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This paper presents procedural guidelines for the construc-
tion of discontinuous state feedback controllers for driftless,
kinematic nonholonomic systems, with extensions to a class
of dynamic nonholonomic systems with drift. Given an n-
dimensional kinematic nonholonomic system subject to κ

Pfaffian constraints, system states are partitioned into “leaf-
wise” and “transverse,” based on the structure of the Pfaf-
fian constraint matrix. A reference vector field F, is defined
as a function of the leafwise states only, in a way that it is
nonsingular everywhere except for a submanifold containing
the origin. The induced decomposition of the configuration
space, together with requiring the system vector field to be
aligned with F, suggests choices for Lyapunov-like functions.
The proposed approach recasts the original nonholonomic
control problem as an output regulation problem, which al-
though nontrivial, may admit solutions based on standard
tools.

1 Introduction
Arguably, the control design for nonhonolomic systems

is by now a mature area of research, with enough insight
gained within the last few decades to generate a plethora of
methods specialized to different classes of systems. This re-
search has been constantly motivated by applications in a va-
riety of fields, from robotics, to aerospace, to mechatronics
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and automated highway systems. Within this range of avail-
able techniques for control design, which this paper cannot
cite in their entity for reasons of space, there is rarely a com-
mon underlying thread since each approach aims at exploit-
ing some specific structural properties of a subclass of the
systems in question. This paper aims at covering a small part
of this void, by setting some uniform control design guide-
lines for n-dimensional nonholonomic systems, which may
bring some of the existing solutions under new light.

Solutions for nonholonomic systems can be broadly
classified into two groups, those that employ time-varying
feedback, either smooth [1–7] or non-smooth with respect
to (w.r.t.) the state [8–13], and those that use time-invariant,
non-smooth state feedback. The latter approach includes
piecewise continuous [14, 15], discontinuous [16–24], and
hybrid/switching control solutions [25–30]. In existing
methods yielding discontinuous control solutions, the control
design often employs nonlinear state transformations, see for
instance [4, 16, 19, 22, 24], and the control laws are extracted
in the new coordinate system using either linear [16], nonlin-
ear [18], or invariant manifold based techniques [19]. How-
ever, the choice of these coordinate transformations is not
always straightforward. The aim of the paper is to provide
a uniform logic into the control design for controllable non-
holonomic systems, a realization of which appears in Section
2.2.

More specifically, the control strategy relies on forcing
the system to align with and flow along a reference vec-
tor field, which by construction has a unique critical point



of rose type.1 Through the generalization of earlier control
designs for the unicycle, we cast the nonholonomic control
problem as an output regulation problem [32]. The regu-
lated output expresses the misalignment of the system vec-
tor field w.r.t. the reference vector field. The regulation of
this output to zero, along with a suitably selected Lyapunov-
like function, is used to establish convergence of the system
trajectories to the origin. The proposed formulation offers
justification for the choice of control law, which carries over
to a variety of nonholonomic systems subject to kinematic
(first-order), or dynamic (second-order) nonholonomic con-
straints. Furthermore, it takes place in the initial system coor-
dinates, without the need to apply coordinate transformations
(such as the σ-process in [16]).

1.1 Organization and Notation
The paper is organized as follows: In Section 2.1 we

present the construction of the vector field F(·) and the con-
trol design idea for the unicycle. This case serves as the mo-
tivation for considering the control of kinematic, controllable
nonholonomic systems with κ Pfaffian constraints, which fall
into the class of n-dimensional, drift-free systems:

q̇qq =
m

∑
i=1

gggiii(qqq)ui, (1)

where qqq ∈ C is the configuration vector, or the vector of gen-
eralized coordinates, C ⊆ Rn is the configuration space, and
for i ∈ {1, . . . ,m} we have control inputs ui, and control vec-
tor fields gggiii(qqq), respectively. The considered nonholonomic
constraints are of the form:

AAA(qqq)q̇qq = 000, (2)

with AAA(qqq) ∈ Rκ×n. In Section 2.2 we present a general pro-
cedure for control design on (1). In Section 3 we show how
the proposed guidelines apply to the control design of control
affine underactuated mechanical systems with drift:

ẋ = f(x)+
m

∑
i=1

gi(x)ui, (3)

where x =
[
qqq> vvv>

]> ∈ R2n is the state vector including the
generalized coordinates qqq ∈ Rn and speeds vvv ∈ Rn, f(x) is
the drift vector field and ui, gi(·) are the i-th control input
and control vector field, respectively. This class of systems
is subject to second-order nonholonomic constraints, which
essentially refer to non-integrable acceleration constraints of
the form aaa(vvv)v̇vv = b(vvv). As a case study we treat the control
design for the motion of an underactuated marine vehicle on
the horizontal plane. Our conclusions and our plans for fu-
ture extensions are summarized in Section 4.

