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Abstract

The paper presents a constructive control design for integrator backstepping in nonsmooth systems. The approach is based on non
smooth analysis and Lyapunov stability for nonsmooth systems and is similar in spirit with the robust control designs that have appeared
in literature, but is applicable to a larger class of systems. The backstepping controller is 1rst applied to the case of a unicycle driven by
a new discontinuous kinematic controller yielding global asymptotic convergence with bounded inputs. Then it is used to implement a
sliding mode controller in a hybrid system. Simulations results not only verify the convergence properties but also reveal the ability of
the new backstepping controller to suppress chattering.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Backstepping is among the most important nonlinear
control design techniques with numerous applications. This
work is motivated by the problem of stabilizing nonholo-
nomic systems, a class of systems that cannot be stabilized
by smooth static state feedback laws (Brockett, 1981).
For this class, backstepping has been used either in the
cases where the controller is smooth time-varying (Fierro
& Lewis, 1995; Jiang & Nijmeijer, 1998; Morin & Sam-
son, 1996; Kolmanovsky & McClamroch, 1995b) or within
the regions where the discontinuous controller is smooth
(Jiang, 2000).
The literature is rich in work on nonholonomic stabiliza-

tion (Kolmanovsky & McClamroch, 1995a). As pointed
out by Kim and Tsiotras (2000), the majority of time
invariant nonholonomic control laws are based on kine-
matic models (Canudas de Wit & Sordalen, 1992; Astol1,
1996; Bloch & Drakunov, 1996; Yang & Kim, 1999).
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Stabilization of dynamic models for nonholonomic systems
has also been addressed in Campion, d’Andrea Novel, and
Bastin (1991), Reyhanoglu and McClamroch (1992), Jiang
(2000), Lin, Pongvuthithum, and Quian (2002), Laiou and
Astol1 (1999), Kolmanovsky and McClamroch (1995b),
M’Closkey and Murray (1994). A common problem in
discontinuous strategies is unboundedness of inputs around
the discontinuity manifold and possible appearance of chat-
tering, both of which are treated with various techniques
(Astol1, 1996; Luo & Tsiotras, 2000; Tsiotras & Luo,
1997; Jiang, 2000). Backstepping has been used in trans-
lating kinematic controllers into equivalent dynamic ones
(Kolmanovsky & McClamroch, 1995b; Fierro & Lewis,
1995; Jiang & Nijmeijer, 1998) but this has only been done
for the time-varying case. Kolmanovsky and McClamroch
(1995b) extend time-periodic smooth kinematic controllers
to dynamic ones using integrator backstepping and the
nonsmooth dynamic extension of M’Closkey and Murray
(1994). In the latter case, the procedure applies to homoge-
neous feedback control laws which are smooth everywhere
except for the origin. While the homogeneity assumption
can be relaxed, it is not clear if the method is still applicable
when the nonsmooth region is not restricted to the origin.
Our approach can be used to implement any type of non-

holonomic kinematic controller through acceleration inputs.
For the smooth case, it recovers the classic backstepping
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designs. For the discontinuous case, we o5er the 1rst
backstepping methodology, since related work (Freeman
& KokotoviLc, 1996) requires at least local Lipschitz con-
tinuity. In Freeman and KokotoviLc (1996), elements of
generalized gradient sets are treated as bounded distur-
bances. Our backstepping controller generally requires
less control e5ort. The proposed methodology is applied
to the problem of stabilization of a dynamic model of a
mobile robot, yielding a globally asymptotically stable dy-
namic controller. Contrary to alternative methodologies,
this controller bounded in the neighborhood of the discon-
tinuities. The method is then used to implement a sliding
mode controller in a hybrid electronic throttle control sys-
tem. Implementation shows that the proposed backstepping
methodology can successfully suppress chattering phenom-
ena arising in switching controllers. Such behavior has also
been observed in Freeman and KokotoviLc (1993), although
in this case controllers were smooth.

