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Abstract— Automating the counting of marine animals like
scallops benefits marine population survey efforts. These sur-
veys are tools for policy makers to regulate fishing activities,
and sources of information for biologists and marine ecologists
interested in population statistics of marine species. In this
paper we discuss some practical difficulties that arise in the
scallop detection problem from visual data, and propose a
solution based on top-down visual attention. We assess the
performance of the proposed method against a comparable and
related method which has recently been employed in literature,
using a significant amount of ground truth data.
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I. INTRODUCTION

Counting marine animals is of interest to groups of biol-
ogists and marine ecologists as well as to fishery agencies,
both for scientific and commercial purposes. Besides provid-
ing insights to research problems in marine biology, these
surveys also aid policy makers in regulating recreational
and commercial exploitation of these resources. This paper
reports on an algorithmic method to count sea animals like
scallops automatically from seabed images.

Such automation is needed because traditional dredge-
based methods are very invasive and do not provide accurate
estimates of population density. In these methods, the sea-
bed is dredged scooping up a strip of the ocean floor, and the
marine animals found in the sediment are counted manually
before they are thrown back to the sea. The survey numbers
produced this way are then generalized to give an estimate
of the species abundance in the particular area. Advances in
underwater vehicle technology have enabled the use of an
autonomous underwater vehicle (AUV) or a remotely oper-
ated vehicle (ROV) for this purpose. The underwater vehicles
use onboard cameras to collect video footage and allow a
species count from this data in a non-invasive manner [1].
These methods also have an added advantage of providing
ways to visualize the habitat of the marine animals of interest
without disturbing it, and relate population growth to specific
substrates. Despite these technological advancements in the
domain of marine population data collection, counting of
animals is still done manually through arduous observation
of hours of video footage. Robotic-assisted marine species
surveys will therefore benefit from the automation of the
counting process.

There have been attempts to counting marine species using
stationary underwater cameras [2], [3]. In this general frame-
work, salmon are counted through background subtraction
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and shape detection [4]. However, counting sedentary and
sea-floor inhabiting animals like scallops does not come
under the purview of these methods, since background sub-
traction is inherently challenging. In addition, this application
requires the use of mobile underwater vehicles, rather than
stationary mooring cameras.

One way to approach the problem of detecting marine
animals from seabed images is by identifying the points
in the image which are most likely to contain objects, as
those that differ significantly from their background. Singling
out these regions of interest does not automatically produce
positive counts, because a wealth of other features can trigger
false positives. Additional processing of the region around
the candidate points is needed to identify targets of interest.
However, the detection method can be biased toward the
features of the target, and thus reduce the number of false
positives.

Technically, points of interest are locations in the datas-
tream where there is a sudden change in the underlying
distribution from which the data is generated. Formal mathe-
matical approaches to determining this change in distribution
are discussed in [5] and [6]. The challenge there is that
some prior knowledge about the underlying distribution and
/ or the change time is required. Without several technical
assumptions, sometimes of debatable validity in the specific
application context, modeling the background distribution
from image data can be problematic.

For scallops in particular, the challenges in automating the
identification process based on visual data come primarily
from the absence of features on these creatures that would
clearly distinguish them from their natural environment. In
addition, collecting visual data from the species’ natural
habitat yields images with a wide range of illumination
variations, presence of significant amount of speckle noise,
sensor noise due motion of underwater platforms, and poor
resolution. Some of the scallops are also partially, or almost
completely covered by sediment, obscuring the scallop shell
features. To overcome these impediments, a highly robust
detection mechanism is required.

Some automation attempts to count scallops in artificial
environments can be found in [7], [8]. Both approaches em-
ploy a detection mechanism based on intricate distinguishing
features like fluted patterns in scallop shells and exposed
shell rim. Though this might be effective in artificial scallop
beds with stationary cameras and minimal sensor noise, it is
difficult to identify these patterns in scallops present in their
natural environment, especially in images of poor resolution
taken several meters away from the target—it might not be
advisable to drive an underwater vehicle too close to the



ocean floor.
There is some work on scallop detection in their natural

environment [9]. In this work, an elaborate machine learning-
based approach is discussed. Though real seabed images are
used for analysis, the data sets to test the efficiency of the
method are relatively small, in the order of 30 images. From
this study alone, it is not clear if such a method can be
used effectively in cases of large data sets comprising several
thousand seabed images, collected from actual AUV missions.
An interesting example of another machine-learning method
applied to the problem of scallop detection is [10]. It uti-
lizes the concept of bottom-up visual attention (BUVA). The
approach is promising but interestingly, it does not use any
ground-truth for validation. As with several machine learning
and image processing algorithms, porting the method from
the original application set-up to another may not necessarily
yield the anticipated results, and the process has to be tested
and assessed.

