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Abstract— The paper presents a method to determine the
feasibility of stabilization to an equilibrium manifold or ex-
act output tracking for underactuated mechanical systems
that are subject to inequality state constraints. Even for
minimum phase systems, internal dynamics may evolve in
an unacceptable way and has to be confined within certain
limits. Such restrictions arise in deformable object manip-
ulation tasks. It is shown that the problem of output track-
ing under inequality state constraints is equivalent to output
tracking with bounded input. The paper provides sufficient
conditions for exact cutput tracking and stabilization to an
equilibrium manifold that guarantee that internal dynamics
is bounded with adjustable bounds.

I. INTRODUCTION

Underactuated systems are systems with fewer control
inputs than degrees of freedom. This is a broad class of
systems including mobile robots, gymnastic robots, under-
water vehicles and surface vessels, VTOL aircraft and space
robots. Control design for such systems is usually compli-
cated due to non integrable first or second order nonholo-
nomic constraints and non-minimum phase zero dynam-
ics. Although underactuated systems control is still an
open problem, several interesting results on stabilization
and tracking have appeared in literature for specific classes
of underactuated systems.

The stabilization problem for underactuated systems has
received much attention lately. Results on stabilization
have appeared for the cart-pendulum {1], the Acrobot and
the gymnast robot [2], [3], planar underactuated manipu-
lators [4], [5], [6], [7], [8], surface vessels [8], [9], [10]. In
most cases the systems exhibit nonholonomic constraints
and do not lend themselves to the application of smooth
state stabilizing feedback.

Tracking for some classes of underactuated systems has
recently received significant attention, particularly for the
case of surface vessels [11]. Output tracking methodolo-
gies have been developed for surface vessels [12], for VTOL
aircraft [13], [14] and for underwater vehicles [15]. Other
problems related to underactuated systems include trajec-
tory generation {16] and motion planning [17].
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Research has mainly focused on several classes of un-
deractuated systems with specific application interest. For
output tracking, in particular, no general methodology has
been presented at least to the authors knowledge. State
tracking methodologies could easily be adapted, yet the
most general approach to tracking known to the authors
[18] is limited to a the class for which the number of unac-
tuated degrees of freedom is equal to the number of inputs.

Recently, deformable objects under manipulation have
been studied as underactuated mechanical systems [19].
Object manipulation can benefit from the transfer of con- .
trol engineering practices in underactuated systems. In ob-
ject handling however, material strength limitations that
can be expressed as inequality constraints impose severe
restriction on the application of existing techniques. This
motivated the development of a new methodology within
this framework that enables one to determine whether a
reference trajectory of the grasp points is feasible and if so,
under what control law can it be realized. This problem is
formulated as an output tracking problem for underactu-
ated mechanical systems with inequality state constraints
and solution is sought by using saturated linear feedback.

Considerable work has been done on the stabilization
of linear systems and partially linear systems with input
saturation [20], [21], [22], [23], [24]. In [22] it has been
shown that multi-input linear systems with eigenvalues in
the closed left-half complex plane can be semi-globally sta-
bilized by saturated linear feedback. The semi-global re-
striction follows from an early result [25] that a linear sys-
tem with a series of integrators of degree more than two
cannot be globally stabilized using saturated linear feed-
back. Global stabilization has been achieved by using com-
positions of saturated controllers [21], [23], [24].

The rest of the paper is organized as follows: in sec-
tion II the problem that motivated this work is formally
stated within the framework of underactuated mechanical
systems. Section IIT introduces the main result of the pa-
per. The methodology is applied to a nontrivial under-
actuated mechanical system in section IV and simulation
results are presented. Finally, section V summarizes the
results of the present work.
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II. PROBLEM STATEMENT
Consider the underactuated mechanical system:

M(2)i+C(2,2):+ D+ Kz+G(z)=F (1)

where 2 € R" is the configuration variables vector, M(z)
is the inertia matrix, C(z, 2) is the matrix of Coriolis and
centrifugal terms, D is a positive definite matrix of the
damping terms, K is the matrix of the elastic forces and G
is the vector of gravitational forces. F is the vector of the
input forces acting on the system.