1An isolated critical point is called a rose if it has elliptic type of sectors
only, i.e. if in a neighborhood around it, all integral curves begin and end at
the critical point; an example is the dipole [31].

A preliminary version of this work concerning the con-
trol design for kinematic nonholonomic systems has ap-
peared in [33]. This paper includes further analysis and the-
oretical justification for the proposed control strategy, along
with an extension of the methodology to dynamic nonholo-
nomic systems. Finally, the control design in Section 3 is not
the same as the one in [34].

2 Overview of the Approach
2.1 A special case: Dipolar vector field for unicycles

Let us consider a unicycle, described kinematically as

q̇qq =
[
cosθ sinθ 0

]> u1 +
[
0 0 1

]> u2, (4)

where qqq =
[
rrr> θ

]> ∈ C is the configuration vector, rrr =[
x y
]> is the vector of position coordinates w.r.t. to some

inertial frame in R2, θ ∈ S1 is the orientation w.r.t. relative to
that frame, C is the configuration space, and u1, u2 are the
control inputs.

Inspired by the expression of the vector field of the elec-
tric point dipole [35] in a workspace W ⊂ R2, we introduce
the dipolar vector field F : R2→ R2 in the form:

F(rrr) = λ(ppp>rrr)rrr− ppp(rrr>rrr), (5)

where ppp ∈ R2 stands for the dipole moment vector, and λ ∈
R. For ppp =

[
1 0
]>, the vector field components of F are

expressed as:

Fx = (λ−1)x2− y2, Fy = λxy. (6)

For λ 6= 1 the vector field F is non-vanishing everywhere but
the origin rrr = 000, which is the unique, isolated critical point.
For λ > 1 the critical point rrr = 000 is a dipole; this implies that
all integral curves of F begin and end at the critical point [31]
(Fig. 1(a)). In that sense, any of the integral curves of F
offers a path to rrr = 000. Furthermore, the integral curves are
symmetric with respect to the axis of the vector ppp (Fig. 1(b)).

Having the class of vector fields (5) at hand, the basic
idea for the control design of the unicycle [36] is to force the
system to align with, while flowing along, the dipolar vector
field F, since:

1. each integral curve of F offers by construction a path to
the critical point rrr = 000, while

2. picking a (unit) dipole moment vector ppp =
[
px py

]>
such that φp = atan2(py, px), θd defines integral curves
that can serve to regulate the orientation θ→ θd , in the
sense that they all converge to rrr = 000, along directions
parallel to the axis of the dipole moment vector ppp.

Then, for steering the system to the origin qqq = 000, it is suffi-
cient to take a vector field for λ = 2 and ppp =

[
1 0
]> so that
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Fig. 1. The dipolar vector field F, given by (5), for λ = 2 and (a)
ppp = [1 0] (above) and (b) ppp = 1√

2
[1 1] (below).

φp , atan2(0,1) = 0. With this substitution, the components
of that vector field are:

Fx = x2− y2, Fy = 2xy . (7)

This vector field can be treated as a feedback motion plan
[37] to the origin qqq = 000.

In the sequel, we denote by F : C → T C a vector field
defined on the tangent space T C of the configuration space
C , and by Fqqq the value of F at a point qqq ∈ C .

Furthermore, we say that the system vector field q̇qq∈ TqqqC
is aligned with the vector Fqqq at a point qqq ∈ C as long as there
exists a scalar c ∈ R \ {0}, so that q̇qq = cFqqq. This directly

implies AAA(qqq)q̇qq = cAAA(qqq)Fqqq
(2)
= 000. Since c 6= 0, it follows that

the system vector field is aligned with a vector field F at a
point qqq ∈ C if and only if AAA(qqq)Fqqq = 000.

