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Abstract

The paper examines equilibrium behavior and negotiation protocol design for a class of multi-

agent systems composed of multiple, non-cooperative, agents. The agents modeled as finite-state

transition systems, are autonomous, and are interacting concurrently aiming at achieving individual

tasks expressed as temporal logic formulae. Each agent has its own preferences over outcomes

of its interaction with others. The agents’ goals and preferences are neither perfectly aligned

nor opposing. We reason about agent behaviors in such a system, by formulating a concurrent,

multi-agent game with infinitely many stages. To enable the synthesis of strategies, we develop

a negotiation protocol which ensures that under a proper design of preferences and tasks, the

mutually accepted plan is a Pareto optimal Nash equilibrium.

Keywords: Multi-agent systems, temporal logic, game theory, negotiation protocols.

1 Introduction

We analyze the concurrent interaction of multiple heterogeneous dynamical systems, each trying to

serve its own objective. These dynamical systems are modeled as finite-state transition systems, their

objectives expressed as temporal logic formulae, and their interaction is encoded in a concurrent game.

The questions we address is how to identify stable (in a Nash equilibrium sense) interaction behaviors,

and then how to coordinate on a particular behavior, given the agents’ individual objectives and

preferences.
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Agent objectives are encoded in Linear Temporal Logic (ltl). Due to its expressiveness, ltl is

widely used to specify many desired system properties such as safety, liveness, persistance, etc [5].

So far, (supervisory) control problems with temporal logic specifications, have been approached using

primarily top-down, centralized synthesis methods; there is a global objective, and agents cooperate

to achieve it. The solution usually involves a task decomposition: break the global task into subtasks,

such that completion of these subtasks ensures the global one. Such a compositional architecture is

found in concurrency theory [12], and decentralized supervisory control [4, 22]. When the global task

is in the form of an ltl formula, methods have been developed [8] to break up the global specification

into a set of control and communication policies for each agent to follow. Centralized controllers can

also be synthesized in the face of modeling uncertainty [21]. Instances where agents have their own

temporal logic specifications and treat each other as part of some reactive uncontrollable environment,

have also been looked at [11].

In these approaches, the correctness of the entire system’s behavior is determined by the correctness

of the local subsystem controllers. However, if one of the local controllers fails, the performance and

safety of the entire system is compromised. This fragility motivates us to consider coordination within

a game theoretic framework. With available discrete abstractions from continuous or hybrid dynamical

systems [5, 18, 19], algorithmic game theory [2] provides at the abstraction level a natural framework

for the composition of systems. The notion of rational synthesis [10] poses the control problem for this

class of multi-agent systems inside a non-zero-sum game theoretic framework (cf. [11]): each system

is a player in a game, and the synchronous or asynchronous evolution of states in different systems

are moves made by one or more of these players.

This paper exploits and extends recent game theoretic results [7,10] for negotiation-based behavior

planning in multi-agent systems with temporal logic control objectives. Existing results do not fit

particularly well in the case considered here. First, with agents having independent objectives, either

as a Boolean utility value [10] or a set of ranked objectives [7], implicit cooperation between agents is

not encouraged. Furthermore, is that it is not clear how a single equilibrium is agreed upon without

some type of negotiation and consensus building.

Consider the following example: three agents indexed 1, 2, and 3 are roaming in the four rooms A,

B, C, and D, shown in Fig. 1. Every agent is assigned with a surveillance task that requires it to visit

a sequence of rooms infinitely often. Their concurrent motion brings the possibility of interference:

they can get into each other’s way because only one agent can fit through a specific door. We see

in Section 5 that if everyone just works for himself, there exists a stable outcome in which all agents

accomplish their task. However, if agents 1 and 2 see agent 3 as a common adversary, depending on
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Figure 1: A partitioned rectangular environment in which three agents roam. Agents visit different
rooms, indexed A, B, C, D, by passing through doors a, b, c and d, but only one at a time can go
through a given door.

how their preferences over game outcomes are defined, they can implicitly cooperate to prevent agent

3 from succeeding. We show that in cases when agents are selfish, the right assignment of preferences

and the implementation of a negotiation protocol allows them to reach an agreement on an equilibrium

policy, with which each agent achieves its goal.

To do this, we use an incentive-centered design with a new definition of agents’ utilities, that

allows implicit cooperation to emerge as an equilibrum. We decide which interaction outcomes are

stable (in a Nash sense) in this non-cooperative, concurrent game the agents are engaged in. Then

we consider cooperative games with temporal logic objectives in which agents can form coalitions. A

decision procedure for cooperative equilibiria is provided. To coordinate, agents communicate and

negotiate a mutually accepted plan. Inspired by [13], we design a negotiation protocol which ensures

that under a proper design of preferences and tasks for agents the mutually agreed plan is a Pareto

optimal pure Nash equilibrium.

2 Preliminaries

2.1 Automata and Semiautomata

Let Σ be a fixed, finite alphabet. We denote Σ∗ and Σω the sets of finite and infinite sequences or

words, respectively, over Σ. Elements in a sequence w are indexed w(i), where the index i runs from

0 to the length of word, denoted |w|, less one. The empty word is denoted λ and |λ| = 0. A word of

infinite length is called an ω-word. A word v is a prefix of a word w if there exist x ∈ Σ∗ or x ∈ Σω

such that w = vx. For an integer k ≤ |w|, Pr=k(w) is the prefix of w of length k. Given a word w,

we write Occ(w) for the set of symbols occurring in w and Inf(w) for the set of symbols occurring

infinitely often in w. If w is a finite word, then last(w) denotes its last symbol, that is, the one for

which last(w) = w(|w|−1).