Based on the equations that contain input terms, the
configuration variables can be partitioned into two groups,
z =[], 2§]7, the actuated part, z; € R™ and the unactu-
ated part, z2 € ®*~™. Then (1) can be written:

muZ +mpds+ai+diz+kiz+g=f (2a)
miyE + maaks + cf + das + kaz + g2 =0 (2b)

The system above is supposed to be subject to the following
inequality constraints:

®)

Let the output of the system be y = [27, 7] . The prob-
lem is stated as follows: Given the system (2a) -(2b) and a
reference trajectory yg, establish a sufficient condition un-
der which the system (2a) -(2b) can track exactly the ref-
erence trajectory yg, while the constraint ||23)] < o € Ry
is respected. If the condition is satisfied, then provide a
control strategy to realize the reference trajectory.

For the stabilization to an equilibrium manifold case, the
problem can be stated as follows: let z; = z14 be the desired
equilibrium manifold for the system (2a) - (2b). Establish
a condition under which stabilization to the equilibrium
manifold can be achieved while [}2;]| < o € R4 at all time.

lzlleo < 0

III. APPROACH TO SOLUTION

Due to the well known structural properties of the iner-
tia matrix appearing in dynamic models of mechanical sys-
tems, system (2a) -(2b) can always be partially feedback
linearized with respect to the actuated degrees of freedom
z1. This results in input-output feedback linearization of
the original system and facilitates further analysis. Follow-
ing the procedure in [26], (2b) is solved for Z,:

2y = —m{zl [mszifl +coz+doz+ koz+ g2]
and plugging it into (2a):
Mk +és+dai+kz+=f

where

th11(z) & m1(z) — mia(2)ma (2)m(z)
&1(z) £ c1(2) — mi2(2)m3; (2)ez(2)
di(2) & di —mua(2)my; (2)d;

Ei(z) £ k1 — miz(2)may (2)ks

§1(2) £ g1(2) — m12(2)m5y (2)g2(2)

In a computed torque - like fashion, one can define
f=@s+dz+kaz + o+ n1u
to obtain a system in the form:

(4a)
(4b)

21 =u
5 — —ay=1T = -1 S 4 doi +
Za = —mg mis% — Mgy (a2 + daz + k22 + g2)

The analysis that follows is based on the lemma:

Lemma 1: The system (4b) when constrained to the
manifold of 2; = 234 is (at least) stable at the point 23,
defined by k2z + 92(214,22) =0.

Proof: The proof is a consequence of the fact that the
system (4b) derived after the partial feedback linearization
described above is Lagrangian and therefore passive. On
the manifold z; = z14, (4b) becomes:

()

Maa%s = —cagdas — daala — kaaza — k21214 — 92

Consider the positive definite storage function:

V= %z’TMz' + %zTKz +U
where U is the gravitational potential energy. Using (5)
and the skew symmetry of M — 2C, the time derivative of
V when restricted to the manifold 2; = 214 becomes

V= - dain
Furthermore, since
V =0=> 2 = Oé k23+g2(zld:22) =0

so that (5) output strictly passive relative to the output 23

and zero state observable [27]. This establishes the asymp-

totic stability of (4b) when confined on 21 = z14. If dps =0

then (5) is passive and therefore stable. |
By using the transformation: [ = [(22 — 22.)7, 27| the

system (4b) can be written as:

T

7 =w(n,v), wherev=[(z1— 214)7, z:f", (6)

Obviously, w(0,0) = 0. The input to state stability of (6)
follows from lemma 1. Therefore:

Inlle < B(INO)lcos t — to) + ¥ (suplivlleo)  (7)

where £ is of class KL, and 7 is of class K. Finding an exact
representation of for - involves establishing an appropriate
Lyapunov function. However, 7 can be sufficiently approx-
imated using a linearization of (6) at n = 0,v = 0:

7= Ayn + By ®)
Sw ow
h A = i = —
where Zu 37] n=0,v=0, “ 6‘U n=0,v=0

Lemma 2: The matrix A, appearing in (8) has eigenval-
ues in the closed left half plane.
Proof: 1t suffices to show that A, cannot have eigen-
values with positive real part. This follows by contradiction
since (6) is stable by lemma 1. [}
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A. The Output Tracking Case

Contrary to stabilization, tracking requires the following
assumption:

Assumption 1: The reference trajectory yg can be fol-
lowed by system (4a) with bounded control inputs |jv]] < 7.

