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Abstract— This paper first offers conditions under which
vehicles that are orbiting along adjacent paths will rendezvous
in a small neighborhood intersecting with their paths, and
then presents a controller that regulates their motion char-
acteristics over a small time window in order to robustify
their synchronous rendezvous from the first occurrence of
that rendezvous, forward. The assumption is that the orbiting
vehicles can only interact with each other when they are in close
proximity, and they are moving independently otherwise. The
analysis treats a pair of agents first, and then generalizes the
approach to a chain of vehicles. Simulation results are presented
to corroborate the theoretical analysis.

I. INTRODUCTION

Synchronous rendezvous refers to the problem of spatially
and temporally syncrhonizing a group of agents so that
they meet with each other at prespecified locations [1]. In
the particular context [1] where the term was introduced,
the agents could only communicate and interact with each
other when they were “on (rendezvous) point,” considered
to have very-low-range communication capabilities. Such a
problem is encountered in cases where minimally actuated
small drifters are deployed over a large stretch of water in
which whirlpool-like geophysical flows are present, and one
needs to get as many of them together at the same location to
harvest via low-range radio the data they have collected, and
allow those same drifters to clear their limited data-storage
components and continue their data collection task. Beyond
this application scenario that motivates this particular work,
instances of the synchronous rendezvous problem can also be
identified in other environmental sampling cases [2], in mine
countermeasures involving Autonomous Underwater Vehicle
(AUV) [3], in coordination of Unmanned Aerial Vehicle
(UAV) systems [4], and satellite formation control [5].

While a lot of work has been devoted on consensus-type
vehicle interactions, less is known on what is possible when
the interaction range between the agents is very small relative
to the scale of their deployment space [2], [6]. For example,
buoys may be wirelessly networked over a few kilometers,
and high-bandwidth underwater optical communication is
only feasible within only a few meters. When those vehicles
operate beyond communication range most of the time, only
sporadic, brief, and intermittent interaction is possible.

This paper formulates a problem where agents, modeled
as oscillators, are moving along paths that intersect with
a very small spatial neighborhood. These oscillators can

This work was partially supported by ONR under #
Wei, Li, and Tanner are with the Department of Mechanical

Engineering, University of Delaware, Newark DE 19716;
{weicong,caili,btanner}@udel.edu

only interact with each other if they are collocated in that
neighborhood and they do not have the option of stopping
and waiting there; their motion is transient —because, for
instance, the current will carry them away— and they can
only regulate their speed of transition. The objective is to
ascertain first if their original assignment of frequencies and
phases will allow them to rendezvous sometime in the future,
and if so, to design controllers that could act on them while
they are in proximity with each other and coordinate their
motion in order to (i) start meeting more regularly from that
point on, and (ii) maximize the time they can interact with
each other during each subsequent rendezvous.

This type of synchronous rendezvous problem bears simi-
larities with rendezvous, and oscillator synchronization prob-
lems, respectively. In a typical rendezvous problem, agents
need to arrive at the same place simultaneously, or at least
within some common time interval [1], [7], [8]. The focus is
on the agents converging the same position at the same time.
In oscillator synchronization problems the objective is dif-
ferent: to synchronize certain parameters of these oscillatory
motions —for example, frequency and/or phase difference—
and keep them so over time [9], [10].

Solutions to both rendezvous and oscillator synchroniza-
tion problems hinge on connectivity. Connectivity facilitates
information sharing, which enables interaction between the
agents, which in turn couples them dynamically via their
control laws. In a typical rendezvous control law [11], this
shared information takes the form of relative position. Often,
information sharing is contingent on physical proximity [11],
[12], yet still, agents find themselves communicating with
neighbors more often than not. Depending on the strength
of the dynamic coupling induced through cooperative control
action, the time interval of information sharing and interac-
tion, may vary. In oscillator synchronization instances [10],
for example, this coupling strength is captured by a particular
parameter, and the asymptotic behavior of the ensemble
depends critically on the value of this parameter [10], [13],
[14]. In a synchronous rendezvous instance [1], there may not
be constraints on coupling strength necessarily, but usually
there are stringent constraints on interaction time.