A deterministic semiautomaton (sa) is a triple A = (Q,Σ, T ) where Q is a finite set of states, Σ
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is a finite alphabet, and T : Q×Σ→ Q is the transition function which can be expanded recursively,

i.e. T (q, σw) = T (T (q, σ), w), σ ∈ Σ, and w ∈ Σ∗. We write T (q, σ) ↓ to specify that a transition

labeled σ is defined at q. A run in A on a word w = w(0)w(1) . . . ∈ Σ∗ (or Σω), is a sequence of states

ρ = ρ(0)ρ(1)ρ(2) . . . ∈ Q∗ (or Qω) such that for each 0 ≤ i ≤ |ρ| − 1, ρ(i+1) ∈ T (ρ(i), w(i)). In this case

we say that ρ is generated by w. The transition function in A can be made total by adding a state

called sink, such that for all states q ∈ Q for which there exists a symbol σ ∈ Σ that cannot trigger

a transition from q, we define T (q, σ) = sink, and let T (sink, σ) = sink, for all σ ∈ Σ. A deterministic

Büchi automaton (dba) is a quintuple A = (Q,Σ, T, I, F ) where (Q,Σ, T ) is a deterministic sa, I is

the initial state, and F ⊆ Q is the acceptance component, and A accepts a word w ∈ Σω iff the run ρ

on w satisfies ρ(0) = I and Inf(ρ)∩F 6= ∅. The set of words accepted by the automaton A constitutes

its language and is denoted L(A). A dba is total if its transition function is total.

2.2 Games and strategies

A deterministic two-player turn-based zero-sum game is a tuple H = (V1 ∪ V2, Σ1 ∪ Σ2, T, q
(0),WIN),

where for i = 1 or 2, Vi is the set of states where player i makes a move and Σi is the set of available

actions for player i. We assume V1 ∩ V2 = ∅ = Σ1 ∩ Σ2 and let V = V1 ∪ V2. The transition function

in the game is T : Vi × Σi → Vj , with q(0) the initial state, and WIN the winning condition. A run in

the game is an infinite sequence of states ρ ∈ V ω. For Büchi winning conditions, a run ρ is winning

for player 1 if and only if Inf (ρ) ∩ F 6= ∅.

A strategy for player i is a function Si : V ∗ Vi → Σi such that for every wv with w ∈ V ∗ and v ∈ Vi,

if Si(wv) = σ ∈ Σi, then T (v, σ) ↓. Player i follows a strategy Si if for any ρ ∈ V ∗, player i takes

action Si(ρ). Player i has a winning strategy at state v ∈ V1 ∪ V2, and we denote it WSi, if the game

that starts at v with player i following WSi, results in victory. The set of states from which player

i has a winning strategy is called the winning region for this player and is denoted Wini. For Büchi

games, one of the players has a winning strategy [14]. Details on how to compute winning strategies

for player 1 in a two-player turn-based Büchi game are found in [20].

2.3 A specification language

We consider to use a fragment of ltl [1] to specify a set of desired system properties such as safety,

liveness, persistence and stability. A formula in this ltl fragment is built from True, False, a finite

set of atomic propositions AP, and the Boolean and temporal connectives ∧,∨,¬ and � (always), ♦

(eventually). An ltl fragment formula ϕ can always be represented by a dba with alphabet 2AP . For

semantics of temporal logic formulae, see [1, 9].
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3 Büchi games

In the concurrent games considered, each agent is tasked with satisfying a temporal logic objective

equivalently expressed as the language accepted by a dba. Once we define player preference orderings

over all possible outcomes of the game, we ask whether there are pure Nash equilibria in this game,

and develop a decision process for these equilibria. We show that by allowing the agents to form coali-

tions, the emerging behavior is captured by another solution concept, called cooperative equilibrium.

Decision procedures for cooperative equilibria are also provided.

3.1 The formulation of the multi-agent game

When agents interact, the actions of one have conditional effects over the others. We refer to the

conditional effects of agents’ interaction as the world, which is a formal system over a set of atomic

propositions AP [16]. Atomic propositions and their negations are literals, combined in conjunction

to form sentences. All sentences formed this way produce the set of world states C. On this set, a

formal model is created to capture all concurrent interactions agents. This model is a semiautomaton

augmented with a labeling function that maps every state to a sentence which is true at that state.

Formulae in an ltl fragment [1, 15] specify desired system properties such as reachability, safety and

liveness, recurrence, etc. Each formula in this class is equivalently expressed as a dba.

Let Π = {1, . . . , N} be an index set and 2Π denote its power set, i.e., the set of all subsets of Π.

Given a tuple s = (s1, . . . , sN ) denote s [i] = si the i-th entry of s. An agent is modeled as a labeled

semiautomaton (a variant of Kripke structure) Ai = (Qi,Σi, Ti, q
(0)
i , LBi), where q

(0)
i is the initial state

and LBi : Qi → C is the labeling function. The conditional effect of action σ ∈ Σi is captured by its

pre- and post-conditions: the pre-condition of σ, denoted Pre(σ), is a sentence in C that has to be

true in order for σ to be executed; the post-condition of σ, denoted Post(σ), is a sentence in C that

must be true once the action is completed. Whenever Ti(q, σ) ↓, LBi(q) =⇒ Pre(σ); similarly, if

there is a transition from q to q′ on action σ, expressed as q
σ→ q′, it holds that LBi(q

′) =⇒ Post(σ).

