is the fact that the fixed points shown in Fig. 12 for different forward speeds at 

apex correspond to different energy ranges, which do not overlap. This is particularly important 

for designing controllers since it shows that different speeds require different energies. 

Therefore, convergence to higher steady state forward speeds cannot occur with the same total 

energy; see [27] for more details. As a final remark, note that at higher forward speeds, fixed 

points lying on the outer branches can still be found. However, larger (in magnitude) touchdown 

angles are required to keep the system running i.e. the back and front legs must be very close to 

each other towards the COM (cf. Fig. 11 b), resulting in physically unrealistic motions. For this 

reason, Fig. 12 presents only the inner branches that correspond to physically common gaits. 
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6 LOCAL STABILITY OF PASSIVE BOUNDING 

The existence of passively generated bounding running cycles is by itself a very important result, 

since it shows that an activity as complex as bounding running can simply be a natural motion of 

the system. However, in real situations the robot is continuously perturbed, therefore, if a fixed 

point were unstable, then the periodic motion would not be sustainable without control effort. In 

this section we characterize the stability of the fixed points found in Section 5. 

To investigate stability, we assume that the apex height states are perturbed from their 

nominal values ( , )x u , by some small amount ( , )Δ Δx u . The discrete model that relates the 

deviations from steady state is 

 1n n+ nΔ = Δ + Δx A x B u , (14) 

where Δ = −x x x , Δ = −u u u  and 

 ( ),= ∂ ∂ x=x
u=u

A P x u x , ( ),= ∂ ∂ x=x
u=u

B P x u u . 

For small perturbations, the apex height states at the next stride can be calculated by the linear 

difference equations (14). If all the eigenvalues of the system matrix  have magnitude less 

than one, then the periodic solution is stable. 

A

Fig. 13 shows the loci of the eigenvalues of matrix  for the bounding with and without 

double stance phase and for both the inner and outer branches of the fixed points presented in 

Fig. 10, as the pitch rate varies. In reading Fig. 13 note that the encircled numbers show the 

initial locations of the eigenvalues, which, as the pitch rate increases, move along the directions 

of the arrows, on the root locus, and converge to the points marked by “x”. As was expected, in 

all cases, one of the eigenvalues is located at one, representing the fact that the system is 

conservative

A

9 (for the sake of clarity the point at which eigenvalue 1 converges is not marked by 

“x” since it remains always at one). Fig. 13 (a) corresponds to the inner branch of the bounding 

with double stance phase (cf. Fig. 10). Two of the eigenvalues, namely 2 and 3, start on the real 

axis, and as θ&  increases they move towards each other, they meet on the real axis, and finally 

they move towards the rim of the unit circle. The third eigenvalue, marked by 4, starts at a high 

                                                 
 
9 The conservative nature of the system could have been used to further reduce the dimension of the Poincaré return 

map in (5). However, we have decided to keep this extra dimension for reasons of verification. 
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value and moves towards the unit circle, but it never gets into it, for those specific values of 

forward speed and apex height. The situation is similar for the outer branch of the bounding with 

double stance phase, as shown in Fig. 13 (c). Figs. 13 (b) and (d) illustrate the loci of the 

eigenvalues for the inner and outer branches of the bounding without a double stance phase. 

Again eigenvalue 1 is located at one. Eigenvalues 2 and 3 start at the points where they stopped 

during the bounding with double stance phase as shown in Figs. 13 (a) and (c). In Fig. 13 (b) 

they move close to the rim of the unit circle, but always stay outside of it. In Fig. 13 (d) they 

move in arcs further away from the unit circle until they meet each other on the real axis, after 

which they move in opposite directions. Eigenvalue 4 starts from the location at which it stopped 

in the bounding with double stance phase, and in Fig. 13 (b) it moves on the real axis away from 

the unit circle, while in Fig. 13 (d) it moves towards the unit circle.  

 

Fig. 13.  Root locus showing the paths of the four eigenvalues as the pitch rate increases for 

the inner (up) and the outer (down) branches of fixed points. The numbers show the 

starting points of the eigenvalues, “x” denotes the points where the eigenvalues converge, 

and the arrows show the direction of their motion. 

In all the above cases there is always at least one eigenvalue outside of the unit circle at 

every value of the pitch rate. Therefore, there is no region of parameters where the system is 
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passively stable for forward speed 1 m/sx =&  and apex height 0.35 my = . Note that similar, but 

not identical, root loci as those presented in Fig. 13 are observed at different forward speeds and 

apex heights, the difference being the values the eigenvalues attain as the pitch rate increases. 

To show how the forward speed affects the stability of the motion, we present Fig. 14, 

which shows the magnitude of the larger eigenvalue at different forward speeds for the inner 

branches of the bounding with and without double stance phase. In this figure, the stars denote 

transition from bounding with a double stance phase to bounding without one. For sufficiently 

high forward speeds and for a region of pitch rates, the larger eigenvalue enters the unit circle, 

while the other two eigenvalues remain well behaved. This fact shows that, for these parameter 

values, the system is self-stabilized. Furthermore, it is apparent from Fig. 14 that the self-

stabilization regime is present in both variations of the bounding gait, i.e. with and without 

double stance phase. It is worth mentioning here that, as depicted in Fig. 14, the largest 

eigenvalue obtains its maximum value when the pitch rate θ&  is small. Recall that the region 

where θ&  takes small values corresponds to a pronking-like motion, where both the front and 

back legs hit and leave the ground in unison. Thus, we can conclude that pronking-like motions 

(low-pitch rates) are “more unstable” than bounding, (high pitch rates). This fact was also 

observed in experiments with Scout II. 