2. Mathematical framework

For di5erential equations with piecewise continuous right
hand sides, solutions are de1ned in terms of a di5erential in-
clusion F(t; x) by Filippov (1988). Here, we will use a con-
structive characterization of the di5erential inclusion F(t; x)
(Paden & Sastry, 1987):
Consider the di5erential equation:

ẋ = f(t; x); (1)

with discontinuous right hand side, in which f is mea-
surable and essentially locally bounded. Then, there ex-
ists Nf ⊂ Rn, �Nf = 0 such that ∀N ⊂ Rn, �N = 0,
F(x), co{limf(xi) | xi → x; xi �∈ Nf ∪N}.

For nonsmooth functions the notions of directional deriva-
tive and gradient are generalized as follows:

De�nition 1 (Clarke, 1983). Letf be Lipschitz near a given
point x, and let v be any other vector in [a Banach space]
X. The generalized directional derivative of f at x in the
direction v, denoted f◦(x; v), is de1ned as follows:

f◦(x; v), lim
y→x
t→0

sup
f(y + tv)− f(y)

t
;

where y is a vector in X and t is a positive scalar.

De�nition 2 (Clarke, 1983). Let f be Lipschitz near x. The
generalized gradient of f at x, denoted @f (x), is the subset
of [the dual space of X,] X∗, given by:

@f (x), {
∈X∗: f◦(x; v)¿ 〈
; v〉;∀v∈X}:

In the case where the space is 1nite dimensional there is
a special characterization of the generalized gradient which
facilitates its calculation:

Theorem 1 (Clarke, 1983). Let f be Lipschitz near x, �f

the set of points where f is non di:erentiable, and S any
set of Lebesgue measure zero in Rn. Then

@f (x) = co
{
lim
xi→x

∇f(xi): xi �∈ S; xi �∈ �f

}
:

The algebra of generalized gradients usually involves in-
clusions. To turn inclusions into equalities we need the as-
sumption of regularity:

De�nition 3 (Clarke, 1983). The function f is called regu-
lar at x if: (i) for all v, the usual one-sided directional deriva-
tive f′(x; v) exists, and (ii) for all v, f′(x; v) = f◦(x; v).

The previous de1nitions allow us to present the notion of
generalized time derivative of a non smooth function:

Theorem 2 (Shevitz & Paden, 1994). Let x(·) be a Filippov
solution to (1) on an interval containing t and V :R×Rn →
R be a Lipschitz and in addition, regular function. Then
V (t; x(t)) is absolutely continuous, (d=dt)V (t; x(t)) exists
almost everywhere and

d
dt
V (t; x(t))∈a:e: ˙̃V(t; x);

where ˙̃V(t; x),
⋂

�∈@V(t; x(t)) �
T(F(t; x(t)); 1)T.

Shevitz and Paden (1994) also showed that there exists a
nonsmooth equivalent to the well known Lyapunov’s direct
method (Shevitz & Paden, 1994).

Theorem 3 (Shevitz & Paden, 1994). Let (1) be es-
sentially locally bounded and 0∈F(t; 0) in a region
Q ⊃ {t: t06 t ¡∞} × {x∈Rn: ‖x‖¡r}. Also, let
V : R×Rn → R be a regular function satisfying V (t; 0)=0
and 0¡V1(‖x‖)6V (t; x)6V2(‖x‖) for x �= 0 in Q for
some V1, V2 functions of class K. Then

(1) ˙̃V(t; x)6 0 in Q implies x(t) ≡ 0 is a uniformly stable
solution.

(2) If there exists a class K function !(·) in Q with
the property ˙̃V(t; x)6−!(‖x‖)¡ 0 then the solution
x(t) ≡ 0 is uniformly asymptotically stable.