Therefore, the misalignment between the system vector
field q̇qq ∈ TqqqC and a vector field F can be quantified by the
(vector) output hhh(qqq) , AAA(qqq)F. In the case of the unicycle,

we have:

h(qqq),
[
−sinθ cosθ 0

]︸ ︷︷ ︸
AAA(qqq)

Fx
Fy
Fθ

 , (8)

where AAA(qqq) =
[
−sinθ cosθ 0

]
∈ R1×3 is the constraint ma-

trix expressing the κ= 1 nonholonomic constraint of the uni-
cycle in Pfaffian form, the vector field components Fx, Fy are
given by (6). The Fθ component along the unit vector { ∂

∂θ
} of

T C is added for the matrix multiplication to be well-defined.
It follows that forcing the system vector field q̇qq∈ TqqqC to align
with F is equivalent to having h(qqq)→ 0, at each qqq ∈ C .

Remark 1. Note that, in this case, the vector field compo-
nent Fθ does not affect the analytical expression of the output
h(qqq), since the multiplication AAA(qqq)F always maps the com-
ponent Fθ to zero. For this reason, Fθ can be defined to be
identically zero; a vector field with Fθ 6= 0 does not provide
any more information regarding the misalignment of the sys-
tem vector field w.r.t. the reference vector field F than one
in which Fθ = 0. This observation is utilized in extending
the control design idea to higher dimensional systems, as de-
scribed in Section 2.2.

�

When the system vector field is aligned with F at a point
qqq ∈ C , then one has

h(qqq) = 0⇒−sinθFx+cosθFy = 0

⇒ tanθ =
Fy

Fx
, tanφ⇒ θ = φ+µπ, µ ∈ Z,

where φ , atan2(Fy,Fx) is the orientation of the vector Fqqq
w.r.t. the inertial frame. Consequently, to force the align-
ment of the system vector field with Fqqq, one can define the
error s , θ−φ, and seek a control law that makes this error
converge to zero. The latter condition offers a way of choos-
ing one of the control inputs, since the unicycle has relative
degree 1 w.r.t. the error s; to see how, take the time derivative

ṡ = θ̇− φ̇
(4)
= u2− φ̇,

to verify that at least one of the control inputs appears in the
analytical expression of ṡ. Then, aligning the system vector
field with F offers a way of controlling the orientation θ of
the unicycle to the reference φ (i.e. to the orientation of the
vector Fqqq), which by construction vanishes at rrr = 000. Thus,
the regulation of the output h(qqq) to zero via s→ 0, along
with the requirement to flow along F until reaching the ori-
gin rrr = 000, directly suggests the choice of the Lyapunov-like
function V = 1

2 (x
2 + y2)+ 1

2 s2, for establishing the conver-
gence of both position and orientation trajectories to zero.
The analysis employs the standard non-smooth version of the
LaSalle’s invariance principle, and is omitted here in the in-
terest of space, see [33].



2.2 Dipolar vector fields for higher dimensional systems
Let us now try to extend the idea of using a reference

vector field F and regulating the output hhh(qqq) , AAA(qqq)F to
zero, to a wider class of systems.

In principle, given an n-dimensional kinematic system
subject to κ Pfaffian constraints (2), we are initially looking
for a vector field F : C → T C , to serve as a velocity reference
for (1), in the sense that, at some qqq ∈ C , the system vector
field q̇qq ∈ TqqqC should be steered into the tangent space of the
integral curve of F.

2.2.1 Constructing a reference vector field
For a system subject to κ ≥ 1 Pfaffian constraints, the

misalignment of the system vector field q̇qq ∈ TqqqC to a refer-
ence vector field F can be quantified by the (vector) output
hhh(·) : Rn → Rκ, defined as hhh(·) , AAA(qqq)F. Forcing the sys-
tem vector field to align with F is codified in making all κ

elements of the output vector hhh(·) vanish as t → ∞. This
condition in turn implies that, for the closed-loop system,
the constraint equations (2) at some qqq ∈ C , take the form
AAA(qqq)Fqqq = 000; we say in this case that F satisfies, or is consis-
tent with, the constraints at qqq ∈ C .

Definition 1. A vector field F : C→ T C is said to be consis-
tent with the nonholonomic constraints (2) at a point qqq ∈ C ,
(or that it satisfies the consistency condition at qqq) if

AAA(qqq)Fqqq = 000. (9)

In fact, the explicit form of the condition (9) may suggest an
analytic expression of a reference vector field F, in the fol-
lowing sense: Let us consider a vector field F = ∑

n
j=1 F j

∂

∂q j
,

where
{

∂

∂q1
, . . . , ∂

∂qn

}
are the unit basis vectors of the tangent

space TqqqC , and the resulting linear (in terms of F j) system:

a11 F1+a12 F2+ . . .+a1n Fn = 0,
a21 F1+a22 F2+ . . .+a2n Fn = 0,

...
aκ1 F1+aκ2 F2+ . . .+aκn Fn = 0;

then, if AAA(qqq) contains one zero column, for example,[
a1 j(qqq) . . . aκ j(qqq)

]>
= 000 for some j ∈ {1, . . . ,n}, the cor-

responding component F j of the vector field does not play
a role in whether the consistency condition (9) is satisfied
or not, because the linear map always sends F j to zero. One
could therefore define a vector field F in which F j = 0. Since
reference vector field F has no component along q j, may just
as well be independent of this variable.

