
Learning option MDPs from small data

Ashkan Zehfroosh,1 Herbert G. Tanner,1 and Jeffrey Heinz2

Abstract— Learning from small data is a challenge that
presents itself in applications of human-robot interaction (HRI)
in the context of pediatric rehabilitation. Discrete models of
computation such as an Markov decision process (MDP) can
be used to capture the dynamics of HRI, but the parameters
of those models are usually unknown and (human) subject
dependent. This paper combines an abstraction method for
MDPs, with a parameter estimation method originally developed
for natural language processing, designed specifically to operate
on small data. The combination expedites learning from small
data and offers more accurate models that lend themselves to
more effective decision-making. Numerical evidence in support
of the approach is offered in a comparative study on a small
grid-world example.

I. INTRODUCTION

Autonomous agents are often called to make decisions in
partially known environments, based on incomplete infor-
mation. A standard Artificial Intelligence (AI) approach to
this problem is the application of reinforcement learning [1].
Learning algorithms in this framework involve a learning
stage; during that phase, there is typically not enough infor-
mation to theoretically guarantee optimal decision-making.
While at this stage, the emphasis is on fast completion rather
than best performance. Some HRI applications, however,
particularly in the context of early pediatric rehabilitation,
present instances of the learning problem where (i) on one
hand performance is paramount because interaction time is
brief and precious, and on the other, (ii) precisely because of
limited rehabilitation dosage and small data sets, the learner
may not converge and computed policies may be far from
optimal [2]. The focus of this paper therefore is to accelerate
the learning stage when learning from small data.

Markovian, discrete mathematical models have been used
in many applications to describe the dynamics of interaction
between robots and humans. The most common Markovian
model in human intent prediction is a partially observable
Markov decision process (POMDP) which treats human ac-
tion as an observable variable, and encodes human intent as a
hidden state [3]. The POMDP model is computationally taxing
(NEXP-complete), and even infinite horizon versions of such
problems are known to be undecidable under different opti-
mality criteria [4]. A less computationally demanding model
is a mixed observability Markov decision process (MOMDP),
which treats components of the state, as opposed to the whole

1Ashkan Zehfroosh, and Bert Tanner are with the Department
of Mechanical Engineering, University of Delaware. {ashkanz,
btanner}@udel.edu

2Jeff Heinz is with the Department of Linguistics and insti-
tute for advanced computational science, Stony Brook University.
jeffrey.heinz@stonybrook.edu

This work was supported by NIH under grant # R01HD87133.

state vector, as being unobservable. Such a model has been
used for intention-aware robot motion planning [5], where
states of the world are considered observable, and only a
finite number of human intentions are deemed unobservable.
For each one of the human intentions, the model is essentially
fully known. Optimal policies for robots are then computed
by forming a belief over human intention. Crucial under-
lying assumptions in MOMDP approaches is that (i) human
behavior is always rational, which supports the construction
of a meaningful prior model, and (ii) a large amount of
observation data are available for learning.

In contrast to POMDP and MOMDP models, an MDP is
relatively simple, and has also been utilized in HRI appli-
cations, although not to the extend of the aforementioned
models. In one example of use of an MDP in an aerospace HRI
application, [6], the system is initiated with some inaccurate
prior, and attempts to refine and update its MDP model
through observations. Because of the size of the model,
however, the update process is restricted to select out of
a finite set of parameters. Still, given that an MDP has a
relatively smaller number of tunable parameters compared to
more sophisticated POMDP and MOMDP models, it presents
itself as an attractive (from a computational expediency
standpoint) choice when small data is available.