The interaction between agents is captured as follows.

Definition 1. For a set Π of agents, each of which is modeled as Ai = (Qi,Σi, Ti, q
(0)
i , LBi), for i ∈ Π,

their concurrent product is a tuple P = A1 ◦A2 ◦ . . . ◦AN =
(
Q,ACT , T, q(0), LB

)
where

5



Q ⊆ Q1 ×Q2 × . . . QN is the set of states.

ACT = Σ1 × . . . × ΣN is the alphabet. Each a = (a1, a2, . . . , aN ) ∈ ACT is an action profile,

encoding the actions played by all agents simultaneously.

T : Q×ACT → Q is the transition function: given q = (q1, . . . , qN ) and a = (a1, . . . , aN ) ∈

ACT , we have

T (q,a) = T
(

(q1, . . . , qN ), (a1, . . . , aN )
)

= (q′1, . . . , q
′
N )

provided that ∀i ∈ Π, (i) q′i = Ti(qi, ai), and (ii) ∧i∈ΠLBi(qi) =⇒ Pre(ai).

q(0) = (q
(0)
1 , . . . , q

(0)
N ) ∈ Q is the initial state of the product.

LB : Q → 2AP is the labeling function. Given q = (q1, . . . , qN ) ∈ Q, LB(q) = {p ∈ AP |

∧i∈ΠLBi(qi) =⇒ p} is a set of atomic propositions evaluated True at state q.

The concurrent product in Definition 1 describes the game arena, and expresses all possible inter-

actions between agents. The actual concurrent game is played on this arena, with agents’ objectives

determining the game equilibria—see Remark 1. The objective of agent i is specified with an ltl

fragment formula ϕi and can be expressed as an ω-regular language Ωi over 2AP , which is accepted

by a total dba Ai =
(
Si, 2

AP , Ti, Ii, Fi
)

with sink ∈ Si.

Let Mov : Q×Π→ 2Σ, where Σ =
⋃
i∈Π Σi, be a set-valued map which for state q ∈ Q and agent

i ∈ Π outputs a set of actions available to agent i at q (cf. [6]). We write Mov(q, i) = {a [i] ∈ Σi |

T (q,a) ↓}, where T is the transition function in P .

A play p = q(0)a (0)q(1)a (1)q(2)a (2) . . . becomes an interleaving sequence of states and action profiles,

such that for all i ≥ 0, we have T
(
q(i),a (i)

)
= q(i+1). A run ρ = q(0)q(1) . . . is the projection of play p

onto Q. A deterministic strategy for agent i is a map Si : Q∗ → Σi such that ∀ ρ = q(1)q(2) . . . ∈ Q∗,

Si(Pr
=k(ρ)) ∈ Mov

(
q(k−1), i

)
, for 1 ≤ k. A deterministic strategy profile S = (S1, . . . ,SN ) is a tuple

of strategies, with Si being the strategy of agent i. The set of all strategy profiles is denoted SP. In

this paper, we consider only deterministic strategies. A run ρ is compatible with a strategy profile

S = (S1, . . . ,SN ) if it is produced when every agent i adheres to strategy Si. All runs compatible with

strategy profile S form the set of game outcomes for this strategy profile, denoted Out(q(0),S).

3.2 Preferences and equilibria

Assume that each agent obtains a Boolean payoff 1 if its objective is accomplished, and 0 otherwise.

The payoff of agent i is given by a function ui : Q×SP → {0, 1} from the set of states Q and strategy

profiles SP defined as ui(q,S) = 1 if for all runs ρ in Out(q,S), we have LB(ρ) ∈ Ωi. The payoff

vector is the tuple made of the payoffs of all agents: u(q,S) =
(
u1(q,S), . . . ,uN (q,S)

)
; we say that
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strategy profile S yields the payoff vector u(q,S). The set of all possible payoff vectors is denoted

PV =
⋃
S∈SP u(q(0),S).

A preference ordering for agent i is a partial order .i over PV : for u1,u2 ∈ PV, if u1 .i u2,

then agent i either prefers a strategy profile S2 with which u
(
q(0),S2

)
= u2, over a strategy profile

S1 with which u
(
q(0),S1

)
= u1, or is at least indifferent between S1 and S2. In the latter case we

write u1 'i u2.

Definition 2 (cf. [10]). A deterministic strategy profile S is a pure Nash equilibrium in a multi-agent

non-cooperative concurrent game if any other strategy profile S′ obtained by agent i ∈ Π unilaterally

deviating from one action profile given by S, results in u
(
q(0),S′

)
.i u

(
q(0),S

)
.

This paper considers only pure Nash equilibria, henceforth referred to as just equilibria.

3.3 Finding Equilibria

An equilibrium is related to the notion of best response; however, the notion itself does not directly

specify some meaningful game outcome [17]. We pose the following question:

Problem 1. For a payoff vector u ∈ PV ⊆ {0, 1}N , is there an equilibrium S such that u
(
q(0),S

)
=

u?