We are now in position to state our main results.

Proposition 1: Consider the system (4a) -(6), and let (8)
be the linear approximation of (6) in a neighborhood N of
(21, 21,7m) = (214,0,0). Let x be the minimum real number
for which (A, + B, H), with ||Hn|| < p,V n € N is Hur-
witz, and assume that assumption 1 holds. If the reference
trajectory satisfies:

vy — h— = supllirgll = 5 >0

where h is given by (13) and v, by (11), and in addition
s < 7, then there exists a linear state feedback law u that
makes the reference trajectory locally exponentially stable
for (4a) -(4b) while ||z2]|00 < 0.
Proof: 'The case of A, having eigenvalues with posi-
tive real part is excluded due to lemma 1.
Let A, be Hurwitz. Then the Lyapunov equation pro-
vides a matrix P(t) which serves as a Lyapunov function
candidate. Then v can be constructed as:

7(p) £ 4y/2(n — m)PAu (P)

where Ay (P), A (P) are upper and lower bounds for the
eigenvalues of P(t). For sufficiently small initial errors,

Ay (P)
A (P)?

lInlleo < ¥ (supl| Buv|leo) 9
Given 7 = [(2z3 — 22.)%, 23 |7,
Inlloo + supll2zelloo > Il22/loo
Therefore,
Inlleo + suplizzelloo < 0 = ll22lloc < &
which means that
Inllec < o — supl|zze]loo (10)

From the right hand sides of (9) and (10), it follows that a
sufficient condition for (3) is
supl{vlleo < vs(o,yr)

Am (P)
Aum (P)

a g — sup||zzeloo

= 8(n—m)2hy (P) Ant (Ba) >0

(11)

where Ay (B,) is an upper bound for the eigenvalues of
B,. Given v = [(21 — 214)7T, 2T, uT|7,
llvll < lifey €y, O]l + 2vall + llull

with ey = 21 — 214 and é, = 2, — #14. Since e, and é, decay
exponentially,

supflv]lee < max{ley(0)lloo, 1€y (0)lloc } +supllZaall+supllull

Thus for [|22]|ec < o, it is sufficient

(12)

vs — h — supl||z14]| > sup|lulj =35>0

where
h = max{]ley(0)llco, [léy(0) oo} (13)

Relation (12) is a sufficient condition for the feasibility of
the reference trajectory. If it is satisfied for some positive
s < r, then a linear control law u = H[el,é]|” can be
constructed with |jullcc < s [22] so that the system locally
converges exponentially to the reference trajectory.

Consider now the case where A, is not Hurwitz and as-
sume that the pair (A,,B,) is controllable. Then a sat-
urated linear control law v = Hn with ||Hn|| < p can be
constructed [22] so that (A4, + B, H) is Hurwitz. Working
as before we can find a matrix P(t) for which the function
V(t,n) = nTP(t)n is Lyapunov. The virtual control input
v dictates trajectory errors e,, €, and a system input u, so
that (6) is locally exponentially stable:

H'r) = [ez (ér + 214)T ’ll.?:]T

If the tracking controller u and the corresponding errors do
not perturb this system in a way that (3) is violated, then
the output can be tracked exactly. If follows that in order
for that to hold,

Vs — b — p —sup||ziq|| > suplul =5 >0  (14)
Then u can be designed in such a way that ||ulle < s <7
[22] so that (4a) -(4b) can locally exponentially track the
reference trajectory and simultaneously satisfy (3). u

Condition (14) agrees with engineering intuition: it is
obvious that if one keeps velocities and accelerations suf-
ficiently small, the unactuated degrees of freedom will re-
main bounded. The merit of (14) is mainly that one can
immediately identify the class of admissible trajectories
and control laws, without resorting to simulations or even
worse, destructive experimentation.

In brief, proposition 1 states that if the reference tra-
jectory is stabilizable using bounded input and this bound
satisfies (14) then the trajectory can be tracked with si-
multaneous satisfaction of constraint (3).