LaSalle’s invariant principle also generalizes to au-
tonomous nonsmooth systems:

Theorem 4 (Shevitz & Paden, 1994). Let � be a compact
set such that every Filippov solution to the autonomous
system ẋ = f(x), x(0) = x(t0) starting in � is unique and
remains in�, ∀t¿ 0. Let V :� → R be a time independent
regular function with v6 0, ∀v∈ ˙̃V (if ˙̃V is the empty set
this is trivially satis?ed.) De?ne S = {x∈� | 0∈ ˙̃V}. Then
every trajectory in� converges to the largest invariant set,
M, in the closure of S.
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3. Stability results

In this section we present our main result, namely the ex-
tension of integrator backstepping to nonsmooth systems.
We make use of the generalized derivative and gradient,
which are introduced in the context of nonsmooth analy-
sis (Clarke, 1983). For the type of nonsmooth systems dis-
cussed here, solutions are de1ned in terms of the Filippov
di5erential inclusion (Filippov, 1988).

Theorem 5. Consider the system:

�̇= f(�) + g(�)�; (2a)

�̇= u; (2b)

where �∈Rn; �∈Rm. Assume that the subsystem (2a)
can be stabilized by a control law � = �(�) with
�(0) = 0, and that there is a regular (possibly non-
smooth) locally Lipschitz Lyapunov function V (�) for
which there exists a positive de?nite, class K∞ function
W (�) satisfying:

0¡W (�)6d; ∀d∈D (3)

whereD, −⋂
�∈@V(�) �

TF(f(�)+g(�)�(�)), and F(h(x))
is the Filippov set of ẋ = h(x). Then the following law
asymptotically stabilizes (2):

u= 
+
(
Kz + diag

{
V ◦(�; g(�)[�− �(�)])

‖�− �(�)‖22

})
·

[�(�)− �]; (4)

in which V ◦(·), is the generalized directional derivative of
V , 
 is the minimum norm element of the generalized time
derivative of �, ˙̃�(�), and Kz a positive de?nite constant
matrix.

Proof. The proof structure is adopted from Khalil (1996).

By a change of variables: z=�−�(�), v=u− ˙̃�, the system
(2a)–(2b) can be written as

�̇= f(�) + g(�)�(�) + g(�)z;

ż = v:

Consider the Lyapunov function candidate: Va(�; �) ,
V (�) + 1

2 z
Tz. Then, every element �∈ ˙̃Va satis1es

�6−W (�) + �+ zTv, with �∈⋂
�∈@V(�) �

TF(g(�)z) and

v∈ v. With  ∈ ˙̃�, v= u+  and substituting yields:

�6−W (�)− zTKzz + �− V ◦(�; g(�)[�− �(�)])

+ zT(
−  ):

Now, from the de1nition of the generalized gradient, for all
�∈⋂

�∈@V(�) �
TF(g(�)z) we have that �−V ◦(�; g(�)z)6 0,

and since 
 is the minimum norm element of ˙̃�, the

expression:

−W (�)− zTKzz + �− V ◦(�; g(�)[�− �(�)]) + zT(
−  )

is strictly negative except for the origin (�; z) = (0; 0). This
implies that every element of ˙̃Va is strictly negative. Appli-
cation of Theorem 3 completes the proof.

Remark 1. Backstepping a nonsmooth controller yields a
di5erential inclusion. In regions where both V (t; x) and �
are di5erentiable, (4) recovers the known integrator back-
stepping input (KrstiLc et al., 1995; Khalil, 1996). At the

points of nondi5erentiability, if nonempty, ˙̃� gives an inclu-

sion. If ˙̃�= ∅ then ˙̃Va = ∅ and the conditions of Theorem 3
are trivially satis1ed.

Compared to similar results in Freeman and KokotoviLc
(1996), Theorem 5 gives the backstepping control law ex-
plicitly. Not relying on robustness analysis, the control in-
puts of (4) are less conservative in terms of control e5ort
required. This is due to being able to avoid the overapprox-
imation of the generalized gradient by imposing regularity
conditions. Another distinguishing feature of Theorem 5 is
that it allows for a discontinuous �; although its general-

ized time derivative, ˙̃� may be locally unbounded, the se-
lection of 
 in (4) ensures that the control inputs are always
bounded.