 

Fig. 14.  Largest eigenvalue norm at various pitch rates and for forward speeds 1 to 4 m/s. 

The stars denote transition from bounding with to bounding without double stance. 
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The details of the root locus are shown in Fig. 15. The shape of the root locus is similar to 

the root loci presented in Fig. 13 (a) and (b), except for the fact that, for some values of the pitch 

rate, eigenvalues 2, 3 and 4 are all inside the unit circle. Note that the changes in the slope of the 

norm of the larger eigenvalue in Fig. 14 are attributed to the fact that, as the eigenvalues move 

along the branches of the root locus, the eigenvalue that has the larger norm changes; see Fig. 15. 

 

Fig. 15.  Root loci for the inner branches of the bounding with (up) and without (down) 

double stance and for forward speed 4 m/s. The apex height is 0.35 m. 

Interestingly, despite the apparent simplicity of the quadrupedal model presented above, 

compared to the complexity of more accurate models of Scout II, as those described in [29], we 

have been able to reproduce, qualitatively, many different behaviors, which have also been 

observed experimentally on the robot. These behaviors include both variations of bounding 

described in Fig. 3, and also pronking-like and dynamic walking motions. Furthermore, a good 

qualitative agreement between the bounding results presented in this paper and the experimental 

data of [29] has been observed. For instance, the pitch angle as shown in Fig. 7 bears remarkable 

resemblance to the corresponding one measured in experiments (see Fig. 12 in [29]). Moreover, 

self-stabilization occurs in a range of pitch rates, which is in agreement with the pitch rates 

measured in experiments with Scout II. However, experimental Scout II runs are stable at 

approximately 1/3 the speeds predicted here. This is most probably due to the stance-brake phase 
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present in the controller in experiments; see Fig. 2. The stance-brake phase results in decelerating 

the robot, and breaks the touchdown-liftoff symmetry presented in Fig. 9. As is described in 

detail in [29], it also results in errors between simulation results and experimental data, even in 

more accurate models of Scout II. However, including the stance-brake phase in the controller is 

necessary for ensuring toe clearance, especially during the early protraction phase, due to the 

absence of active control of the leg length during flight.  

Furthermore, effects not present in passive models, such as actuator dynamics, damping 

in the leg prismatic joints, intermittent stick/slip of the foot-ground contact, and energy losses at 

touchdown due to impact, may contribute to discrepancies between the conservative model 

studied here and the robot, such as the difference in the forward speed. More specifically, 

regarding the role of the actuators during stance, it is noted that large peaks in the torques appear 

at the early phases of the stance-retraction phase. However, as is explained in detail in [29] (see 

Figs. 14 and 15 in [29]), motor saturation comes almost immediately after touchdown, resulting 

in very small torques throughout the stance-retraction phase, until the stance-brake phase is 

reached. The exact role of the actuator dynamics in the resulting motion is currently under 

investigation. 

The main conclusion from the analysis above is that there exists a regime where the 

system can be passively stable. This is an important result since it shows that the system can 

tolerate small perturbations away from the nominal conditions without any control action taken. 

This fact could provide a possible explanation to why Scout II can bound without the need of 

complex state feedback, using very simple control laws that only excite its natural dynamics, and 

is in agreement with recent research from biomechanics, which shows that, when animals run at 

high speeds, passive dynamic self-stabilization from a feedforward, tuned mechanical system can 

reject rapid perturbations and simplify control [14], [21]. Analogous behavior has been 

discovered by McGeer in his passive bipedal running work, [22], and recently in the SLIP 

template, [15], [37]. 

7 CONCLUSION 

In this paper, we studied the passive dynamics of the bounding running gait of a simple passive 

and conservative model of our Scout II robot. Based on the analysis of numerically derived 

return maps, we found that the two variations of the bounding gait, which have been 
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experimentally observed on Scout II, can be passively generated with appropriate initial 

conditions. Most strikingly, in both bounding variations, there exists a regime where the model 

stabilizes itself without the need of any control action! This is the first time that more elaborate 

gaits, such as Scout II’s bounding, are found to be inherently stable, and is in agreement with 

recent results from biomechanics, contributing to the increasing evidence that simple controllers, 

as those reported in [29] that operate mostly in the feedforward regime, are adequate in 

stabilizing a complex dynamic task like quadrupedal bounding. Most importantly, self-

stabilization can facilitate the design of more robust, yet minimalistic, controllers for 

dynamically stable legged locomotion, by deriving control laws that expand the domain of 

attraction of the self-stable behavior. A simplified model, such as the one presented in this paper, 

that captures the essentials of the motion, can form the basis of a controlled model in a way 

similar to that presented in [1] and [2], resulting in high performance combined with great energy 

efficiency. Proposing such a controller for quadrupeds, and implementing it experimentally on 

Scout II is our goal. The model presented in this paper provides the first step towards this goal. 
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