What is done in this paper is the application of top-
down visual attention (TDVA) to the problem of identification
of scallops in their natural environment. The difference to
the earlier bottom-up approach is that now the method is
biased to pick up candidate targets that have features that
are commonly found in scallops. To validate the proposed
method, we assess the top-down approach side-by-side with
an implementation of the bottom-up approach, on the same
set of data. In addition to the application of top-down visual
attention to this problem being the first reported in literature,
this paper enhances the standard approach [11] with some op-
erational novelties, and also uses ground-truth measurements
for the validation of the method’s performance, over a large
set of visual data.

The paper is structured as follows: Section II describes
what we mean by detecting a scallop, it presents some candi-
date scallop features, and describes the challenges associated
with the problem. Section III reviews briefly the method of
visual attention, and Section IV describes our specific setting,
data, and assumptions. Section V discusses implementation
details related to top-down visual attention, and Section VI
comments on the results from the application of the top-
down and bottom-up visual attention variants. Section VII
summarizes the paper and outlines future research directions.

II. PROBLEM DESCRIPTION AND CHALLENGES

In more technical terms, the problem addressed in this
paper is that of detecting candidate regions in an image which
have a high probability of containing a scallop. These regions
can then be further analyzed to determine if they indeed
contain scallops, but this further analysis is not part of this
paper.

Several challenges have to be overcome in solving this
problem. First, the high levels of speckle noise evident in
Figs. 1–2 make basic morphological filtering operations, like
thresholding and edge detection, problematic. In addition, the
edges of scallops are often not very distinct, they may be

Fig. 1. Seabed image with scallops shown by red circles

(a) (b) (c)

Fig. 2. (a) Scallop with yellowish tinge and dark crescent (b) Scallop with
yellowish tinge and bright shell rim crescent (c) Scallop with no prominent
crescents and texturally identical to the background

discontinuous, and often gradually dissolve into the back-
ground (see Fig. 2(b)). One of the reasons for this is the
angle of the AUV strobe light, which tends to strengthen the
crescents to the top of the scallop and weaken the ones on
the lower end. Furthermore, there are other creatures that
can appear in the vicinity of scallops—like sand dollars—
which are morphologically similar and can affect the visible
profile of scallops. In several cases, speckle noise reduction
filters can weaken the edges and exacerbate the problem.
Finally, scallops can be partially or completely buried by
sediment, making them texturally identical to the background
(see Fig. 2(c)). As a result, most of the scallop area is
segmented as background, leaving any detection algorithm
purely dependent on weak edges or crescents at the periphery
of the scallop.

III. PRELIMINARIES: VISUAL ATTENTION

A biologically inspired approach to addressing the prob-
lem of detecting points of interest in an image is to consider a
phenomenological model of the human visual system, which
tries to capture our inbuilt ability to filter in interesting details
from images. The robustness of this mechanism to noise,
and its ability to process large volume of information is
justified through several competing neuro-biological models,
on which the concept of visual attention is based on. Visual
attention is a theory around a hypothesis according to which
the human visual system preferentially processes certain
parts of an image first. There are two variants in visual
attention, bottom-up (BUVA) and top-down (TDVA) [12].
The bottom-up variant picks out the regions in an image



which are sufficiently discriminative with respect to their
surroundings. Sometimes the visual attention mechanism is
preconditioned, and the search is directed toward objects with
certain attributes like a specific color or texture. The result
of implementing this preconditioning gives rise to top-down
visual attention (TDVA) [12].

A. Bottom-Up Visual Attention

Bottom-up visual attention can be used to pinpoint regions
in an image where the value of some pixel attributes may
be a sign of a change with respect to the rest of the image.
In contrast to mathematical formulations of the problem of
detecting changes in distribution [6], here the decision is
purely heuristic. It is based on the hypothesis that the human
visual system first isolates points of interest from an image,
and then sequentially processes these points based on the
degree of interest associated with each point. The degree of
interest associated with a pixel is called salience. Points with
high salience values are processed first.

According to this hypothesis [13], in the human visual
system the input video feed is split into several feature
streams. Locations in these feature streams which are very
different from their neighborhoods correspond to peaks in
the so-called center-surround feature maps. The different
center-surround feature maps can be combined to obtain a
saliency map. Peaks in the saliency maps, otherwise known
as fixations, are points of interest, processed sequentially in
descending order based on their salience values.