The application that motivates this work is in the space of
early pediatric motor rehabilitation. In this context, young
children (infants) with motor disabilities are socially in-
teracting with robots in play activities. The goal of this
play-based interaction is to encourage physical activity on
behalf of the special needs children. This is because early
development is tied to learning, and learning depends on
exploration [7]–[9]. The more the infants explore their en-
vironment, as well as test and hone their own locomotion
skills, the faster they can develop, not only motor-wise, but
also cognitively and socially. To apply HRI in this paradigm,
some scenarios are designed by considering infants’ abilities
and interests based on their age and level of impairment
[10]–[12]. The objective of the described HRI problem is
to design an automated decision-algorithm for the robot to
keep the infant engaged in physical activity. This problem
is arguably more challenging than other HRI applications,
since the automation system is called to effectively work in
perhaps more complex and dynamic environments compared
to earlier HRI pediatric studies [13]. In addition, there is
little prior information about the infant’s preferences, the
interaction time in clinical studies for infants hardly provides
sufficient data for machine learning algorithms. Models and
methods that can handle sparsity in training data are therefore
expected to perform better than alternatives, and this is why

mathematical abstractions of this type of HRI in the form of
some MDP appear to be appropriate here [2].

When the dynamics of HRI are to be described by an
MDP, the designer is faced with the problem of populating
the model with the appropriate values of its parameters. For
an MDP, arguably the most critical set of parameters is the
collection of transition probabilities. Often, those transition
probabilities are unknown —they have to be learned. Then
a parameter estimation process is initiated, and a typical
method for doing that can be maximum likelihood (ML),
which can come with formal guarantees of convergence
[14]. Depending on the application, however, the training
data size required to obtain convergence in those terms may
be unreasonably big. When ML is used with data obtained
from a small amount of observations, the approximation of
the probabilities obtained is usually crude and unacceptably
inaccurate [2].

The problem of learning the parameters of an MDP model
based on sparse data can been approached from four main
directions. One is closely tied to probably asymptotically
correct (PAC) analysis; questions considered important here
are how to place a bound on the minimal amount of data
required for different learning algorithms in order to guaran-
tee some metric of compatibility with true observations at a
given level of confidence [15]. Another approach is focused
on convergence speed: what modifications can be introduced
to a learning algorithm to make it learn faster from small data
sets [16], [17]. A third viewpoint is linked to abstraction,
namely finding a model representation that is just coarse
enough to sufficiently reduce the size of the search space for
the parameters that need to be learned [18]. Finally, there
are efforts that essentially try some type of “interpolation”
between the sparse data to improve learning objectives when
the training set is small [2]. If one is willing to forego the
certainty of provable theoretical convergence and trade it
off for increased learning performance on small data sets,
they can replace ML with smoothing. Smoothing [19] is a
technique that has traditionally been applied in the appli-
cation space of natural language processing (NLP), and is
designed to interpolate over sparse data sets. Motivated by its
success in NLP, smoothing was proposed and formulated to
learn the unknown transition probabilities in a conventional
MDP, from small sets of observations [2]. When applied to
learning MDP transition probabilities, it has demonstrated
increased performance compared to ML [2]. The present
paper combines elements from the last two types of the
approaches, namely using abstract model representations that
facilitate learning by reducing the size of the search space,
together with learning techniques specifically developed for
operation on small data sets.

The computationally expedient abstract representations
considered here involve options [18]. Options essentially
express a way discretizing and making finite the search space
of policies. And while all finite-horizon policies policies
based on a finite set of primitive actions will theoretically
form a finite set, options are judiciously chosen (sub-)policies
that are likely to be effective over a relatively wide range

of states. It turns out that the resulting abstraction has the
potential to reduce drastically the amount of data required
for learning [18].

The main innovation in this paper, therefore, is the com-
bination of smoothing with a partially known Semi-Markov
decision process (SMDP), and the use of this new construction
for the development of a learning framework that is adapted
to learning from small data. Once the small body of data
is processed, and the SMDP parameters are estimated, a
standard decision-making algorithm is executed. The poli-
cies resulting from this process are numerically tested and
assessed on a small grid-world example.

The rest of the paper is organized in the following
sequence. Section II provides some technical background.
Section III describes the problem that this paper addresses
in technical terms, and then Section IV presents the solution
developed in the context of options and smoothing. Section V
contains the numerical results on the grid-world example, and
Section VI finally closes the paper with some conclusions.