Our answer is in line with existing methods [7, 10], but also differs. In the literature, each agent

either has a single temporal logic specification [10], or a whole set of objectives ranked according to

its own preference relation [7]. In either case, as long as an agent meets its specification it does not

care what others are doing. Our definition of preference orderings among agents makes a difference in

computing equilibria.

Definition 3 (cf. [3]). Consider a set of semiautomata with designated initial states Ai = (Qi,Σi, Ti, q
(0)
i ),

for 1 ≤ i ≤ n. Their synchronized product is a tuple

A1 nA2 n . . .nAn =
( n∏
i=1

Qi,

n⋃
i=1

Σi, T,
(
q

(0)
1 , . . . , q(0)

n

))

where the transition relation T is defined as T (q, σ) , (q′1, . . . , q
′
n), for q = (q1, q2, . . . , qn), where

q′i = Ti(qi, σ) if Ti(qi, σ) ↓, and q′i = qi otherwise.

Suspect players [7] are those who can potentially be held responsible for triggering a transition at

state q which is unexpected in the sense that the players were to execute action profile b that would

have brought them to state T (q, b) = q′′, but instead the game landed at state q′ 6= q′′. One of the
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players, say k ∈ Π, unilaterally deviated from profile b and played σ instead of b[k], resulting in

T (q,a) = q′′ where a = (b1, . . . , bk−1, σ, bk+1, . . . , bN ). This new action profile a is denoted b[k 7→ σ]

to emphasize that it is produced from b by swapping b[k] with σ. For action profile b, the suspect

players triggering a transition from q to q′ is

Susp((q, q′), b) = {k ∈ Π | ∃σ ∈ Mov(q, k), b[k 7→ σ] = a ∧ T (q,a) = q′} .

To solve Problem 1, the concurrent arena P =
(
Q,ACT , T, q(0), LB

)
is transformed to the arena

of a two-player turn-based game with two fictitious players: player I and player II [7]. This arena is

a semiautomaton H = (V,ACT ∪Q,Th, v(0)), with components defined as follows:

V = VI ∪ VII is the state space, with VI ⊆ Q× 2Π, and VII ⊆ Q× 2Π ×ACT .

ACT ∪Q is the alphabet, in which ACT = Σ1 × · · · × ΣN are the moves for player I, and Q

are the moves for player II.

Th is the transition relation defined as: given v ∈ V , either

(i) v = (q,X) ∈ VI and if for any a ∈ ACT it is T (q,a) ↓, then Th((q,X),a) :=

(q,X,a) ∈ VII ; or

(ii) v = (q,X,a) ∈ VII and if for any q′ ∈ Q it is X ′ = X ∩ Susp ((q, q′),a) 6= ∅,

then Th(v, q′) := (q′, X ′) ∈ VI .

v(0) = (q(0),Π) is the initial state.

In this two-player game the players alternate: at each turn, one picks a state in the original

concurrent game, and the other picks an action profile. The degree to which the objective of a

particular player i ∈ Π is satisfied in this process is being tracked by the objective automaton Ai.

We write (Ai, s(0)
i ) to emphasize that the automaton Ai has initial state s

(0)
i = Ti

(
Ii, LB(q(0))

)
. The

objectives {Ωi}Π are incorporated into the description of the two-player arenaH using the synchronized

product, to complete the associated two-player game:

H = H n (A1, s
0
1)n · · ·n (AN , s0

N ) =
(
V̂ ,ACT ∪Q, T̂ , v̂(0)

)
, (1)

with components are described as
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V̂ = V̂I ∪ V̂II where V̂I = VI × S1 × · · · × SN , with Si the states of Ai, are the states

where player I takes a transition. V̂II = VII × S1 × · · · × SN are the states where

player II moves.

ACT , Q are the sets of actions for player I and II respectively.

T̂ is the transition relation which for v̂ = (v, s1, . . . , sN ),

• if v ∈ VI and σ ∈ ACT , then T̂ (v̂, σ) := (v′, s1, . . . , sN ) provided that v′ =

Th(v, σ);

• if, on the other hand, v ∈ VII and σ ∈ Q, then T̂ (v̂, σ) := (v′, s′1, . . . , s
′
N ),

provided that v′ = Th(v, σ) and for each i ∈ Π it is s′i = Ti(si, LB(σ)).

v̂(0) is the initial state—player I moves first—which is a tuple (v(0), s
(0)
1 , . . . , s

(0)
N ) where

for each i ∈ Π, s
(0)
i = Ti(Ii, LB(π1(v(0)))) = Ti(Ii, LB(q(0))), with the understanding

that the projection operator π1 singles out the first component in v(0) and gives

π1(v(0)) = q(0).

Remark 1. The product in (1) is what we would use to construct the concurrent multi-agent game

from its arena P and the agent objectives. For the two-player game H, however, the agent objectives

do not encode its winning condition; it is just a record keeping component to track how far each agent

has gone to fulfilling its goal. The winning condition for H is included in (2), which follows shortly.

For a state v̂ = (v, s ) in the two-player game, v can be either in V̂I or in V̂II . In the first case

(v, s ) =
(
(q,X), s

)
with q ∈ Q and X ∈ 2Π; in the second, (v, s ) =

(
(q,X,a), s

)
with a ∈ ACT .