Classical rendezvous and synchronization setups differ
from synchronous rendezvous problems in several ways.
One is reflected in the steady-state: in rendezvous or syn-
chronization problems, states or differences between agent
states, asymptotically converge to constants. In synchronous
rendezvous the steady state is some type of limit cycle.
Another difference relates to an underlying assumption in
both rendezvous or oscillator synchronization work, namely



that agents are connected to some group-mate “most of the
time;” the latter being captured mathematically in different
forms [10], [11], [15]–[17]. This is not true in synchronous
rendezvous [1]. Even though infrequent connectivity can still
enable asymptotic convergence of the relevant parameters
using existing techniques, the outcome could be unacceptable
performance-wise, due to the long settling times forced by
brief, intermittent agent interactions. Short “waiting periods”
over rendezvous locations have proven sufficient for some
cases of group synchronization [1]. The inability to wait
at the rendezvous location for your partner(s) to arrive,
however, complicates the problem.

Synchronous rendezvous where very-low-range interacting
agents cannot wait at rendezvous locations, and the coor-
dinating control action is not instantaneous, appears to be
partially reducible to integer programming. Specifically, the
answer to the question whether and when two agents will
rendezvous is the solution to an integer programming prob-
lem. This analysis informs on the formulation of sufficient
conditions on the agents initial phases and frequencies in
order for this rendezvous to ever occur. Once one knows that
rendezvous will happen, agents may want to utilize control
action to make their subsequent rendezvous longer.

The paper models the agents as harmonic oscillators and
the analysis takes place in a single dimension. To derive
sufficient conditions for rendezvous, is a technique called
hyperplane decomposition on lattices is used. This technique
is part of a much more general methodology that is some-
times referred to as algorithmic geometry of numbers [18]
from where integer programming borrows from. The paper
derives conditions for synchronous rendezvous within this
mathematical framework, and then proceeds with the design
of motion controllers that regulate the agents’ speed locally,
in the small region where they can interact with each other,
so that in subsequent encounters they have as much more
interaction time together as possible. The last part of the
technical discussion in this paper treats an extension to chains
of oscillators on a line, suggesting a synchronization policy
over different rendezvous points on this line.

II. TECHNICAL PRELIMINARIES

A. Hyperplane Decompositions and Lattice Width

Consider a d-dimensional lattice L ⊆ Zd embedded in the
Rd plane (see Fig. 1 for a 2-dimensional example). Each
lattice point is labeled by an integer pair of coordinates.
The feasibility question for an Integer Linear Programming
(ILP) problem reduces to finding whether a convex body K (a
full-dimensional convex compact set) includes lattice points,
i.e., if K ∩ L 6= ∅. The answer to this question ultimately
relates to how “thin” K might be, which requires a notion
of measure for width.

Projective geometry [19] suggests the definition of hyper-
planes, which in the planar case of Fig. 1 take the form of
(diagonal) lines passing through the lattice points. Although
there can be several hyperplanes that can be defined in this
way, the ones of interest here are the ones defined by means
of primitive vectors in v ∈ Zd. Those are (nonzero) vectors

Fig. 1: A convex body on a hyperplane-decomposed Z2

lattice.

with components which are relatively prime. (If this is not
the case for a vector v, the decomposition that it induces
is not the coarsest possible [20].) With such a primitive
at hand, Zd can be characterized in relation to Rd [20] as
Zd ⊆

⋃
z∈Z{x ∈ Rn | vᵀx = z}.

Definition 1 (Width [21]): . Let K ⊂ Rd. The width of
K along primitive v 6= 0 in Rd is defined as

widthK(v) = max{vᵀx | x ∈ K} −min{vᵀx | x ∈ K}
The dual lattice [20] of L, denoted L∗ is defined as L∗ =

{y ∈ Rd | yᵀv ∈ Z, ∀ v ∈ L}.
Definition 2 (Lattice width [21]): The lattice width of K

is the minimal value of its width among all directions of the
dual lattice L∗, namely,

width(K,L∗) = min{widthK(y) | y ∈ L∗ \ {0}} (1)

For a set K ⊂ Rn, K∗ represents its polar, i.e., K∗ =
{y ∈ Rn | yᵀx ≤ 1, ∀x ∈ K}. In the same context, the
notation K −K is understood in a Minkovski sense, where
K −K = {x − y | x ∈ K 3 y}. The following theorem is
key to developing existence conditions for the solutions of
ILP problems.