II. TECHNICAL PRELIMINARIES

A finite MDP M is a tuple {S,As, Rs, P ass′ , γ} where S
is finite set of states; As is finite set of available actions in
each state s; Rs is the reward assigned to each state s; P ass′
is the probability of transition from state s to state s′ by
performing action a; and γ is a discount factor. A policy
π is a mapping from states to probabilities of performing
some action in As, i.e. π : S × As → [0, 1]. A policy
is said to be optimal if it maximizes the expected sum of
discounted reward, E

{∑∞
t=0 γ

tRst
}

, in which the discount
factor γ reflects the preference of immediate rewards over
future ones, and the variable t is used to denote the current
discrete time step, while st and at are the state, and action,
taken at time t, respectively. The value of state s under policy
π is defined as

V π(s) =
∑
a∈As

π(s, a)

[
Rs + γ

∑
s′

P ass′V
π(s′)

]
An optimal policy maximizes the value on all states, and the
latter is then denoted V ∗s .

Options [18] are subsets of policies (sub-policies) that
are only applicable to certain groups of states. In other
words, a decision-making algorithm can only choose among
the particular set of sub-policies when actions need to be
executed within this group of states. Formally, an option o
is a tuple {I, π, β}, where I ⊆ S is group of states where
the particular option can be initiated, π is the policy that the
option executes, and β : S → [0, 1] is a function that for a
given state gives the probability that the option terminates
at that state. For example, if an option labeled turn-on-light
is available, the policy π that is executed for that option is
likely a sequence of actions that include reaching, touching,
and flipping some light switch; in this particular case, the
termination probability β is 1 in all states where the light is
on, and I contains all states where the light is off. The option
reward function Ros is the expected value of the accumulated
rewards by executing option o in state s until termination,

and with n representing the random number of steps after
which option o terminates, it is expressed as

Ros = E
{
rt+1 + γ rt+2 + . . .+ γn−1 rt+n

}
The option transition probabilities are denoted P oss′ . They

express the probability that the system terminates option o at
state s′ after initiating it at state s. If P o(s′, n) denotes the
probability that option o terminates at s′ after n steps, and
m is the maximum number of steps allowed, the transition
probabilities can be evaluated as

P oss′ =

m∑
n=1

P o(s′, n) γn

The set of all options available at state s is denoted Os, and
the collection of all options is O =

⋃
s∈S Os. Then a policy

over options can be defined as a map µ : O × S → [0, 1].
With these definitions at hand, an MDP with set of options O
becomes a SMDP, which is a direct extension of the classical
MDP [18]. In this extension, o plays the role of a, µ that of
π, Os replaces As, and Ros takes the place of Rs.

The value iteration update rule for an SMDP is given as

Vs ← max
o∈Os

Ros +
∑
s′∈S

P oss′Vs′

and converges to the optimal option value for state s. It is
known that if the optimal policy can actually be constructed
by the set of available options, then the optimal option value
in the SMDP is the same as the optimal value V ∗s in the
associated MDP [18].

Quite common in early applications of NLP, smoothing
was shown to interpolate much more effectively when pre-
sented with sparse data compared to other contemporary
methods [19]. Within the context of NLP, and in its Kneser-
Ney variant [19], smoothing would operate on finite contigu-
ous sequences of letters, or symbols. The learning algorithm
keeps a record of the frequency of appearance of those
sequences, called factors, in the data. The main difference
compared to a typical ML estimation algorithm, is that
smoothing —acknowledging the fact that the training sample
may be too small to explicitly express all possibilities—
assigns nonzero probabilities even to factors that have not
been encountered in the data.

The goal of this paper is to formulate a learning framework
that is better suited for learning the parameters (transition
probabilities) of MDP models from small data, so as to boost
the performance of subsequent decision making. Small data,
in this context, is formally understood in terms of the VC
dimension. In learning theory [20], a sample size for learning
is considered small when the ratio of the cardinality of the
set of training examples n, to the VC dimension of functions
of the learning machine d, is smaller than some (arbitrary)
constant, say n/d < 20.

III. PROBLEM STATEMENT

Consider an instance of HRI, where the dynamics of inter-
action between human and machine is modeled by an MDP
M . Transitions in M express the human’s reaction to the

robot’s actions. It is assumed that the responses of the human
to the robot actions are observable, and the objective is to
design a policy to dictate the robot’s actions. However, both
the transition probabilities in M are not known confidently
a priori.