Define Agt := π2 ◦ π1 that maps a state v̂ to the set of agents in v̂, and State := π1 ◦ π1 that maps

a state v̂ to the state in Q in v̂. Given ρ = v̂(0)v̂(1) . . . ∈ V̂ ω, let Agt(ρ) = Agt(v̂(0))Agt(v̂(1)) . . . and

State(ρ) = State(v̂(0))State(v̂(1)) . . .. Player II follows player I on run ρ = v̂(0)v̂(1) . . . ∈ V̂ ω if for all

i ≥ 0, Agt(v̂(i)) = Agt(v̂(i+1)) = Π. State v̂ = (v, s1, s2 . . . , sN ) can be associated to a binary vector

through a valuation function Val : V̂ → {0, 1}N ; i = 2, . . . , N + 1, Val(v̂)[i] = 1 if v̂[i + 1] ∈ Fi, and

Val(v̂)[i] = 0 otherwise.

We can determine whether there exists an equilibrium associated with a given pay-off vector u in

a multi-agent concurrent Büchi game, by solving a two-player turn-based Büchi game induced by u .

Proposition 1. Consider a concurrent game played on arena P by players Π with objectives {Ai |

i ∈ Π}. If in the two-player turn-based Büchi game H(u) of the form

H(u) =
(
V̂ ,ACT ∪Q, T̂ , v̂(0), F (u )

)
(2)
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where u ∈ PV, F (u ) = {v̂ ∈ V̂ | ∀i ∈ Agt(v̂),Val(v̂) .i u}1 the following conditions are satisfied

1. player I wins;

2. there exists a run ρ ∈ V̂ ω with ρ(0) = v̂(0) in which ∀i ≥ 0 it is ρ(i) ∈ WinI , Agt(ρ(i)) = Π,

Inf(ρ) ∩ {v̂ ∈ F (u) | Val(v̂) = u} 6= ∅ and Inf(ρ) ∩ (V̂ \ F (u)) = ∅,

then there exists a pure Nash equilibrium S in the concurrent game, such that u(q(0),S) = u .

Proof. By condition 1, states visited infinitely often are in F (u); no unilateral deviation made by

an agent j ∈ Π produces a payoff vector better than u . Condition 2 ensures the existence of an

equilibrium S associated with u : if w is an ω-word that generates a run ρ in H(u) which satisfies

1) ρ(0) = v̂(0) and ∀k ≥ 0, ρ(k) ∈ WinI , Agt(ρ(k)) = Π (all rational agents adhere to this policy);

2) Inf(ρ) ∩ (V̂ \ F (u)) = ∅ and (∃ v̂ ∈ Inf(ρ) ) [Val(v̂) = u ], then the equilibrium S is just the

projection of w on the set of action profiles.

The computational complexity of solving two-player turn-based Büchi games is O(n(m+n)), where

n is the number of game states and m is the number of transitions in H(u) [20]. Constructing the

two-player turn-based game H is polynomial in the size of P and the the specification automata Ai [6].

3.4 Cooperative equilibria

So far, agents have been cooperating implicitly: i cooperates with j if the success of both i and j makes

i happier than succeeding alone. In this section, cooperation is considered explicitly, characterized as a

concurrent deviation from a strategy profile for the purpose of collectively achieving better outcomes.

A team X is a subset of Π. A unilateral team deviation by team X ∈ 2Π from an action profile

a is denoted a [X 7→ σ ] = (a′1, a
′
2, . . . , a

′
N ), where σ = (bj)j∈X is the tuple of actions of agents in X,

ordered by their index; we have a′i ≡ ai if i /∈ X and a′i ≡ bi if i ∈ X. The set of teams is denoted

Teams ⊆ 2Π. Nothing prevents agents from switching teams or breaking up—as long as any resulting

teams are still in Teams.

Definition 4. A strategy profile S is a cooperative equilibrium in a multi-agent non-cooperative game

if for any team X ∈ Teams, and for any strategy profile S′ obtained from S by an unilateral team

deviation of X, it holds that for all k ∈ X, u(q(0),S′) .k u(q(0),S).

Now if T (q,a ) = q′ is defined, then for an action profile b ∈ ACT the set of suspect teams

1This is the winning condition for H.
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triggering a transition from q to q′ is

SuspTeams((q, q′), b ) :={
X ∈ Teams | (∀i ∈ X) [ (∃σi ∈ Mov(q, i)) [ b[X 7→ (σi)i∈X ] = a ∧ T (q,a) = q′]

]}
.

The two-player turn-based arena H with team deviation is constructed as

H =
(
V,ACT ∪Q,Th, v(0)

)

where

V = VI ∪ VII is the set of states, with VI ⊆ Q× 2Teams and VII ⊆ Q× 2Teams ×ACT .

ACT ∪Q in which ACT = Σ1 × · · · × ΣN represents the available moves for player I, and Q

the moves for player II.

Th is the transition relation defined as: given v ∈ V , either

(i) v = (q,X ) ∈ VI where X ⊆ Teams and for any a ∈ ACT we have T (q,a) ↓, in

which case Th((q,X ),a) := (q,X ,a) ∈ VII ; or

(ii) v = (q,X ,a) ∈ VII and for any q′ ∈ Q we have SuspTeams ((q, q′),a) ∩ X 6= ∅,

in which case Th(v, q′) := (q′,X ′) ∈ VI where X ′ = { X ∈ Teams | X ⊆ Y, Y ∈

SuspTeams ((q, q′),a) ∩ X }.

v(0) = (q(0),Teams) is the initial state.