Theorem 1 (Khinchine’s flatness theorem [22]): For any
convex body K ∈ Rn, either

µ(K,Zn) , inf{s ≥ 0 : Zn + sK = Rn} ≤ 1 or

λ1
(
(K −K)∗,Zn

)
, inf
v∈L∗\{0}

widthK(v) ≤ f(n)

In the above, µ and f(n) are the covering radius and the
width function of K, respectively. The intuition behind the
flatness theorem is that if the covering radius of the convex
body is small, then it is bound to contain integer points,
whereas if its width is sufficiently small (it is “fairly flat”),
it can fit inside the lattice without intersecting with any of
its points.

III. PROBLEM STATEMENT

A. Basic formulation
Consider N one-dimensional harmonic oscillators with

identical amplitude A,

pn = on +A sin(ωnt+ φn) , n = 1, . . . , N

where pn ∈ R denotes the position of oscillator n before
rendezvous, ωn > 0 its frequency, φn its initial phase, and
on its mid-point of oscillation satisfying

on+1 = on + 2A (2)



The rendezvous regions are small neighborhood of radius B
around the point on,n+1 , on + A = on+1 − A, assuming
in general that B � A. After some relabeling and variable
transformations xn 1 := pn − on, xn 2 := ṗn/ωn, and with
the introduction of an agent control input un, the dynamics
of these oscillators are expressed in state-space form, for
n ∈ {1, . . . , N}, as follows[
ẋ1n
ẋ2n

]
=

[
0 ωn
−ωn 0

] [
x1n
x2n

]
+

[
0
un

]
(3)

x1n(0) = A sinφn , x2n(0) = A cosφn

Agents can exchange information with each other —their
positions and velocities, specifically— only when they are
both within a rendezvous region. It is assumed that the agents
can force a single instantaneous reset in their frequencies ωn
as part of their control strategy; besides that one permissible
switch, control action is implemented through un(t). Only
when pn ∈ [on − A, on − A + B] ∪ [on + A − B, on + A],
can the reset in ωn occur and un(t) 6= 0.

A rendezvous occurs when pn ∈ [on + A − B, on +
A + B] 3 pn+1 for some n ∈ {1, . . . , N}. No (prior)
common information is assumed for the agent collection. The
objective is, given a collection of parameters (A,ωn, φn) for
n ∈ {1, . . . , N}, and under the communication constraints
mentioned above, to (i) determine which pair (n, n + 1) of
oscillators, if any, will rendezvous first, and if it does, (ii) to
lock them into synchronous periodic rendezvous from this
point on, maximizing the time they spend in rendezvous.

Compared to the original formulation of the technical
problem for synchronous rendezvous [1], the above is differ-
ent in a few aspects. The first relates to the agent dynamics,
which are periodic in both cases but here they are actually
harmonic. Another difference is that here rendezvous occurs
not at discrete points (graph nodes on a bipartite graph),
but rather at small but contiguous spatial regions which
are treated uniformly. The most critical difference, however,
between the two formulations may be the fact that here
agents cannot remain stationary within rendezvous regions.

B. Possible Extensions
Given a solution to the problem stated in Section III-A,

a natural follow-up question is whether this solution can be
applied recursively to synchronize multiple pairs of agents,
back-to-back on the same line.

IV. TECHNICAL APPROACH

A. Conditions for rendezvous
Focusing on a pair of agents n and n + 1, let S+

n be
the collection of disjoint time intervals in which agent n is
in its upper rendezvous region, that is S+

n ,
⋃
{[t−n , t+n ] :

pn(t) > on +A−B, ∀ t ∈ [t−n , t
+
n ]}, and similarly, S−n+1 ,⋃

{[t−n+1, t
+
n+1] : pn+1(t) < on+A+B, ∀ t ∈ [t−n+1, t

+
n+1]}.