In HRI applications where automated decision-making is
informed by partially known Markovian models, learning
modules can be incorporated to complete the missing in-
formation. During that initial learning phase, the learner
observes instances of HRI and based on these observations,
estimates the unknown parameters of the model. In many
instances, however, the available observations are scarce.
The central question for the paper, therefore, is how to
construct that learning algorithm so that it is capable to
provide better approximations of the model parameters com-
pared to a typical parameter estimation method, so as to
increase the performance the decision-making algorithm that
subsequently uses the model.

IV. TECHNICAL APPROACH

The hypothesis in this paper is that if the states in M
can be grouped in such a way so that only those particular
type of policies (the options) would make sense in each
group, the resulting abstraction makes the learning problem
for the transition probabilities significantly easier. Due to the
sparsity of the training data available, the strategy therefore
is to combine a computationally expedient Markovian model
(an SMDP) together with a learner designed to cope with
small data sets (smoothing). Once M is abstracted into an
SMDP M, the unknown parameters take the form of option
transition probabilities, and option reward functions, P oss′ and
Ros , respectively. The discount factor is taken as γ = 1.

The abstraction of M into M is performed in a straight-
forward way as follows. Transitions (by options) in M are
considered as pairs of states, or bi-gram elements (sequences
of symbols of length two) consisted of the the state at which
an option was initiated followed by the state at which it
was terminated. For example, when an option takes M from
si−1 to si, for example, with si−1, si ∈ S, the subsequence
will be of the form si−1si. The frequency of occurrence in
the data of a transition from s′ to s′′ by option o is denoted
co(s

′s′′). The frequency of occurrence of a transition from s′

to s′′ by option o terminated after exactly n steps is denoted
c
(n)
o (s′s′′).

A maximum number m of steps taken in an option is
set, to prevent the system from being trapped executing an
ineffective option. As a result, the model is semi-Markovian:
the termination of an option depends not only on the previous
state in M that was visited, but also on m. In the same spirit,
updates on the model are made only after termination of
options; not while an option is being executed. Consequently,
the intra-option model learning method [18] cannot be used
here.

The learning algorithm now keeps a record of the fre-
quency of appearance in the data of all different si−1si
sequences, corresponding to each option being executed. Let
the cumulative reward of option o, when initiated at state s

and terminated after n steps be denoted Ros(n); this belongs
in the observables provided to the learning module. The
average cumulative reward obtained by executing the option
N times from state s, is updated through an incremental
learning rule as

Ros =
N − 1

N
Ros +

1

N
Ros(n) (1)

Now take a discount constant parameter ζ ∈ (0, 1), denote
| · | the cardinality of a set, and define a normalizing constant

λsi−1si(o) ,
ζ |{s′ : 0 < co(si−1s

′)}|∑
s′ co(si−1s

′)

×
∑m
n=1 γ

nc
(n)
o (si−1si)

co(si−1si)

The Kneser-Ney smoothing process approximates the prob-
ability of reaching state si by executing option o as

P osisi−1
=
λsi−1si(o)

∣∣{s′ : 0 < co(s
′si)}

∣∣∣∣{s′s′′ : 0 < co(s′s′′)}
∣∣

+
max

{
co(si−1si)− ζ, 0

} ∑m
n=1 γ

nc
(n)
o (si−1si)

co(si−1si)
∑
s′ co(si−1 s

′)
(2)

It should be noted that (2) assigns nonzero probabilities to
all possible pairs si−1si associated with option o —-that
is, even those that have not been observed. The magnitude
of those probabilities is determined in part by the discount
parameter. Combining the described updating process with
ε-greedy exploration approach [21], the whole learning and
decision-making process can be described in Algorithm 1.

Input: set of states S, set of options O, prior option transition
probabilities P o

sisi−1
, reward function Rs, prior option reward

function Ro
s , coefficient c, convergence threshold ε.