A computational model for the above visual attention
mechanism is proposed in [11]. According to this model,
an image is first processed along three feature streams
(color, intensity and orientation). The color stream is further
divided into two sub-streams (red-green and blue-yellow)
and the orientation stream into four sub-streams (θ ∈
{0◦, 45◦, 90◦, 135◦}). The image information in each sub-
stream is scaled in eight different factors, 2, . . . , 9; for each
factor k the image data is essentially scaled to size 1

2k ,
resulting in some loss of information as the scale increases.
The resulting image data for each factor constitutes the
spatial scale for the particular sub-stream.

What happens then is that the sub-stream feature infor-
mation are resized and compared, but because of the loss
of information and the interpolation taking place during
resizing, the resized feature maps do not match exactly across
different scales, even when brought down to the same size.
The center-surround operator 	 takes pixel-wise differences
between resized sub-streams and exposes those mismatches.
For the intensity stream, we would write:

I(c, s) = |I(c)	 I(s)| , (1)

where c and s are indices for two different spatial scales
with c ∈ {2, 3, 4}, s = c+δ, for δ ∈ {3, 4}. Center-surround
feature maps are computed for each sub-stream in color and
orientation streams in the same way.

With a total of seven sub-streams (two for color, one for
intensity and four for orientation), we get a total of 42 center-
surround feature maps. The center-surround feature maps for

each original stream (color, intensity, and orientation) are
then combined back into three conspicuity maps: one for
color C̄, one for intensity Ī , and one for orientation Ō. The
intensity conspicuity map, for example, is given as

Ī =
4⊕

c=2

c=4⊕
s=c+3

wcsN (I(c, s)) (2)

where now the ⊕ cross-scale operator works in a fashion
similar to 	, with the difference being that data in resized
maps from different scales is now pixel-wise added. In (2)
we see the map normalization operator N (·), which basically
scales a whole map by multiplying the values in its argument
with the scaling factor (M − m̄)2, where M is the global
maximum over the map and m̄ is the mean over all local
maxima present in the map. Conspicuity maps are then
simply combined—no cross-scale operation is needed here—
to get the saliency map:

S = wĪ N (Ī) + wC̄ N (C̄) + wŌN (Ō) , (3)

where wk̄ is in general a user-selected stream-specific weight.
In BUVA all streams are weighted equally, so wĪ = wC̄ =
wŌ = 1. On this saliency map, a winner-takes-all neural net-
work is typically used [11], [14] to compute the maxima—
other methods are of course possible. When a local maximum
is found, the focus of attention is supposedly shifted to this
point, and the point becomes a visual fixation.

B. Top-Down Visual Attention

In a top-down visual attention approach, fixations are
biased toward specific targets of interest. This is done by ad-
justing the weights in (3) and (2) to favor features unique to
targets over other image differences. The learning procedure
in [15] can suggest weights that maximize the signal-to-noise
ratio, in the form

wj =
w′j

1
Nm

∑Nm

j=1 w
′
j

, (4a)

where Nm is the number of feature (or conspicuity) maps,
and

w′j =
∑N

i=1N
−1
iT

∑NiT

k=1 PijTk∑N
i=1N

−1
iD

∑NiD

k=1 PijDk

, (4b)

where N is the number of images in the learning set, NrT

and NrD are the number of targets (scallops) and distractors
(similar objects) in the r-th learning image, PuvTz is the
mean salience value of the region around the v-th map
containing the z-th target (T ) in the u-th image. PuvDz

is
similarly defined for distractors (D).

IV. DATA ACQUISITION

The data used in this paper was collected as part of the
scallop survey reported in [1]. In this survey, a Gavia AUV
with an onboard Point Grey Scorpion camera model
20S0 mounted on the nose of the vehicle was used to collect
over 250 000 images of the seabed along the New York –
New Jersey coast. The images were then manually annotated,
and a scallop count was performed on them. The annotation



Fig. 3. Illustration of fixations. The red lines indicate the order in which
the fixations were detected with the lower-left fixation being the first. The
yellow outline is the proto-object around the fixation.

introduced, contained information about the center and radius
of the scallops identified, assuming them to be roughly
circular. The images were of resolution 800×600 pixels, and
were captured from an height of 2 m above sea floor, with
a horizontal viewing angle of 49.92◦. Calculations based on
the viewing angle and altitude from the sea floor indicate
that the average area covered per image is 1.86 m×1.40 m of
sea floor, with an approximate resolution of 2 mm/pixel. The
strobe light source attached to the rear of the AUV resulted
in scallops presenting a characteristic dark crescent shadow
(dark crescent at the top of the scallop). Some prominent
sources of noise observed were in the form of speckle noise
and vignetting effects caused by the strobe lights on the AUV.