The pair will be in rendezvous at time instants tn,n+1 ∈
S+
n ∩ S−n+1. These time instants are solutions to the system

of inequalities

sin(ωn tn,n+1 + φn) ≥ 1− B
A

sin(ωn+1 tn,n+1 + φn+1) ≤ B
A − 1

(4)

Denote θ+ , arcsin A−B
A and θ− , arcsin B−A

A , both of
which range in [−π2 ,

π
2 ]. Combining with (4), S+

n ∩ S−n+1

is refined in terms number of individual agent oscillation
periods, namely kn and kn+1, respectively:⋃

kn∈Z

[
2knπ+θ

+−φn

ωn
, 2(kn+1)π−θ+−φn

ωn

]
, T+

n 3 tn,n+1 ∈ T−n+1 ,⋃
kn+1∈Z

[
2(kn+1−1)π−θ−−φn+1

ωn+1
, 2kn+1π+θ

−−φn+1

ωn+1

]
For such an instant tn,n+1 to exist, there must be T+

n ∩
T−n+1 6= ∅. Every component of such a nonempty intersec-
tion corresponds to an integer pair (kn, kn+1) ∈ Z2. Setting

gn,n+1 , φn−θ+
ωn

+ θ−−φn+1

ωn+1
(5a)

g
n,n+1

, π−θ+−φn

ωn
+ θ−+φn+1+π

ωn+1
(5b)

one seeks a pair (kn, kn+1) ∈ Z2
+ for which

2π
ωn
kn − 2π

ωn+1
kn+1 ∈ [−g

n,n+1
, gn,n+1] (6)

Proposition 1: Consider two oscillators n and n+ 1 with
dynamics satisfying (2) and (3), having periods τn = 2πω−1n
and τn+1 = 2πω−1n+1. The two oscillators will achieve
rendezvous iff the region in the x-y plane

{(x, y) ∈ R2 | τnx− τn+1y − gn,n+1 ≤ 0

∧ τnx− τn+1y + g
n,n+1

≥ 0} (7)

has a nonempty intersection with the lattice Z2.

Proof: For the necessity part assume rendezvous hap-
pens after kn periods of oscillator n and kn+1 periods of
oscillator n + 1. Since

[
2knπ+θ

+−φn

ωn
, 2(kn+1)π−θ+−φn

ωn

]
∩[ 2(kn+1−1)π−θ−−φn+1

ωn+1
, 2kn+1π+θ

−−φn+1

ωn+1

]
6= ∅, it follows

that (6) is satisfied. Condition (6), specifically takes the form
τnkn − τn+1kn+1 ∈ [−g

n,n+1
, gn,n+1], implying τnkn −

τn+1kn+1+g
n,n+1

≥ 0 and τnkn−τn+1kn+1−gn,n+1 ≤ 0.
Sufficiency is shown tracing back the same steps: if there

is an integer pair (kn, kn+1) such that τnkn − τn+1kn+1 +
g
n,n+1

≥ 0 and τnkn−τn+1kn+1−gn,n+1 ≤ 0, then τnkn−
τn+1kn+1 ∈ [−g

n,n+1
, gn+1]. This means that T+

n ∩T−n+1 6=
∅. Shortly after time crosses the lower boundary of this set,
the two oscillators will rendezvous for the first time.

Proposition 1 does not inform about how to find the
pair of period multiples that should be completed before
rendezvous. Surprisingly, a number-theoretic approach may
be more constructive. If the frequency ratio ωn

ωn+1
is rational,

then there is always a positive real c such that both c 2π
ωn
≡

c τn and c 2π
ωn+1

≡ c τn+1 are integers. Then (6) is written
as c τn kn − c τn+1 kn+1 ∈ [−c g

n,n+1
, c gn,n+1]. If there

exists an integer pair (kn, kn+1) to allow for rendezvous,
then Proposition 1 implies that a linear Diophantine equation

c τn kn − c τn+1 kn+1 = λ (8)



with a nonzero integer λ ∈ [−c g
n,n+1

, c gn,n+1] ∩ Z has a
solution. A necessary and sufficient condition [23] for this
is λ being a multiple of the greatest common divider (gcd)
of c τn and c τn+1. In this case, the primitive solution of (8)
can be obtained using the Euclidean algorithm [23].