Set: N(s) = 0, co(ss′) = 0, c(n)
o (ss′) = 0 εt(s) = 0, ∀s, s′ ∈

S, ∀o ∈ O; current state st.
While maxs′∈S |P o

ss′ − poss′ | < ε
Do

1) N(st) := N(st) + 1
2) εt(st) := c/N(st)
3) Value-iteration (current MDP) → V ∗:
• with probability 1− εt(st):
ot := argmaxo∈Ost

[Ro
st + γ

∑
s′ P

o
sts′V

∗
s′]

• with probability εt(st): ot := Random(Ost)

4) Execute the option till termination after n steps and
observe new state sn

5) cot(sn, st) := cot(sn, st) + 1

6) c(n)
ot (sn, st) := c

(n)
ot (sn, st) + 1

7) postsn := P o
stsn

8) Update system parameters:
• P o

stsn ← (1)
• Ro

st ← (2)
9) st ← sn

End

Algorithm 1: Learning and decision-making loop.

V. VALIDATION

In this section, Algorithm 1 is tested on a small grid-
world (see Fig. 1). The grid-world is designed in a way
that the states can be divided into two groups or partitions.
The first (left) partition includes states {1, 2, 7, 8, 11, 12, 13},
while the second (right) partition extends through states
{3, 4, 5, 9, 10, 14, 15}. To all partition states, a reward of −1
is assigned. In contrast, states {6, 16} are goal states and are
assigned rewards 1.5 and 1 respectively.

Fig. 1. The grid-world with two partitions.

With the exception of the goal states, the system always
has four primitive actions available: down (d), left (l), up
(u), and right (r). Nominally, the execution of each one of
these primitive actions will successfully transition the system
along the intended direction with probability 0.7; the system
will stay in the same cell with probability 0.1, and may
make a random move with probability 0.2. In cells with right
boundary marked with double line, the probabilities for those
events are 0.4, 0.4, and 0.2, respectively. For cells with triple
lines on their right boundary, the probabilities are 0.1, 0.7,
and 0.2, respectively. The prior for the probability of moving
in the intended direction is 1.

Only two options are available in each partition to escape:
either through cell 13 or 2 in the left partition and 5 or
15 for the right one. The maximum number of steps (read:
execution of primitive actions) allowed for each option is set
at m = 10. Fig. 2 illustrates one of these options in the left
partition.

The option set is chosen here in a way that the true
optimal policy can indeed be synthesized by the available
options. As a consequence, the optimal option value should
the same as the conventional optimal value for all states.
Let V ∗ be the vector of optimal values in all states, and
V l be the optimal value resulting from the model produced
by the learning algorithm. Those values are computed using
value iteration [22]. The difference between these two vectors
serves as a metric of performance, quantifying in some
sense the decision-making error as a result of a coarse
model. Figure 3 depicts the Euclidean norm of the differ-
ence between the value vectors, ‖V ∗ − V l‖2 as a function
of observations, for different combinations of models and
learning methods: (a) utilization of an MDP as the underlying

Fig. 2. The policy for the option that takes the system out of the left
partition and into the right through cell 13.

model and estimation of the transition probabilities using ML;
(b) utilization of the same MDP as the underlying model, and
estimation of the transition probabilities using smoothing;
(c) use of an SMDP as the underlying model, and estimation
of its transition probabilities and reward functions through
ML; and finally (d) use of the SMDP and estimation of the
transition probabilities and reward functions via smoothing.
When an ML estimation method approximates the option
reward function, in the form of the average cumulative
reward obtained by executing the option N times from state
s, through the same incremental learning rule (1). However,
the option transition probabilities are updated, using the
indicator function δss′ , which is equal to 1 if s = s′ and
is 0 otherwise, in the following way:

P oss′′ =
N − 1

N
P oss′′ +

1

N
γnδs′s′′ (3)

The update step 8 in Algorithm 1 is performed using (1)
and (3), instead. The magnitude of the norm depicted in the
figure is the average over twenty different instantiations of
the particular learning problem having been presented with
the same number of observations.