In this sense, if AAA(qqq) has 0≤ n0 < n zero columns, then
the vector field components of F which are multiplied with
the zero columns of AAA(qqq) can be set to zero: F j , 0. In the
sequel, we refer to the n−n0 coordinates qi for i∈ {1, . . . ,n},
whose generalized speeds q̇i are associated with the non-zero
columns of AAA(qqq), as leafwise states denoted xxx; the remaining
n0 coordinates q j, whose generalized speeds are associated

with the zero columns of AAA(qqq), are referred to as transverse
states and are denoted ttt. Accordingly, the n0 vector field
components F j , 0 are transverse components, while the re-
maining N = n−n0 components Fi are leafwise.

With this observation, the configuration space C can
be trivially decomposed into C = L × T , where L is the
subspace of the leafwise states xxx, T is the subspace of the
transverse states ttt, with dimensions dimL = n− n0, and
dimT = n0 respectively.2 It immediately follows that setting
the transverse components F j = 0 has essentially the effect
of defining the vector field F tangent to the leaf space L .

The decomposition of the system states into leafwise
and transverse states is indeed coordinate-dependent, and
does not express any intrinsic property for the system at
hand from a differential geometric point-of-view. For in-
stance, the nonholonomic double integrator (NDI) and the
unicycle admit different decompositions, yet they are glob-
ally diffeomorphic. Nevertheless, this non-intrinsic charac-
terization does not pose limitations to the application pro-
posed methodology, as presented in detail in Section 2.4.

2.2.2 Constructing of a reference vector field F
Given a kinematic system (1) subject to nonholonomic

constraints (2), and based on the characterization of leafwise
and transverse states and spaces as described above, we are
seek a family of vector fields (5) to be used as reference vec-
tor fields. To this end, we first define the “generalized” form
of the considered vector fields as:

F?(xxx) = λ

(
ppp>xxx

)
xxx− ppp

(
xxx>xxx

)
, (10)

where xxx ∈ RN is the vector containing the leafwise states of
the system, ppp ∈RN is the dipole moment vector, N, n−n0,
for n0 ∈ N0 is the number of the zero columns of AAA(qqq), and
λ ≥ 2. The vector field F? given by (10) is by construction
tangent to the leaf space L ⊆ C , and nonsingular everywhere
on L except for the origin xxx= 000, which is the unique, isolated
critical point of the vector field F? of “rose” type. Thus, any
of the integral curves of (10) offers a path to xxx = 000. The
vector field F? can represent the leafwise components of a
reference vector field F : C → T C , while the transverse com-
ponents of F can be set equal to zero, for the reasons given
in the previous section.

Dropping some of the system states (i.e. the transverse
states ttt) from the definition of the reference vector field F :
C → T C has, however, some implications. It permits the
reference vector field to vanish on a whole submanifold A =
{qqq ∈ C | xxx = 000} that contains the origin qqq = 000, and require
a switching control strategy to deal with the cases where the
system is initiated on this submanifold. On the other hand,
if all system states are characterized as leafwise (i.e. if the

2Note that our characterization of the system states into “leafwise” and
“transverse” applies when n0 = 0 as well, i.e. when AAA(qqq) has no zero
columns. In this case, one trivially takes xxx , qqq, i.e. all system coordi-
nates qi are thought as leafwise, while the leaf space L coincides with the
configuration space C .



constraint matrix AAA(qqq) has no zero columns), then the vector
field F? in (10) is dependent on the whole state vector xxx =
qqq. The vector field is tangent to the leaf space L , C , and
vanishes only at the origin qqq = 000; in this case, F? alone can
serve as a reference vector field for the system.

Vector ppp ∈ RN in the expression of the vector field F?

should also satisfy the constraints (2) at the origin xxx = 000.
This condition reads AAA?(000)ppp = 000, where AAA?(qqq) ∈ Rκ×N is
the matrix obtained after dropping the n0 zero columns of
the constraint matrix AAA(qqq).