Corollary 1: Assume ωn

ωn+1
is rational. Let c ∈ R be such

that 2πc
ωn
∈ Z\{0} 3 2πc

ωn+1
. Then (2)–(3) achieve rendezvous

iff there exists λ ∈ [−c g
n,n+1

, c gn,n+1] ∩ Z \ {0} that is a
multiple of gcd

(
2πc
ωn
, 2πc
ωn+1

)
.

Corollary 1 suggests that there will definitely be an integer in
the interval [−c g

n,n+1
, c gn,n+1] if the length of this interval

is larger than one. This result can also be arrived at from a
different, more geometric, direction.

Indeed, without significant loss of generality, the (infinite)
strip (7) can be bounded from above and below, assuming
reasonably large bounds on the number of periods kmax one
intends to wait for rendezvous to occur, and ignoring negative
time based on (6) i.e. setting kn,min , θ++φn−π

2π , kn+1,min ,
−θ−+φn+1

2π . Then K can be made a convex body as follows:

K , {(x, y) ∈ [kn,min, kmax]×[kn+1,min, kmax] : τnx−τn+1y

− g
n,n+1

≤ 0 ∧ τnx− τn+1y + gn,n+1 ≥ 0} (9)

If ωn

ωn+1
is rational, and gcd(c τn, c τn+1) = m, then a =

c
mτn and b = c

mτn+1 will be coprime, in which case (9) is
equivalent to

K = {(x, y) ∈ [kn,min, kmax]× [kn+1,min, kmax] :

a x− b y −
cg

n,n+1

m ≤ 0 ∧ a x− b y +
cgn,n+1

m ≥ 0}

and once again, one would seek an integer λ in the inter-
val [−

cg
n,n+1

m ,
cgn,n+1

m ]. Now, however, Theorem 1 can be
brought to bear, and offer an additional, geometric interpre-
tation of the algebraic rendezvous condition formulated in
Corollary 1.

The convex body K is a (bounded) strip between two
parallel lines of slope a

b at a distance 1√
a2+b2

(−a, b) ·

(0,
c(g

n,n+1
+gn,n+1)

bm )ᵀ =
c(g

n,n+1
+gn,n+1)

m
√
a2+b2

from each other.
Since a and b are integers, (−a, b) belongs in the dual lattice
(Z2)∗ = Z2. In addition, because a and b are coprime,
(−a, b) is primitive; in fact the vector for which the minimum
is attained in (1):

width(K,Z2) =
c (g

n,n+1
+ gn,n+1)

m
=
c (g

n,n+1
+ gn,n+1)

gcd(c τn, c τn+1)

Due to a and b being coprime, the strip (9) is parallel
to the lattice hyperplanes defined by the primitive vector
(a, b). As a result, the widest strip that can “fit” in the planar
lattice of Z2 without having lattice points in its interior,
is one that in fact has two successive lattice hyperplanes
themselves as boundaries. It is known that the maximal width
function for empty lattice simplices (having their vertices on
the the lattice) in Z2 is f(2) = 1 [24]. As a consequence
of Theorem 1, therefore, any convex body K defined by
(9) with lattice width larger than one, will inevitably have

interior lattice points. The discussion thus traced its way to
the following result:

Proposition 2: Assume τn
τn+1

is rational, let c ∈ R be the
constant for which c τn ∈ Z \ {0} 3 c τn+1, and set gi
according to (5). Then (2)–(3) achieve rendezvous if

c (g
n,n+1

+ gn,n+1)

gcd(c τn, c τn+1)
> 1

The integer pairs (kn, kn+1) associated with rendezvous are
themselves directly identified using Corollary 1. The time of
the first rendezvous is pinpointed using the expression

t first = max{ θ
+
n 0φn+2knπ

ωn
,
2(kn+1−1)π−θ−n+1−φn+1

ωn+1
}

B. Control strategy for synchronous rendezvous

According to the setup of Section III, the objective in-
cludes locking the agents in synchronous rendezvous. While
the structure of the Diophantine equations suggests that once
they meet once, they will continue to do so with some
(possibly large) period, it is desirable to have control over the
frequency of this rendezvous phenomenon, and potentially
make this spatial conjunction longer and more robust. This
can be done through short-term control action. This action
has indeed to be short-term because in order to coordinate,
the agents need to exchange information, and they can only
do so while in rendezvous.