In this game, opportunistic teams of agents play against each other if the interests of the teammates

align. The analysis of equilibria is performed as in Section 3.3: First we construct the two-player turn

based game H from the game arena H and the agents’ objectives, and then we determine if an

equilibrium with respect to a pay-off vector u exists based on Proposition 1. The definition of the

winning condition is slightly different here: given u ∈ {0, 1}N , F(u) = {v̂ ∈ V̂ | ∀X ∈ Teams(v̂), ∀i ∈

X,Val(v̂) .i u}, where Teams = π2 ◦ π1 maps a state v̂ into a set of teams within v̂. Then cases

considered in Section 3.3 become special cases of the one considered here, where Teams = {{i} | i ∈ Π}.

4 Negotiations

This section introduces a negotiation protocol which ensures that the agents agree upon which Nash

equilibrium to implement through negotiation.

For two strategy profiles S1 and S2, we say S1 Pareto dominates S2 if for all agents i ∈ Π, it
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is u(q(0),S1) &i u(q(0),S2) and for at least one agent k ∈ Π, we have u(q(0),S1) >k u(q(0),S2). A

strategy profile S that is not Pareto dominated by any other strategy profile is called Pareto optimal.

Let U ⊆ PV be the set of payoff vectors for all equilibria. A utility function µi : U → Z maps payoff

vectors to integer utilities, and measures for a given payoff vector u , the number of payoff vectors that

the agent prefers over u . For instance, if u is the worst payoff vector for agent i, then µi(u ) = 0; if

the agent’s utility for some payoff vector u ′ is, say `, and u >i u
′ while no other u ′′ 6= u exists with

u ′′ >i u
′, then µi(u ) = `+ 1.

We thus get an ordering of equilibrium strategies depending on their associated utilities. Consider

utility vectors in the form µ = (µ1, . . . , µN ), and denote M the set of all utility vectors that can be

obtained for equilibria in the game.

Even if agents see clearly the best payoff, they still need to pick a single same equilibrium to

implement, otherwise the payoff will not be realized. In our negotiation protocol, the agent who

initiated the successful proposal on that particular utility vector arbitrarily picks their policy—a

reward for making a good proposal.

Negotiations cannot go forever. If after a given number of negotiation rounds no consensus is

reached, agents are forced to default to an egregious utility vector µdis—subscript marks disagreement—

associated with a given strategy profile. Once this becomes common knowledge, the negotiation pro-

ceeds as follows. A random agent from Π proposes the utility vector µ it prefers in the sense that

µ[i] = maxu∈U µi(u ) ≥ µdis[i]. One by one, other agents either accept this proposal as is, or suggest

an improvement without lowering the utility of anyone else who has accepted, or outright reject it by

proposing a new one. A negotiation round is completed when a new proposal is made.

At any such time, the set of agents X that have accepted it is always nonempty—the proposing

agent is always included. Before agent j rejects a proposal µ, it must look at who has already accepted

it and compute the set of alternative proposals µ ′ that will be accepted by all those agents. If the set is

nonempty, j selects the best for itself improved proposal from there. If the set of alternative proposals

is empty, j compares the current proposal µ to the disagreement utility vector µdis. If µ[i] > µdis[i],

then j must compromise and accept µ. If µ[i] ≤ µdis, j has really nothing to lose by outright rejecting

and suggesting a new proposal that serves its best interest, one that satisfies µ ′[j] = maxu∈U µj(u ).

A new round of negotiation starts. Algorithm 1 describes this negotiation protocol.

If an agreement is reached, then the implemented strategy profile is ensured to be a Pareto optimal

equilibrium.

Lemma 1. Given the setM of utility vectors for the pure Nash equilibria in a concurrent multi-agent

game, if at least one utility vector which corresponds to a (set of) Pareto optimal equilibria exists, and

12



Algorithm 1: Negotiation

Input: A set M of utility vectors where each µ ∈M is obtained from a payoff vector that
corresponds to an equilibrium; the initial state q(0); a disagreement utility vector µdis,
and an upper bound limit on the number of negotiation rounds.

Output: A single equilibrium S agents have agreed upon.
begin

proposer ← Random(Π); done← False; µ ∗ ← arg maxµ∈Mµ[proposer]; prop← µ ∗; k ← 1;
X = {proposer};
while ¬done and k ≤ limit do

done← True;
for j ∈ Π \X do

X,newprop, accept, k ← AcceptOrReject (j,X, prop,M,µdis, k);
if accept = False then

proposer ← j, prop← newprop, done← False

if accept = True then
if prop 6= newprop then

prop← newprop; proposer ← j; done← False.

if done = True then
return S = Choose(proposer, prop)
/* Agreement reached, and proposer selects an equilibrium

corresponding to the agreed utility vector. */

/* Agreement not reached before limit rounds. */

return S = Choose(proposer,µdis)

the disagreement utility µdis is chosen such that µdis[i] < µ [i] ∀ µ ∈ M and i ∈ Π, then Algorithm 1

will ensure agreement on a utility vector which corresponds to a (set of) Pareto optimal equilibria.

Proof. Let the utility vector in the current proposal be µ. If it is not Pareto optimal, there is another

utility vector µ ′ such that for at least some agent i, µ ′[i] > µ [i] while for any other k ∈ Π \ {i} it

is µ ′[k] ≥ µ[k]. When agent i gets its turn, it will propose µ ′ as an improvement to µ—based on

Algorithm 2, any utility vector other than µdis agents will either accept as it is, or improve. Thus, the

cardinality of the set of agents who have accepted the current proposal is monotonically increasing.