3.1. Example

Consider the double integrator: �̇= �, �̇= u. Let �(�) =
−sgn(�), de1ned as �=−1 for �¿ 0, �=1 for �¡ 0 and
� = 0 for � = 0. Then, for V (�) = 1

2�
2 we have V̇ (�) =

−|�|=W (�)¡ 0 for � �= 0, and V ◦(�; �− �) = �(�− �).
Theorem 5 suggests:

u= 
+
(
kz +

V ◦(�; �− �)
(�− �)2

)
(�− �)

= 
+ kz(�− �)− �;

for � �= �. When �= �, we can analytically de1ne it to be

so. Since 0∈ ˙̃�, we have 
= 0 and thus

u=−kz(sgn(�)− �)− �

Fig. 1 shows the vector 1eld of the closed loop system.

4. Applications

4.1. Mobile robot stabilization

In this section the control law (4) is used to backstep a
discontinuous nonholonomic controller (Tanner & Kyria-
kopoulos, 2002), in order to stabilize the dynamic model
of a mobile robot (Fig 2).
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Fig. 1. Vector 1eld of the closed loop system.
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Fig. 2. Solution from initial conditions (−0:5;−0:5).

Consider the dynamic equations of a nonholonomic mo-
bile robot moving on the horizontal plane:

ẋ

ẏ

#̇


=



cos # 0

sin # 0

0 1



[
v

!

]
; (5a)

[
v̇

!̇

]
=M (x; y; #)−1(f − R(x; y; #; v; !)); (5b)

where (x; y) are the cartesian coordinates of the robot, # its
orientation, v and! its translational and rotational velocities,
M is the inertia matrix of the system, R is term containing
Coriolis and centrifugal terms and f is the vector of input
forces. The choice of input forces: f = R(q; u) + M (q)w,
linearizes (5b) via feedback and results in w being the new
control input. To stabilize (5) we will 1rst design a kinematic
controller:

Proposition 1. The following feedback control law:

vd = sgn(x)kv[(y2 − x2) cos #− 2xy sin #]; (6a)

!d = k!(arctan2(2xy; x2 − y2)− #); (6b)

where kv and k! positive constants, and the sign function
is de?ned as sgn(x) = 1; x¿ 0 and sgn(x) = −1, x¡ 0,
asymptotically stabilizes (5a) to the origin.

Proof. Consider the positive dipolar (Tanner, Loizou, &
Kyriakopoulos, 2001) semide1nite function in R2 \ {0}
(Fig. 3):

V (x; y) = e
−|x|
x2+y2 :

The function is regular everywhere in its domain of de1ni-
tion. The one-sided (for x¿ 0) derivative at (0; y) in the
direction of v= (vx; vy) is −vx=y2, equal to the generalized
directional derivative at (0; y). Similarly it can be shown
for x¡ 0. In all points where x �= 0:

V̇ =
−sgn(x)ve

−|x|
x2+y2

(x2 + y2)2
[(y2 − x2) cos #− 2xy sin #]: (7)

It can easily be veri1ed that the generalized gradient of
V on the y-axis (x = 0) is the empty set: ˙̃V(0; y) = ∅.
Substituting for v in (7), we obtain:

V̇ =
−e

−|x|
x2+y2

(x2 + y2)2
[(y2 − x2) cos #− 2xy sin #]26 0

For x= 0, condition �6 0;∀�∈ ˙̃V is trivially satis1ed. The
set S , {(x; y; #) | 0∈ ˙̃V} is given as S={(x; y; #) | x((y2−
x2) cos # − 2xy sin #) = 0}. In any point where (y2 −
x2) cos#−2xy sin #=0, it is |arctan 2(2xy; x2−y2)−#|= (

2
which means that ! �= 0. Thus, S= {(x; y; #) | x = 0}. In S
we have: v = kvy2cos #; ! = k!(arctan2(0;−y2)− #). For
the invariant set E ⊂ S, y= #=0 and so it is E ≡ {0}. Ap-
plying LaSalle’s principle for nonsmooth systems (Shevitz
& Paden, 1994), the proof is completed.