The first, and most drastic measure that the two oscillators
are allowed to take is to reset their frequencies. Although
several frequency setting schemes can be suggested, a sim-
ple strategy that ensures frequent subsequent synchronous
rendezvous while distributing equally the effort involved in
frequency reset is to average the oscillators’ frequencies and
adopt a common ω̄ = ωn+ωn+1

2 . When this happens, the two
oscillators adopt identical dynamics with (3) becoming[

ẋ1i
ẋ2i

]
=

[
0 ω̄
−ω̄ 0

] [
x1i
x2i

]
+

[
0
ui

]
i ∈ {n, n+ 1}

The initial conditions of the two oscillators after the reset,
however, are different. The task of regulating the states
so that the time in rendezvous while oscillating with ω̄ is
maximal, thus falls on ui.

To devise the control strategy for ui, first combine the
two dynamics in one by defining the auxiliary variables. Let
on,n+1 denote the centroid of agent n and n+ 1 rendezvous
region; here on,n+1 , on +A = on+1 −A. Set

z1n,n+1 , x1n + x1n+1 z2n,n+1 , x2n + x2n+1

un,n+1 , un + un+1

and let zn,n+1 denote the stack vector of z1n,n+1 and
z2n,n+1. Note that z1n,n+1 = 0 implies that pn+pn+1

2 =
on,n+1, i.e. the (synchronized) oscillators are symmetrically
distributed about the centroid of their rendezvous region.
Since they have the same frequency, if their phases are off
by π then they will be entering and leaving the rendezvous
neighborhood at the same time, essentially maximizing the
time they have to interact with each other. This motivates



setting a control objective that aims at driving z1n,n+1 to
zero as quickly as possible: a time-optimal control problem.

The design and implementation of such a linear time-
optimal controller is relatively straightforward [25], once
the dynamics of (z1n,n+1, z2n,n+1) are written down. The
details are skipped due to lack of space. As expected, the
control law is of bang-bang form.

One implementation challenge stems from the fact that
B being very small relative to A, the time that the optimal
controller has to drive z1n,n+1 to zero in a single rendezvous
session may not be enough. The good news is that even when
the optimal controller does not diminish z1n,n+1 in one turn,
the closer it brings it to zero, the more time it has to do
so during the following rendezvous session, and it will be
starting from a better initial condition.

Optimal control theory will thus dictate the combined
control input un,n+1 = un + un+1. For the first pair to
rendezvous, one of the oscillators, say n, is arbitrarily labeled
the leader, and its follower n+ 1, takes the responsibility of
implementing the control law: un+1 = un,n+1.

C. Extension to N > 2

Recall the original setup of Section III, where there were
N oscillators arranged side-by-side on the real line, starting
each with arbitrary phase and frequency. It is natural to ask if
the synchronization strategy of Section IV-B can be leveraged
to coordinate a string of oscillators.

The answer to this question is yes, with the introduction
of a few additional coordination rules. One has to keep in
mind that the oscillators cannot communicate with each other
except when they find themselves in the same rendezvous;
thus the possibility of propagating information for long-range
coordination purposes is extremely limited.

Still, one can analyze the behavior of a string of very-
low-range interacting oscillators under the control regime of
Section IV-B. Under this scheme, the first pair of oscillators
to achieve rendezvous —suppose for the sake of argument
that this pair is (n, n+1)— will synchronize their frequencies
and commit to oscillating at ω̄ = ωn+ωn+1

2 . Then the optimal
control action drives z1,n,n+1 → 0.