2.3 Control Strategy
Since the vector field F is meant to serve as a reference

velocity q̇qqref for the system vector field, the main idea behind
the control design can be rephrased as: instead of trying to
stabilize (1) to the origin, use the available control authority
to align the system vector field with F. This condition, along
with the proposed decomposition of the configuration space
into L ×T —which is based on our characterization of sys-
tem coordinates into leafwise and transverse—suggests the
choice of particular Lyapunov-like functions and the trans-
verse states ttt ∈ Rn−N, and enable one to establish conver-
gence to the origin qqq = 000 based on standard techniques. This
control strategy involves two steps:

(A) Consider the decomposition C = L × T , based on the
n0 ∈ {0,1, . . .} zero columns of the constraint matrix
AAA(qqq), where L is the leaf space, T is the transverse
space. Then find an N-dimensional vector field F? : L→
T L , where N, n−n0, such that the origin xxx = 000 of the
local coordinate system on L is the unique, critical point
of F?, and define the reference vector field F : C → T C ,
by keeping the components of F? along T L and assign-
ing zeros along T T .

(B) Design a feedback control scheme to align the system’s
vector field q̇qq ∈ TqqqC with F, and flow along F ensuring
that q̇qq is non-vanishing everywhere but the origin qqq = 000.

Proof of correctness. To verify the correctness of this con-
trol strategy, note first that the steps in (A) have been justified
in the previous sections.3

For step (B), let us consider the class of control-
lable, drift-free kinematic systems (1), and the distribu-
tion of the control vector fields ∆ = span{ggg111,ggg222, . . . ,gggmmm},
where dim∆ = m. The system is able to follow (or flow
along) a vector field F as long as F belongs into the vec-
tor space spanned by the control vector fields, i.e. if
F ∈ ∆. This requires the existence of functions ci(·) such
that ∑

m
i=1 ci(·)gggiii(·) = F. In other words, for the system

to flow along F, the dimension of the distribution ∆F =
span{ggg111,ggg222, . . . ,gggmmm,F} should be dim∆F = m, which equiv-
alently reads: rank(H) = m, where H ,

[
ggg111 ggg222 . . . gggmmm F

]
∈

Rn×(m+1).
The class of reference vector fields F : C → T C de-

scribed in step (A) does not necessarily satisfy this condition

3Note, furthermore, that any vector field which has a single critical point
xxx = 000 of either elliptic or parabolic sectors [31] may serve as a valid choice
for F?, since in both cases all integral curves converge to the critical point.

everywhere on C , i.e., in general rank(H) = m+ 1. Never-
theless, the rank of H drops to m at points where AAA(qqq)Fqqq = 000,
since then cq̇qq = Fqqq, for some c 6= 0, or there exist functions
ci(·) such that ∑

m
i=1 ci(·)gggiii(qqq) = Fqqq. Consequently, ensuring

that hhh(qqq), AAA(qqq)F→ 000 has as a consequence that the system
vector field q̇qq ∈ TqqqC becomes tangent to an integral curve of
F asymptotically. The latter leads the system all the way to
xxx = 000.

To see how each one of the κ elements of the output
vector hhh(qqq) , AAA(qqq)F can be regulated to zero, let us first
consider the case of κ = 1 Pfaffian constraint (2), where
AAA(qqq) =

[
a1(qqq) . . . an(qqq)

]
, and F = ∑

n
j=1 F j

∂

∂q j
.

The output h(·) then reads: h = ∑
n
j=1 (a j(qqq)F j). To reg-

ulate this output to zero, it suffices to check the condition
AAA(qqq)F = 000 and select a number of M ≤m consistency errors
sµ(·), µ ∈ {1, . . . ,M}, such that

∀µ, sµ(·) = 0 =⇒ AAA(qqq)F = 000. (11)

Then rank(H) drops to m, i.e. that the vector field q̇qq ∈ TqqqC
belongs to the tangent space of an integral curve of F.4

Therefore, h(qqq)→ 0 is implied by sµ(·)→ 0.
For a given selection of sµ(·), a sufficient condition for

ensuring that they can be regulated to zero involves the rela-
tive degree of the system w.r.t. the outputs sµ(·). For a system
with 1≤M ≤m outputs sµ, consider the (vector) relative de-
gree {r1, . . . ,rM} [32]. If the system has a (vector) relative
degree with at least of the elements equal to 1, then at least
one of the control inputs appears in the expression of the cor-
responding ṡµ, and one can design a control law that imposes
ṡµ =−ksµ as the particular consistency error dynamics.