Application of Theorem 5 in this case yields the acceler-
ation control inputs:

w1 =−sgn(x)


 e

−|x|
x2+y2 (v− vd)2(x2 − y2) cos #

(x2 + y2)2[(v− vd)2 + (!− !d)2]

+
2e

−|x|
x2+y2 (!− !d)(v− vd)xy sin #

(x2 + y2)2[(v− vd)2 + (!− !d)2]


− kzv(v− vd)

w2 =−sgn(x)


 2e

−|x|
x2+y2 (!− !d)2xy sin#

(x2 + y2)2[(v− vd)2 + (!− !d)2]

+
e

−|x|
x2+y2 (v− vd)(!− !d)(x2 − y2) cos #
(x2 + y2)2[(v− vd)2 + (!− !d)2]




− kz!(!− !d):

The controller is tested in numerical simulations with the
parameters chosen as follows: kv = 10, k! = 3, kzv = 10,
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Fig. 4. Trajectories with initial conditions (0; 1; (=2).

kz! = 50. Fig. 4 gives the trajectories for initial conditions
(x; y; #)=(0; 1; (=2). Note that the nondi5erentiability of the
Lyapunov-like function at x=0 does not a5ect performance.
What is worth noting is that the backstepping technique

introduced in this paper suppresses chattering through an
appropriate choice of control gains. The integrator of (2b)
acts as a low pass 1lter on the reference input, suppressing
high frequency switching. In switching control designs,
application of backstepping o5ers simultaneously a method
to decompose controller design and alleviate chattering. To
illustrate this chattering 1ltering property, we arti1cially
introduced switching to controller (6). Fig. 5 shows that
chattering is suppressed without a5ecting convergence.

4.2. Electronic throttle control

The electronic throttle control (ETC) system is an em-
bedded control system that regulates the amount of air and
fuel that enters into the engine of an automobile. In its orig-
inal implementation, the throttle is controlled by a PWM
driven motor. As such, the system can be modeled as a
hybrid system, with discrete modes arising from friction
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Fig. 5. Imposing chattering: backstepping as a 1lter.
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Fig. 6. Motor current under the switching control scheme.

phenomena and changes in the actuator circuitry upon recep-
tion of a voltage pulse. The system switches between ON and
OFF modes depending on whether it receives a pulse from
the PWM generator. The switching logic is determined by a
condition on the motor current which is based on a sliding
mode controller design for the throttle dynamics: if im ¡ idm
then switch from OFF to ON; if im¿ idm switch from ON to
OFF, where idm is the sliding mode control input designed
for the throttle dynamics. Originally, the sliding mode con-
troller was implemented by switching the motor on and o5.
This causes signi1cant chattering in motor current (Fig. 6).



1264 H.G. Tanner, K.J. Kyriakopoulos / Automatica 39 (2003) 1259–1265

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step response errors

time t [sec]

th
ro

ttl
e 

an
gl

e 
er

ro
r 

[r
ad

]

Error using backstepping
Error using switching

Fig. 7. Position errors under the sliding mode controller with the two
implementations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time t [sec]

C
ur

re
nt

 Im
 [A

m
ps

]

Motor current using backstepping

Fig. 8. Motor current under the backstepping controller.

For that reason, we investigate implementing the same slid-
ing mode controller for the throttle subsystem by continu-
ously regulating the voltage of the motor. This will involve
backstepping the sliding mode controller through the mo-
tor current dynamics (the voltage remains always bounded.)
We tune the backstepping gain Kz so that errors are com-
parable in the two implementations (Fig. 7). In the back-
stepping implementation, however, chattering in the motor
current is eliminated (Fig. 8).

5. Concluding remarks

We present an extension of integrator backstepping to
nonsmooth systems. The result is based on nonsmooth
analysis and Lyapunov stability for nonsmooth systems.
Backstepping of nonsmooth control laws can also be used
for chattering suppression at the expense of convergence

speed. The potential of this approach is demonstrated in the
stabilization problem of a nonholonomic dynamic model of
a mobile robot, and in the sliding mode controller for an
electronic throttle control system.
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