The strategy from this point on is to leave this pair to
continue implementing the protocol of Section IV-B undis-
turbed. If any of the two coupled oscillators rendezvous
with an uncommitted neighboring oscillator —suppose, again
for the sake of argument, that this happens to be agent
n + 2— the latter is forced to adot the frequency of the
group of already committed agents. The reason is that in the
rendezvous region [on+2−A−B, on+2−A+B] where n+1
and n+2 are now located, agent n is out of range and cannot
synchronize with the new pair. Any deviation of n+ 1 from
its committed frequency will desynchronize it with respect
to n. The newly recruited agent n+ 2 has full responsibility
to implement the optimal control law un+1,n+2: while in
rendezvous within [on+2−A−B, on+2−A+B], un+1 = 0
and un+2 = un+1,n+2.

Other uncommitted agents may spontaneously rendezvous
in other parts of the line, and also implement the strategy

of Section IV-B independently, and possibly start recruiting
neighboring uncommitted agents, in the way described in
the previous paragraph. When committed agents from two
different groups encounter each other in a rendezvous region,
they remain do not try to synchronize. Each agent remains
committed and faithful to the group it originally joined.

It is relatively straightforward to track the evolution of
group forming and frequency locking by iteratively solving
a collection of ILP problems, either directly, or through the
Diophantine equation (8). Originally, this collection involves
all N − 1 neighboring pairs of agents. The good news is
that after each frequency locking, the collection is reduced
by one: once an agent resets and commits to a frequency,
it essentially becomes part of an existing oscillator, and the
problem of predicting future rendezvous becomes progres-
sively easier.

V. VALIDATION

For illustration purposes, consider only three oscillators,
of which the position before rendezvous is given by

p1(t) = sin(ω1t+ φ1)− 3 , p2(t) = sin(ω2t+ φ2)− 1

p3(t) = sin(ω3t+ φ3) + 1

The motion of the oscillators is parameterized by individual
initial frequencies ωi and phases φi for i = 1, . . . , 3, which
for this example are chosen arbitrarily:

agent 1 agent 2 agent 3

phase φi [rad] 3π
4 0 −π6

frequency ωi [rad/sec] π
12

π
6

π
4

Their linear arrangement allows rendezvous between agents
1 and 2, and between agents 2 and 3. Given parameters, the
convex bodies for the two pairs are shown in Fig. 2.

Both convex bodies contain multiple lattice points, and
the one of smallest distance from the origin is in both cases
(1, 2). For example, for Fig. 2a Corollary 1 with c

m = 1
12

requires the existence of an integer in [− 1
2 ,−

1
2 ], while for

Fig. 2b the interval is [− 23
12 ,−

1
4 ]. The solutions suggest an

earliest rendezvous time between 1 and 2 at 19 seconds, and
for 2 and 3 at 13.33 seconds. It follows that 2 and 3 will
pair first and lock their frequencies to ω̄ = ω2+ω3

2 = 5π
24 ,

after which time agent 1 will be recruited and adopt this
same frequency. Figure 3 illustrates the agents’ oscillations
and marks the rendezvous events with the brief bang-bang
optimal control action, that together with the frequency resets
makes the subsequent rendezvous events both regular and
slightly longer lasting.

VI. CONCLUSION

The problem of synchronous rendezvous for oscillators
with very-short-range interaction, appears to have strong
connections with ILP and links to particular topics in number
theory and the geometry of numbers. Exploiting standard
results about the solutions of linear Diophantine equations
and utilizing Khinchine’s flatness theorem, one can derive
conditions under which two neighboring oscillators that
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Fig. 2: The convex bodies for the two pairs of oscillators which can
rendezvous, indicating the nonzero integer multiple of periods for
each member of the pair after which their first rendezvous occurs.
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Fig. 3: Agent paths and control action during rendezvous.

evolve on the same line will rendezvous in a very small re-
gion neighboring their oscillation domain boundaries. When
rendezvous occurs, optimal control theory can inform the
design of controllers that progressively increase the time
agents coincide within the small rendezvous regions.

Knowing where and when rendezvous happens is of inter-
est in cases where one needs to develop visiting itineraries.
Agents could for example be spatially distributed sensor
platforms that roam and collect data, and because of limited
local storage they need to be periodically upload those data
via some low-range wireless channels. It is important for the
vehicles tasked with harvesting these data to know at what
time they need to be where.
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