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Tribology in extreme environments

Conventional lubricants such as oils and greases cannot
be used in environments subject to extremes of
temperature, humidity and particulate matter

Their limited applicability has motivated the use of solid
lubricants, capable of sustained low friction, low wear
sliding in extreme environments

Terrestrial tribology

Extreme temperatures
Operability needs to be ensured
irrespective of geographic location

Environmental conditions
Depending on location, moving parts
subject to sandy or corrosive environment

Irrespective of operational conditions,
frictional losses need to be minimized,
if not terminated completely

Space tribology

Extreme temperatures

Deployment, positioning, power
management, data collection and
communication needed at near absolute
zero temperatures

Environmental conditions
Ultra-high vacuum in space; atomic oxygen
and radiation

Added to harsh conditions, such
equipment is nearly impossible to service



Solid lubricants and tribofilms
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From the classical adhesive theory of friction, a solid
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Molybdenum disulfide as a solid lubricant

Used extensively as a dry lubricant in a range of applications,
especially for lubrication in space components, often in the
form of thin sputtered coatings

Unique ability to provide ultra-low friction (u<0.01) in clean
environment; u ~ 0.15 in ‘contaminated;, humid air

Ultra-low friction widely accepted to originate from the easy

shear of basal planes. Origin of low friction often likened to
a sliding deck of cards
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Tribofilms in MoS,

Recent TEM investigations have shown thin (of the
order of 10nm) and ordered MoS, layers at the sliding
interface. Structurally, these differ greatly from layers
of MoS; buried under the real sliding interface

While yet largely uncharacterized, these thin tribo-
films are believed to be crucial to frictional character-
istics of MoS»



A multi-scale approach to MoS> tribology

In order to characterize tribofilms and their contribu-
tion in reducing friction, a direct yet non-invasive
probe of tribofilms at the relevant length-scales is
required.

spherical pin

Surface nano-mechcanical properties of unworn
MoS, are compared with worn MoS, to highlight
contributions from sliding-induced changes.

The perfectly.ordered microstructure of single etdinless stedl
crystal MoS; is used as a control substrate, repre-
senting an idealized limit of the tribofilm micro- 1pm
structure.
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Lateral force microscopy techniques
are ideally suited in this role, capable
of probing highly localized surface
properties, without perturbing the
surface itself.

A multi-scale approach to tribo-
film characterization affords a
chance to understand factors that
influence tribofilm nanomechan-
ics, and how these properties
drive tribological response across
the macro-scale.



Scanning probe mechanics of contact
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Scanning probe mechanics of contact
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Scanning probe mechanics of contact
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Two-slope method of lateral force calibration

The “wedge” method (Ogletree et al.

1996, right) utilized substrates with N 8 g 15
known wedge angles to extract values of / \ ag wion
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Effects of cross-talk between normal and
lateral transducers eliminated through a

two-slope calibration procedure. The Ogletree method relies on
a calibration substrate (SrTiO3)

with known ridge angles
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Sources of Error

In addition to photodiode induced crosstalk, factors such as piezo crosstalk
stack misalignment, tip shear offset, etc., add a degree of stochas-
tic uncertainty in evaluated values of friction and calibration con-

stants from a traditional calibration approach r v

z-piezo misalignment

A misalignment between the z-piezo travel axis and the plane of
tip-travel introduces an error in load-dependent variation of .

friction-loop offset. ‘—\“—7,.—

shear-center offset

tip x-position (um)
A lateral force measurement artifact identified by the LFM 0 2 4 6
community notes false variations in lateral signal due to - - - -

the vertical displacement of the z-piezo . 118
11.2

Small variations in z-piezo position change optical path of

the laser, giving rise to differences in actual calibration [ 1 0.6

values vertical

— height (um) - 0.0



Lateral force calibration

A method of calibration has been designed to help circumvent
instrument  misalignment and repeatibility issues;

torsional/lateral stiffness calibration is performed during mea-
surement scanning on actual substrates. O O

Lateral force measurements are performed on the surface positiveangle  negativeangle
wedged at two complimentary angles.

Equations of force-balance at the sliding contact are used to
solve for four unknowns: friction coefficients, misalignment
angle and the ratio of lateral to normal calibration constant.

C_x W = H
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x| ., sina . cos (a-y) (1+p2) Cx/Cy, ¥
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An iterative solution is obtained for the four unknowns, mini-
mizing the standard deviation between the four values of Cx/Cy

_ : = ) MoS,-coated
without a constraint on values of friction coefficient
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Validation of method

In order to validate the proprosed in-situ method of calibration,
similar measurements were performend on a well-characterized
microtribometer.

Normal and lateral force ‘calibration constants’ for the 6-channel
load cell fitted to the tribometer were known a-priori, and values
obtained by the in-situ calibration were compared with these.
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Measurement deviation on AFM

Convolution of uncertainties and misalignments, actual measure-
ments on an AFM show large deviations from the predicted, ideal
behavior

Loop-offset slopes obtained along two opposing angles may
yeild slopes with similar signs - this may be thought to arise from
larger misalignment angles within the instrument piezo-stach
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A lack of fidelity between sucessive mea-
surements underscores the need for in-
situ calibration which also accounts for
secondary misalignments.



Need for in-situ calibration
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Variations in measurement-to-measurement values of calibration constant highlight the
uncertainties associated with single-calibration friction measurement

In order to obtain greater measurement confidence in the quantitative values of friction,
lateral calibration must be performed in-situ, while a friction measurement is being
made



Macrotribological testing

Wear tracks for nanotribological characterization were created on force

. ; ; transducers
a custom-tribometer. 1 um thick MoS; coatings were commer-
cially sputtered (Tribologix Inc.); a T0mm wear track was created
in lab-air conditions after a sliding duration of 500 cycles.

In order to faciliate low-wear sliding and propensity of low-shear
tribofilms to form, macro-scale sliding was performed at a sub-

strate temperature of 100°C, yeilding a nominal friction coeffi- reciprocating
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Lateral Force Microscopy

All nanotribological measurements were made in lab-air conditions;

friction measurements were derived from one-line scans across a 1
MM wear track.

Nano-friction measurements on the three microstructurally-
different surfaces of MoS, were performed at 25 distinct locations
on a local area; these provide a measure of both instrument repeat-
ibility and of the local property variations of heterogeneous sur-
faces.
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A trend of decreasing friction is seen between
unworn, worn and single crystal MoS; .

Further, large spatial variation in value of friction
coefficient is seen for unworn MoS; possibly in-
dicating large heterogeneity in surface proper-
ties.



Point Spectroscopy
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Experimental results suggest that
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Future Work

Nanotribological studies on worn and unworn sputtered Mo$S; films
show quantitative differences in nano-friction as a consequence of the
formation of tribofilms.

Similar measurements performed at single-load values have also shown
differences in the nano-friction in different environments; friction was

consistently lower in dry air than humid air, which the trend of reducing
friction was maintained between unworn, worn and single crystal MoS3.
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Lateral force microscopy techniques are ideally suited for characterizing the prop-
erties of oriented solid lubricant tribofilms, however, the lack of repeatibility in
existing calibration techniques makes this difficult.

An in-situ method of lateral force calibration is developed that enables cantilever
calibration during friction measurements, providing a direct and robust measure
of nano-scale friction.

When applied to MoS> tribofilms, friction is seen to decrease due to the sliding-
induced formation of tribofilms. Future work will seek to build on these results to
probe environmental dependence of both tribofilm properties and formation
mechanisms.
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