V. METHODOLOGY

The selection of features on scallops is an issue that can
be open to debate, and different reasonable suggestions can
be offered depending on context. In our data set, (see Fig. 1
for a representative sample) we could not distinguish some
unequivocal feature choices, but could nevertheless identify
some recurring patterns.

One of these patterns is a dark crescent on the upper
perimeter of the scallop shell, which is in fact the shadow
against the AUV strobe light, cast by the open upper scallop
shell opposite to the hinge (see Fig. 2(a)). Another pattern
that could serve as a scallop feature in this data set is a
frequently occurring bright crescent on the periphery of the
scallop, generally being the visible edge of the scallop shell,
as the center of the shell is often covered by sediment (see
Fig. 2(b)). Yet another recurring pattern is a yellowish tinge
associated with the composition of the scallop image (see
Fig. 2(b)).

In this paper we apply TDVA to the problem of scallop
detection, that is, we bias the weights in (2)–(3) according
to (4) for the purpose of skewing the appearance of saliency
peaks toward regions with scallops as opposed to other
“potentially interesting” sea-floor objects. As a part of the

procedure to learn the top-down saliency weights, bottom-
up saliency computation is performed first on 243 annotated
images collectively containing 300 scallops. An example of
bottom-up computation on an image is illustrated in Fig.
4. The figure portrays the process of computing the color,
intensity, and orientation conspicuity maps from the original
image (as described in Section III-A). These conspicuity
maps are combined to compute the saliency map. The
intermediate step of computing the center-surround feature
maps has been omitted from the figure for the sake of clarity.

Fixations are then identified in the saliency maps, and each
fixation marks a region of interest in each image. Figure 3
shows an image with the top (i.e., the ones with the highest
saliency value) four fixations, among which one is a scallop.
The yellow outline around the fixation is what is called the
proto-object [11] of that fixation. Experience suggested that
proto-objects rarely contain targets. They are usually just
regions texturally identical to the fixation identified. This
can be further explained by the fact that in most cases, the
center of the scallop is texturally identical to the background,
and thus the crescents are the only salient features truly
associated with the scallop.

We use a rectangular window of size 100× 100 centered
around fixations, and if a scallop center lies within this
window, the corresponding fixation is labeled as a target
fixation. If there is no scallop present in this window, it is
labeled as a distractor fixation. The diameter of the scallops
in our dataset varied from 20 to 70 pixels. This factor
combined with our empirical observation that fixations tend
to occur close to the periphery of a scallop resulted in
choosing a window size of 100 × 100 which in most cases
contained the center of the scallop. We found empirically
that ten fixations are usually sufficient to capture almost
all scallops in any given image. Furthermore, the average
number of scallops per image turned out to be less than two.
Taking ten fixations accommodated even rare cases where
there where more than five scallops in the same image. In
none of the images considered were there more than ten
scallops.

In each one of these processed images in the learning
set, we determine the target and distractor regions in the
feature and conspicuity maps. This is done by adaptively
thresholding and locally segmenting the points around the
fixations with similar salience values in each map. Then the
mean of the salience values of these target and distractor
regions from the feature maps and conspicuity maps are
used to compute the top-down weights for feature maps and
conspicuity maps, respectively, using (4).

The resulting top-down conspicuity map weights wĪ , wC̄ ,
wŌ are shown in Table II. The set of feature map weights
for each center-surround scale wcs for every feature is listed
in Table I. Once the top-down weights are computed, spe-
cialized feature maps and saliency maps that favor detection
of scallops over just any other interesting feature can be
computed, by using the computed weights in (2) and (3)
respectively.

On the saliency maps of our implementation of TDVA



TABLE II
TOP-DOWN WEIGHTS FOR CONSPICUITY MAPS

Color Intensity Orientation

1.4354 1.1644 0.4001

TABLE III
COMPARISON OF BUVA AND TDVA

BUVA TDVA

Number of scallops detected 325 327
Percentage of scallops detected 89.8 90.3
Fixations required to detect first scallop 2.51 2.48
Fixations required to detect all scallops 2.86 2.92

we use dynamic thresholds. This is done by controlling the
convergence time required for the winner-takes-all neural
network. When convergence requires more than 10 000 it-
erations, it is highly unlikely for the particular fixations to
be relevant. In principle, even specks of noise can produce
fixations if the particular neural network is allowed to evolve
indefinitely. If convergence to some fixation takes more than
this number of iterations, then the search is terminated and
no more fixations are sought in the image.