The disagreement utility µdis, being worse than any other utility vector, will never be proposed.

Therefore, in at most as many steps as the number of agents, consensus will have been reached. In

the final round, the set Y only includes utility vectors that correspond to Pareto optimal equilibria,

unless it is empty. The last agent who decides whether to accept or to reject the current proposal,

has to pick an alternative from Y . If Y is empty, this last agent cannot better itself without making

someone else worse off. Backstepping to the one-before-last agent, we see that if this penultimate

agent had improved on an existing proposal, the resulting utility vector must have been a Pareto

optimal. Backward induction completes the reasoning: the agreed utility vector corresponds to a

Pareto optimal equilibrium.

13



Algorithm 2: AcceptOrChoose

Input: An agent j, a set X of agents, the proposal prop, the set M of utility vectors for
negotiation, the disagreement utility vector µdis and the negotiation round k.

Output: A set X of agents who accept the proposal, the current proposal newprop, a Boolean
value accept indicates whether agent j accepts or rejects and the updated negotiation
round k.

begin
Y ← ∅; accept = False;
for µ ∈M do

if For each ` ∈ X, µ[`] ≥ prop[`] and µ[j] > prop[j] then
Y ← Y ∪ {µ}.

if Y 6= ∅ then
X ← X ∪ {j}; accept = True; µ∗ ← arg maxµ∈Y (µ[j]); newprop← µ∗;
return X, newprop, accept, k;

else
if prop[j] > µdis[j] then

X ← X ∪ {j}; accept = True; ;
return X, prop, accept, k;

else
µ∗ ← arg maxµ∈M µ[j]; accept = False; k ← k + 1; newprop← µ∗; X ← {j};
return X,newprop, accept, k;

5 Example

Recall the example of Section 1, in which three agents need to visit different rooms in the environment

of Fig. 1. Each agent may move to an adjacent room through the connecting door. Symbols a, b, c,

and d represent the actions of crossing the corresponding door, and an additional symbol ε expresses

inaction: staying in place. The set of actions for agent i ∈ Π is thus Σi = {a, b, c, d, ε}.

A fragment of the arena P is shown in Fig. 2, A transition of the form e.g. ABC
a,c,ε−−→ BDC means

that agents 1, 2, and 3 are in rooms A, B and C, respectively, and that 1 crosses door a, 2 crosses

door c, and 3 stays put. The agents will then arrive at rooms B, D and C. Figure 3 shows a fragment

of the two-player game arena H, obtained from P .

ACC

BDD

ABCstart
BDA

BDC

ACB

BBA

acd

acε

acd

εcb
acε

adc

acb adb

adbacb

adc

εcb

Figure 2: A fragment of the multi-agent arena P =
(
Q,ACT , T, q(0)

)
. A state (i, j, k) is represented as

ijk—agent 1 is in room i, agent 2 in room j and agent 3 in room k. The initial state q(0) = (A,B,C).
For all (ai)Π ∈ ACT , and i 6= j ∈ Π, if ai, aj 6= ε, then ai 6= aj captures the constraint that two agents
cannot pass through the same door simultaneously. AP = {α(i,m) : the robot i is in room m, i ∈
{1, 2, 3};m ∈ {A,B,C,D}}. The set of propositions evaluated true at q ∈ Q indicates the current
locations of agents.

Agent objectives are Büchi: infinitely often, agent 1 should visit A and B, agent 2 should visit C

14



and D, and agent 3 must visit rooms A, B, and D:

ϕ1 :�(♦(A ∧ ♦B)) ϕ2 :�(♦(C ∧ ♦D)) ϕ3 :�(♦(A ∧ ♦(B ∧ ♦D))) .

For each pay-off vector u , computing a winning strategy in the two-player game H(u) takes

an average of 38 seconds, with a Python implementation on a desktop with Intel(R) Core(TM) i5

processor and 16 GB RAM.

Let us see now how the design of preference orderings and the formation of teams affects the

equilbria in the game.

(ABC, {1, 2, 3})

(ABC, {1, 2, 3}, acd)(ABC, {1, 2, 3}, acb)

(BDA, {3})(BDA, {1, 2, 3})

(BDA, {3}, acb)(BDD, {3}, acd)

(BDD, {3})

(BDA, {1, 2, 3}, acb) (BBD, {2}, aεd)

(BBD, {2})

acb aεd

BDA BDABDD

acb acd

BBD

acb acd

Figure 3: A fragment of the two-player turn-based game arena H. The semantics of a state in VI
(e.g., (ABC, {1, 2, 3}, acb)) is that agents are in the rooms marked by the first component (i.e., 1 in
A, 2 in B and 3 in C), the agents suspect for triggering the transition there are the ones in the second
component (i.e., all of them), and agents are supposed to execute the actions specified in the third
component (i.e., 1 go through a, 2 go through c and 3 go through b). The semantics of a state in VII
(say, (BDD, {3})), is that agents are now where the first component says (i.e., 1 in B, 2 in D and
3 also in D) and that for this state to have been reached, the agents in the second component (i.e.,
3) are suspect of triggering the transition: the action profile that was actually implemented to reach
that particular state in VII is acd. By comparing acd with acb, it is clear that 3 deviates.