After around 4000 steps, all methods perform compara-
bly, and the discrepancy decreases even more with more
observations, as expected. The utilization of smoothing MDP
results in noticeably better performance compared to ML
with small data. Interestingly, however, the difference in
performance is not that stark when smoothing is applied
on the SMDP. Smoothing does appear to perform better,
but the difference diminishes quickly with the number of
observations. The difference is more significant at very small
number of observations. One of the reasons is that that
the SMDP model itself is capable of absorbing some of the
uncertainty related to small data sets, and another is that in
both cases, the reward functions are still estimated identically
through (1).

While an MDP model for the grid-world of Fig. 1 involves
228 transitions, the associated SMDP model includes 308
transitions, and requires the estimation of an additional 16
option reward functions. Thus, at first sight, the computa-
tional benefits are not obvious; the abstraction appears to

be “finer” than the concrete model. The secret lies in the
data: because of the grouping and in conjunction with the
small data set, most of the transitions in SMDP are never
encountered in the training set, in contrast to the case of
the MDP. As a result, for the same number of observations,
Algorithm 1 focuses more on a subset of the transitions in
SMDP while it “spreads” itself over a much larger set of
transitions when executed on an MDP. In fact out of the 308
SMDP transition probabilities, only about 77 were updated
by Algorithm 1.

0 500 1000 1500 2000 2500 3000 3500

Number of observations

2

4

6

8

10

12

V
a

lu
e

 d
if
fe

re
n

c
e

 n
o

rm

ML MDP

Smoothing MDP

ML SMDP

Smoothing SMDP

Fig. 3. The evolution of the difference between value vectors as a function
of observations.

Due to the inherent variability introduced by small training
data sets, it is informative to look at the variance of the metric
depicted in Fig. 3. Table I is revealing: using options with
SMDP models appears to significantly reduce the variability
in the performance of the decision-making algorithm, espe-
cially on small data sets.

TABLE I
VARIANCE OF VALUE DIFFERENCE NORM

of observations ML Smoothing Option ML Option smoothing

150 54.41 45.69 2.41 1.74

300 16.24 14.52 3.05 1.84

500 23.56 10.37 3.27 1.92

800 14.23 7.34 0.77 0.83

1300 11.90 4.37 0.78 0.60

2200 3.82 2.09 0.22 0.27

3900 1.57 1.12 0.31 0.39

Another interesting test relates to the speed by which the
algorithm converges to the truly optimal policy (recall that
the latter can be known). Table II lists the average number
of states where the learned policy is different from optimal
one, for increasing number of observations. Again, the use

of an SMDP appears advantageous, and smoothing slightly
outperforms ML at data sets of very small size.

TABLE II
AVERAGE NUMBER OF STATES WITH A LEARNED POLICY DIFFERENT

FROM THE OPTIMAL POLICY

of observations ML Smoothing Option ML Option smoothing

150 6 4.5 4.1 3.6

300 4.3 4.1 2.6 2.4

500 3.1 2.7 2.4 1.5

800 2.5 2.2 1.4 1.3

1300 1.9 1.5 1.2 0.9

2200 0.9 0.9 0.2 0.3

3900 1.0 0.9 0.1 0.1

Along a similar line, Table III lists the average number
of successfully completed episodes (i.e. reaching one of the
goal states), given different number of observations. During
the initial learning stages, when the algorithm is presented
with very few data, ML and smoothing perform equally well
on the SMDP, and significantly better than when applied on
the MDP.

TABLE III
AVERAGE NUMBER OF COMPLETED EPISODES

of observations ML Smoothing Option ML Option smoothing

150 0.9 1.5 13.7 13.9

300 5.1 5.4 24.9 25.4

500 15.7 17.1 43.0 45.0

800 45.8 41.5 65.8 65.7

1300 110.5 112.0 117.5 114.7

2200 194.7 187.1 171.3 173.3

3900 329.0 320.2 301.4 309.2

VI. CONCLUSION

In instances of HRI with dynamics described by imperfect
discrete Markovian models which have to be refined using a
small body of observations, the combination of an SMDP
with options as the underlying model, and smoothing as
the unknown parameter estimation method, appears to be
particularly powerful. Because both aspects of this approach
are well suited to function on small data sets, they combine
well to yield improved performance in the initial phases of
the learning process. The benefits seem to diminish when the
training set grows significantly, but when obtaining data is
particularly expensive or impossible, the application of this
combination may as well make the difference.