B. The Stabilization Case

When referring to stabilization, we refer to stabilization
to an equilibrium manifold z; = z14. For this case, assump-
tion 1 is not needed. In fact, proposition 1 can be restated
for the stabilization case by noting that 2,4 = 0 as follows:

Proposition 2: Consider the system (4a) -(6), and let (8)
be the linear approximation of (6) in a neighborhood N of
(21, %1,n) = (214,0,0). Let  be the minimum real number
for which (A, + B, H), with ||Hn|| < g,V 7 € N is Hurwitz.
If p satisfies

vs—h—pu>s>0

where h is given by (13) and v, by (11), then there exists
a linear state feedback law u that makes the equilibrium
manifold z; = 234 semi globally exponentially stable for
(4a) -(4b) while ||z2|lec < 0.
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Proof: The proof is almost identical to that of 1. By
substituting 2;4 = 0 (14) becomes:

v —h—p2supllull =s>0
Then one can find a sufficiently small ¢ for which [22]
v=H{E)[(z1a —21)T,47)T < s

in the region {z1]2z1 < h}. It follows that 214 is a semi
global exponentially stable equilibrium of (4a) ]

Note that for stabilization, local stabilization is relaxed
to semi global. Unlike the tracking case, the equilibrium
manifold is always stabilizable when vy — u > s.

C. The Bounded Controller

The system (2a) - (2b) does not necessarily falls in the
class of feedforward systems discussed in [20], [21] or the
triangular systems in [24]. Therefore, these techniques can-
not be readily applied except in cases where the aforemen-
tioned system enjoys such a structure. In the general case,
and given the I/O feedback linearization of (2a) - (2b), the
approach of [22] seems more appropriate. Moreover, the
objective here is slightly different in that output tracking
instead of state stabilization is sought and that the state is
constrained to lay within a certain region during tracking.

In order for the method in [22] to be applied, the original
open loop system must be at least marginally stable. By
lemma 1 this holds for system (8), and therefore it is always
possible to apply the results of [22] to (8).

The problem of stabilizing a linear system with eigen-
values in the closed left hand complex plane reduces to
relocation of the eigenvalues located on the imaginary axis
[22]. Broadly speaking, the control effort is proportional
to this displacement. The new position of these eigenval-
ues is parametrized by & so that their new position can be
described by the set:

Ae) = {ehs + wi el } (15)
where ), < 0, with £ = 0 giving the location of the eigen-
values of the open loop system. The rest of the procedure
involves calculating the characteristic polynomials associ-
ated with the set (15) and the closed loop matrix A + BH
where H = ¢H and forming equations with the respective
coeflicients. The resulting system of algebraic equations is
usually undetermined. A procedure to obtain a solution
for this system is described in [22)].

IV. APPLICATION

The methodology introduced is applied to the problem
of output tracking for the system depicted in Figure 1. It is
a system composed of a cart moving horizontally on which
a chain of two unactuated links is mounted. The objec-
tive is for the cart to follow a desired trajectory while the
link angles are bounded within certain limits. It is worth
mentioning that the technique in [18] is not applicable here
because m < n —m.

unactuated joint u

Fig. 1. A cart with two unactuated links

Using unity values for all dynamic parameters, the sys-
tem equations in form (4a) - (4b) are as follows:

r =v
1

& == [2cos(gr + 2g2) — 28 cosgqy — 8cos(gqr + g2)v
+ 2sin(gq1 + 2¢2) + 2singy (q'f(l +2cosqz)
+104142 + 543 ) — 28singy —~ 8sin(g1 + g2)],

. 1 .

G== [(12cos(g1 + g2) + 2 cos(qy + 2¢2)
—4cosqr — 6cos(gr — ¢2)) v
+ 4singqy + 6sin(gr — g2) — 12sin(q1 + ¢2)
— 2sin(gy + 2g2) — 447 (5sin(ge) + sin(2g2))
—4¢1d2 (sin go + sin(2g2)) — 2¢Z (sin gz + sin(2¢2))]

where
r £ 47 + 16 cos g2 — 2 cos(2g2)

Let m = q1,M2 = ¢2,M3 = ¢1,M4 = g2. The linearization
of the unactuated subsystem at ¢; = 0,¢2 = 0,v = 0 gives:

7= An+ Bv
where
0 0 10 0
0 0 01 0
A=|_34 _a 0o ol° B=1_m
_3 B 4 _Z
61 61 61

The pair (A4, B) is controllable and the open loop eigenval-
ues are A{ , = £0.7598i, A , = +0.5838:.

