
Osteoarthritis (OA), a degenerative joint disease associ-
ated with the degradation of articular cartilage, is a leading 

progressed to a symptomatic and visually detectable stage, 
the damage is irreversible and joint failure is imminent. In 
the earliest stages of OA, where treatment and rehabilita-
tion are most effective, damage is highly localized, diffi cult 
to detect and diffi cult to study; the initiation and progres-
sion processes are poorly understood. Cartilage mechanics 
are highly sensitive to the poroelastic1 structure, and typical 
tribological contacts on cartilage are insensitive to the effects 
of local damage on the local tribological response because 
of large contact areas. However, published data states that 
fl uid pressurization in the cartilage matrix is not possible for 
microscale contacts.2 This research targets an improved un-
derstanding of the tribological response of cartilage under 
microscale contacts to facilitate more fundamental studies of 
the OA progression processes. 

All reported results were recorded from one cylindrical bo-
vine cartilage plug ( 10mm x 10mm, 1mm cartilage 9mm 
subchondral bone). One sample is used to eliminate the 
natural variation in biological samples. The results were de-
termined to be representative of the population as they were 
consistent with more than 40 other samples tested over a 
four-month period. The tests were run submerged in phos-
phate buffered saline (PBS) solution.

Tests are carried out on a custom-built microtribometer 
shown in Figure 1. A horizontal piezo positioning stage 
(1500 μm path) reciprocates samples, and a vertical stage 
(50 μm) lowers a transducer to apply loads. Forces are mea-
sured by use of a calibrated fl exure fi xed to the vertical stage. 
Defl ections of the fl exure are recorded by capacitance probes 
with sub-nanometer (nm) resolution. The probes used are 

The measurement technique illustrated in Figure 2 en-
abled in-situ tracking of the contact area.  Contact area is 
calculated from a measured displacement into the samples. 
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Figure 1  |  Illustration of the custom microtribometer.
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Figure 2  |  Illustration of experimental procedure. The stage is 
extended its full range of z=50 μm at each condition. The cartilage 
is softer at slower speed, resulting in lower normal force and 
larger contact area.

 



The indentation depth is given by:

Where, Z is the displacement of the vertical piezo stage, Z
0
 is 

the displacement of initial contact, and L
i
-L(Z) is the defl ec-

tion of the fl exure at Z. From 
s
, a Hertzian contact model is 

used to determine the area in contact. Simple manipulation 
leads to a formula for a the contact half width as:

An effective elastic modulus, E’, is defi ned here with a 
quasi-static application of the Hertz solution:

Where, F
N
 is the normal force. Calculation of the equilib-

rium E’ with zero sliding speed is the elastic modulus of just 
the cartilage matrix H

a
. The elastic force contribution with 

sliding, F
e
, is calculated using equation 3 with H

a
 to solve 

for F
e
. The force due to fl uid pressurization, F

P
, is then the 

difference of the total normal force and the elastic force. The 
fl uid load fraction is simply the ratio of fl uid force to the total 
normal force.

Figure 3 shows that sliding has a signifi cant effect on the 
effective stiffness of the cartilage surface. At zero sliding ve-
locity, local fl uid pressurization vacates the contact area and 
the force response is due solely to the deformation of the 
matrix.

    The effect of probe radius on friction coeffi cient is insignif-
icant in comparison to the effects from variable sliding speed 
(Figure 3). The elastic force contributions are determined 
using static indentation measurements.  The fl uid supports 
a signifi cant fraction of the normal force at all speeds inde-
pendent of probe radius (Figure 4). Interestingly, the friction 
coeffi cient was proportional to the contact area (Figure 5); 
this suggests that the primary lubrication benefi t of the fl uid 
is to reduce the contact area. At slower sliding speeds, the 

cartilage surface is effectively softer and a larger area of the 
matrix is brought into contact to support the load.  The ratio 
of friction force to elastic normal force component is the in-
terfacial friction coeffi cient; the interfacial friction coeffi cient 
is not particularly sensitive to probe size and is a function of 
sliding speed.  

1. At stationary equilibrium (e.g., standing), the soft matrix 
requires a large contact area to support the entire load.  
2. Sliding contacts (as slow as 0.05 mm/s) induce sustainable 
fl uid pressure, which increases stiffness and reduces contact 
area, normal stress and shear stress.   
3. Sustained fl uid pressurization can be achieved for a mi-
croscale contact, which enables future research on locally 
damaged cartilage with microscale contacts.
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Figure 3  |  Effective elastic modulus vs. Peclet number (shown on the 
left). Friction coeffi cient vs. sliding speed (shown on the right).

Figure 4  |  Fluid load fraction vs. sliding speed for both probe radii.

Figure 5 |  Friction coeffi cient vs. contact area (shown on the left).
Interfacial friction coeffi cient (normal force*elastic load fraction/
friction force) vs. sliding speed (shown on the right).

 
δs=(Z-Z0)-(Li-L(Z)) (1) 

 
a = (R· δs)1/2                       (2) 

E’ = (3/4) · FN · R-0.5 · δS
-1.5    (3) 

 

 

 