VI. RESULTS AND DISCUSSION

A. Validation Procedure

To assess the performance of our top-down visual at-
tention based scallop detector, we implement a bottom-up
visual attention (BUVA) algorithm, along the lines of [10],
and compare the results side-by-side. The methodology for
implementing BUVA is described in Section V; the difference
is primarily in the selection of the weights: uniform weights
equal to 1 for BUVA as opposed to the custom weights of
Tables I and II for TDVA.

B. Performance Analysis

A set of 2388 images is used to test the performance
of the two visual attention variants. The dataset contained
362 labeled scallops. Table III summarizes the performance
of top-down and bottom-up visual attention on the scallop
detection problem. The top-down approach (TDVA) performs
slightly better than bottom-up (BUVA), detecting 90.3% of
the scallop population, compared to 89.8% of BUVA. The
average number of fixations required to detect the first
scallop by bottom-up is slightly less than top-down. The
same can be said for the performance of bottom-up over
top-down in average number of fixations required to detect
all scallops in the images.

C. Discussion

Conceptually, top-down visual attention is designed to
perform better than bottom-up visual attention in detecting
specific objects with unique distinguishing characteristics,
even in cluttered scenes containing several irrelevant objects
[16]. In the case considered in this paper, however, the object

of interest (a scallop) does not have many distinguishing
characteristics to bank on. Some features, like the yellowish
tinge, or the dark crescents, are not common to all scallops.
Despite wide range of differences between scallop images,
those which show prominently visible features bias the top-
down weights towards these specific features. The yellowish
tinge in some scallops result in the blue-yellow color feature
maps being weighted above red-green feature maps which
can be seen in Table I. Similar remarks can be made with
reference to Table II, where the orientation conspicuity map
has the least weight, since scallops are uniformly circular in
shape and thus the orientation features do not fit into any of
the 4 orientation sub-streams. A good number of scallops are
visually salient but devoid of characteristic scallop features.
These scallops do not help when used in the learning set.
A top-down approach tuned for the scallop-like features
discussed in Section V will either need considerably more
fixations to identify a scallop devoid of these features, or just
miss it completely. On the other hand, a bottom-up approach
which works purely on detecting points merely different from
background behaves without bias, and detects any object
which stands out, irrespectively of whether it is a scallop
or not.

Despite these limitations, and in the presence of significant
amount of speckle noise and illumination variations in im-
ages, the TDVA method still performs slightly better than its
BUVA counterpart, detecting approximately 0.5% more scal-
lops. Overall, when it comes to object detection applications
where the targets do not have many distinguishing features, it
appears that there is a slight performance improvement when
using TDVA compared to BUVA. Whether this performance
enhancement justifies the additional computational overhead
involved in training and tuning the weights of TDVA eventu-
ally depends on the particular application setting.

VII. CONCLUSION AND FUTURE WORK

For object detection applications involving significant
amount of noise in the data, and with minimal distinguishing
object features, top-down visual attention appears to be
an effective tool, and yields slightly better performance
compared to its bottom-up counterpart. This hypothesis is
tested on a large data set of images of scallops in their natural
habitat, taken by an AUV. We postulate that combining one
of the variants of visual attention with a robust segmentation
and classification algorithm can further improve the observed
performance. It is also an interesting possibility to determine
the data acquisition parameters like camera angle and AUV
height from the seafloor that optimize the performance of
our method.
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TABLE I
TOP-DOWN WEIGHTS FOR FEATURE MAPS

Center Surround Feature Scales

1 2 3 4 5 6

Color red-green 0.8191 0.8031 0.9184 0.8213 0.8696 0.7076
blue-yellow 1.1312 1.1369 1.3266 1.2030 1.2833 0.9799

Intensity intensity 0.7485 0.8009 0.9063 1.0765 1.3111 1.1567

Orientation 0◦ 0.7408 0.2448 0.2410 0.2788 0.3767 2.6826
45◦ 0.7379 0.4046 0.4767 0.3910 0.7125 2.2325
90◦ 0.6184 0.5957 0.5406 1.2027 2.0312 2.1879
135◦ 0.8041 0.6036 0.7420 1.5624 1.1956 2.3958

Fig. 4. Illustration of saliency map computation
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