We assign the closed loop eigenvalues at A{, = —e %
0.7598¢,3 4 = —& £ 0.58387, where ¢ > 0 a small con-
stant. The gain matrix H(e) that achieves that with
[lH(e)|] < clle]| is calculated in a straightforward manner
from a square system of algebraic equations and given as:

H= [15_2(565 +61¢%) ;—4(12445 —1073¢%)

%(28 +61e?) — %(110 +1037¢%)]

With v = H(e)n the linearized unactuated system becomes
exponentially stable.
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Suppose that ¢;,g: have to be confined to the interval
(=0.1,0.1), so & = 0.1. Then |[v]| < c|lellc & u(e). The
solution of the Lyapunov equation provides the matrix P
from which v,(c,€) can be calculated:

V. = g Am (P )
* 7 22 (P) At (Bu) \ Aue (P)
where the fact that sup||z2¢|| = O has been utilized and

the |||l was used. Both v, and p are linear in & so the
sign of their difference is only depended on e. It turns
out (mainly due to the fact that A has all eigenvalues on
the imaginary axis) that v,(€) — p(g) < 0, no matter how
small ¢ is chosen. Therefore, the sufficient condition for
trajectory tracking (14) is not satisfied.

If however the system had some sort of damping (e.g.
friction) at the joints then the method could exploit that
to allow tracking. Assume that the system has damping
terms of the form dg so that linearization of the internal
dynamics results to:

0 o0 1 0 0
0 0 0 1 0
A= —g —é —01 o |* B= —%
-4 -2 0o -o00 -4

Then A is Hurwitz and the Lyapunov equation can be
solved to yield P from which v, is calculated. Specif-
ically for this system, condition (14) can be relaxed by
noting that #4 and z do not influence the linearized un-
actuated subsystem. Therefore, (14) can be replaced by
v > sup||v||. Then, choosing a trajectory that satisfies 1
and using the linear controller:

v=—v2e(8q — %) — 2 (zg — )

where ¢ is such that ||jv|]] < v, for some bounded h, we
can make the trajectory locally exponentially stable. This
case is depicted in Figure 2. It is evident from Figure 2

Desired and actual trajectory

003, T T

2 L
40 Trajactory error 80 80
T T

- i ; i

H
40 Joint 1 angle (q1)80 80
r .

H \ H
20 40 0int 2 angle (42)80 %

Fig. 2. Tracking with |jg:}| < 0.1

that ¢ and ¢; remain bounded, well below the limit o.

This is due to the conservative nature of condition (14),
which provides additional robustness against unmodeled
dynamics and external disturbances.

The evolution of the control input v used to achieve
tracking is also of interest. This is given in Figure 3. Figure

Fig. 3. Control input for ¢ = 0.1

3 shows that the control input v is bounded by the speci-
fication limit v, set by |Jv|| < v,.

Then the bound o is reduced by half. The reduction of o
affects the maximum admissible value for the tracking con-
troller and therefore degrades performance in view of more
restricting specifications for the variation of ¢;. These ef-
fects are depicted in Figure 4. Figure 5 shows the evolution
of the control input with time.

Desired and actual trajectory

1 i
Joint 1 (q1) 60 &

H H
Joint2(q2) &0 80
v v

time t

Fig. 4. Tracking with ||g;|| < 0.05

V. CONCLUSION

This paper presents a procedure to determine the fea-
sibility of exact output tracking and stabilization to an
equilibrium manifold for underactuated mechanical sys-
tems which are subject to inequality state constraints. The
systems considered in this work do not have to be minimum
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uy

Fig. 5. Control input for ¢ < 0.05

phase nor have a special feedforward or triangular struc-
ture. It is shown that the output tracking problem under
inequality state constraints is reduced to that of finding a
sufficiently bounded tracking controller. In this perspec-
tive, a subset (since the condition provided is only suffi-
cient) of the class of feasible trajectories for the system is
characterized. Moreover, a methodology to design bounded
feedback semi global controllers is indicated. For the case
of stabilization to an equilibrium manifold, the satisfac-
tion of the feasibility condition is on its own sufficient for
stabilization. This feasibility condition provided is conser-
vative enough to handle unmodeled dynamics and external
disturbances.
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