REFERENCES

[1] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.
Reinforcement learning: A survey. Journal of artificial intelligence
research, 4:237–285, 1996.

[2] A. Zehfroosh, E. Kokkoni, H. G. Tanner, and J. Heinz. Learning
models of human-robot interaction from small data. In 2017 25th
Mediterranean Conference on Control and Automation, pages 223–
228, July 2017.

[3] Nikolaos Mavridis. A review of verbal and non-verbal human-
robot interactive communication. Robotics and Autonomous Systems,
63(P1):22–35, 2015.

[4] D Bernstein, R Givan, N Immerman, and S Zilberstein. The
complexity of decentralized control of Markov decision processes.
Mathematics of Operations Research, 27(4):819–840, 2002.

[5] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David
Hsu, Wee Sun Lee, and Daniela Rus. Intention-aware motion planning.
Algorithmic Foundations of Robotics X: Proceedings of the Tenth
Workshop on the Algorithmic Foundations of Robotics, 86:475–491,
2013.

[6] Catharine LR McGhan, Ali Nasir, and Ella M Atkins. Human intent
prediction using markov decision processes. Journal of Aerospace
Information Systems, 5(12):393–397, 2015.

[7] J. J. Campos, D. I. Anderson, M. A. Barbu-Roth, E. M. Hubbard, M. J.
Hertenstein, and D. Witherington. Travel broadens the mind. Infancy,
1(2):149–219, 2000.

[8] M. W. Clearfield. The role of crawling and walking experience in
infant spatial memory. Journal of Experimental Child Psychology,
89:214–241, 2004.

[9] Eric A Walle and Joseph J Campos. Infant language development
is related to the acquisition of walking. Developmental Psychology,
50(2):336–348, 2014.

[10] Karen Adolph. Motor development. Handbook of child psychology
and developmental science, 2:114–157, 2015.

[11] Laura A Prosser, Laurie B Ohlrich, Lindsey A Curatalo, Katharine E
Alter, and Diane L Damiano. Feasibility and preliminary effectiveness
of a novel mobility training intervention in infants and toddlers with
cerebral palsy. Developmental Neurorehabilitation, 15(4):259–66,
2012.

[12] Karina Pereira, Renata Pedrolongo Basso, Ana Raquel Rodrigues
Lindquist, Louise Gracelli Pereira da Silva, and Eloisa Tudella. Infants
with Down syndrome: percentage and age for acquisition of gross
motor skills. Research in Developmental Disabilities, 34(3):894–901,
3 2013.

[13] Elizabeth S. Kim, Lauren D. Berkovits, Emily P. Bernier, Dan
Leyzberg, Frederick Shic, Rhea Paul, and Brian Scassellati. Social
robots as embedded reinforcers of social behavior in children with
autism. Journal of Autism and Developmental Disorders, 43(5):1038–
1049, 2013.

[14] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience,
1998.

[15] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement
learning in finite MDPs: PAC analysis. Journal of Machine Learning
Research, 10(Nov):2413–2444, 2009.

[16] David Chapman and Leslie Pack Kaelbling. Input Generalization
in Delayed Reinforcement Learning: An Algorithm and Performance
Comparisons. Proceedings of the 12th International Joint Conference
on Artificial Intelligence, 2:726–731, 1991.

[17] Michael Kearns and Daphne Koller. Efficient reinforcement learning
in factored MDPs. Proceedings of the 16th International Joint
Conference on Artificial Intelligence, 16:740–747, 1999.

[18] Richard S. Sutton, Doina Precup, and Satinder Singh. Between
MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1):181 – 211, 1999.

[19] Stanley F. Chen and Joshua Goodman. An Empirical Study of
Smoothing Techniques for Language Modeling. Proceedings of the
34th Annual Meeting on Association for Computational Linguistics,
13:310–318, 1996.

[20] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[21] Junling Hu and Michael P Wellman. Nash Q-Learning for General-
Sum Stochastic Games. Journal of Machine Learning Research,
4(6):1039–1069, 2003.

[22] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. 2010.