5.1 Equilibrium analysis

Case 1: No teams—everyone for themselves Agents selfishly focus on achieving their own

objectives, which means that their preference relations are

u �i u ′ with i ∈ Π if u [i] = 0 and u ′[i] = 1 , u 'i u ′ if u [i] = u ′[i] .

In this case, the two-player game H, has payoff vector set PV = {0, 1}3. Analyzing all payoff vectors

in PV, reveals that there exists an equilibrium for every one of them (see first row of Table 1).

Case 2: Selfish individuals in teams. Let Teams =
{
{1}, {2}, {1, 2}, {3}

}
; agents 1 and 2 can

now cooperate in an ad-hoc way, but also deviate unilaterally as individuals. In this case we also have

a cooperative equilibrium to realize every payoff vector (see second row of Table 1).
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Case 3: Implicit teaming against agent 3. Now we do not explicitly define possible teams; we

allow agents to choose by themselves how to team up based on their preference relations. We select

preference relations to radicalize agents 1 and 2: they now prefer failure to letting agent 3 get his way.

For agent 1 we have:

(0, 0, 1) �1 (0, 1, 1) �1 (1, 0, 1) �1 (1, 1, 1) �1 (0, 0, 0) �1 (0, 1, 0) �1 (1, 0, 0) �1 (1, 1, 0) , (3)

which reads “ideally I want myself and agent 2 to achieve our goals but not agent 3, and if I cannot have

that I would rather win alone; if this is not possible I can let agent 2 win, but under no circumstances

do I let 3 get his way—in case 3 wins, my preferences coincide with the case where he loses.” Similarly

for agent 2,

(0, 0, 1) �2 (1, 0, 1) �2 (0, 1, 1) �2 (1, 1, 1) �2 (0, 0, 0) �2 (1, 0, 0) �2 (0, 1, 0) �2 (1, 1, 0) . (4)

Agent 3 plays as in case 1. Now we see that there is no equilibrium corresponding to payoff vectors

(0, 0, 1) or (0, 1, 1); the opportunistic alliance of agents 1 and 2, will have them both sacrifice for seeing

agent 3 fail.

Table 1: Nash equilibria for all payoff vectors in concurrent game G with Büchi objectives

PV
(0,0,0) (0,0,1) (0,1,0) (1,0,0) (1,1,0) (0,1,1) (1,0,1) (1,1,1)

case 1 X X X X X X X X
case 2 X X X X X X X X
case 3 X 7 X X X 7 X X

5.2 Agreeing on strategies through negotiation

Negotiation is needed if coordination is to be decentralized. Here we will not consider team deviations,

and thus focus on cases 1 and 3.

For case 1, the condition in Lemma 1 is satisfied because for each agent, there exists a utility vector

which is strictly preferred by this agent to the one corresponding to the payoff vector (0, 0, 0). Thus,

if we choose the disagreement utility vector be the one that corresponds to (0, 0, 0), there is a unique

outcome of negotiation which corresponds to payoff vector (1, 1, 1), for which all agents accomplish

their goals.

For case 3, we see that for agents 1 and 2 the least preferable equilibrium payoff vector is (1, 0, 1),

while for agent 3 it is any of the form {(x, y, 0) | x, y ∈ {1, 0}}. The condition in Lemma 1 is no longer
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satisfied. In fact, if the disagreement utility vector is chosen among those that correspond to any

payoff vector in {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}, agents will default to the disagreement

equilibrium policy. If, however, the disagreement utility vector is the one associated with payoff

vector (1, 0, 1), the negotiation steers the agents toward their (best) payoff vector (1, 1, 1). To see this,

suppose agent 1 first proposes (1, 1, 0); agent 2 will agree and accept. However, agent 3 finds this no

better than the disagreement utility vector, and will therefore reject and propose (1, 0, 1). Agent 1

gets its turn, and finds a set Y of utility vectors using Algorithm 2, that correspond to payoff vectors

{(1, 1, 1)}. Now agent 1 suggests an improvement in the form of a utility vector that corresponds to

a payoff (1, 1, 1). Agent 2 takes his turn and computes a set Y that turns out to be empty: that

tells it that the current proposal cannot be improved further, while being strictly better than the

disagreement policy—agent 2 has to agree. The negotiation terminates.

6 Conclusion and future work

In an instance of a multi-agent coordination problem where agents act concurrently and have their own

objectives and preferences over the outcomes of the interaction between them, discrete planning and

control synthesis can be performed within a game theoretic framework. Effective coordination policies

take the form of Nash equilibria. This paper reports on methods for identifying these behaviors,

particularly when agent objectives are expressed in temporal logic. Allowing agents to team up if they

see that doing so yields a better outcome, gives rise to new type of cooperative equilibria, which can

be treated within the same proposed framework.

If coordination is to be achieved in a decentralized way, agents need a way of selecting a single,

common equilibrium to implement; mixing individual behaviors from different game equilibria may

not give another equilibrium. This agreement can be achieved through negotiation, and the algorithm

reported here ensures that the equilibrium behavior that agents reach consensus over is Pareto optimal,

assuming that certain conditions on the agents’ objectives, preferences and the disagreement policy in

the negotiation are satisfied.

The framework described cannot currently capture mixed Nash equilibria. The algorithms for

computing the game equilibria are of polynomial time complexity, but this obviously cannot overcome

the challenge posed by the curse of dimensionality. Additional measures for curbing the increase in

the dimension of the product systems are being investigated, trying to take advantage of the fact that

agent coupling may occur over subsets of their operational space.
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