Similarly one can treat the case of κ > 1 Pfaffian con-
straints: after picking a reference vector field F as described
in step (A), one requires that all κ elements of the output vec-
tor hhh(qqq) = AAA(qqq)F to converge to zero. This can be achieved
by having a number of consistency errors sµ(·) converge to
zero, with these sµ selected such that sµ(·) = 0⇒ AAA(qqq)F = 000,
i.e. so that sµ(·) = 0⇒ rank(H) = m.

Conditions for the existence of control laws to ensure
sµ→ 0 can be found by reducing the current problem into an
instance of an output regulation problem.

Definition 1. [32, Theorem 8.3.2] Consider a system

ẋ = f (x,w,u), (12a)
e = h(x,w), (12b)
ẇ = g(w), (12c)

where: f (x,w,u), h(x,w) and g(w) are smooth functions, the
state x is defined in a neighborhood U of the origin in Rn, u∈
Rm is the control input, w∈Rr is a set of exogenous variables

4Note that the selection of the consistency errors (or outputs) sµ(·) de-
pends on the analytical form of F, and it is not necessarily unique. This
implies that for different choices of sµ(·), one may end up with different
control laws.



(references) to be tracked, and f (0,0,0) = 0, h(0,0) = 0,
g(0) = 0. Assume that:

1. The exosystem (12c) is neutrally stable.
2. There exists a mapping α(x,w) such that the equilibrium

x = 0 of the system ẋ = f (x,0,α(x,0)) is stable in the
first approximation.

3. There exists a neighborhood V ⊂U ×W such that, for
each initial condition (x(0),w(0)) ∈ V , the solution of{

ẋ = f (x,w,α(x,w))
ẇ = g(w)

}
satisfies: lim

t→∞
h(x(t),w(t)) = 0.

Then the system has the output regulation property.

In our case, the exosystem can be thought of as the one de-
fined by setting the right hand side of (12c) equal to the vec-
tor field F at state x. The following theorem provides neces-
sary and sufficient conditions for the existence of the feed-
back α(x,w).

Theorem 1. ( [32, Theorem 8.3.2]): The problem of out-
put regulation is solvable if and only if the pair (A,B) is sta-
bilizable, where A =

[
∂ f
∂x

]
(0,0,0)

, B =
[

∂ f
∂u

]
(0,0,0)

and there

exist mappings x = ϖ(w) and u = c(w), with ϖ(0) = 0 and
c(0) = 0, both defined in a neighborhood W o ⊂W of the
origin, satisfying:

∂ϖ

∂w
g(w) = f (ϖ(w),w,c(w)), (13a)

0 = h(ϖ(w),w). (13b)

Remark 2. The first one of the two conditions (13) ex-
presses the fact that there is a submanifold in the state space
of the composite system (12), namely the graph of the map-
ping x = ϖ(w), which is rendered locally invariant by means
of a suitable feedback control law, namely u = c(w). The
second condition expresses the fact that the error map, i.e.,
the output of the composite system (12), is zero at each point
of this manifold. Together, conditions (13) express the prop-
erty that the graph of the mapping x = ϖ(w) is an output
zeroing submanifold of the system (12) [32].

This theorem is not to be applied directly to (1), but to the
error dynamics of sµ. More specifically, consider the vector
sss =

[
s1 s2 . . . sM

]T of the 1≤M ≤ m outputs. By construc-
tion system (1) has a (vector) relative degree {r1, . . . ,rM}
with at least one element equal to 1 w.r.t. to the selected out-
puts. This implies that at least one of the control inputs ui,
i∈ {1, . . . ,m} appears in the expression of the first derivative
of sss. Denote ννν ∈ RM the vector of associated control inputs.
Assume also that the selected M outputs involve no more
than M states. Denote now qqqs ∈ RM the vector consisting of
the associated states. The system governing the evolution of
the variables sss is now of the following form:

q̇qqs = fff s(qqqs,sss,ννν), (14a)
eee = sss(qqqs), (14b)
ṡss = ppps(sss) (14c)

where eee ∈RM is the error map to be regulated to zero. Then,
the considered output regulation is solvable if and only if the
system (14a) is stabilizable in the first approximation, and
there exist mappings qqqs = ϖϖϖs(sss) and ννν = cccs(sss) satisfying:

∂ϖϖϖs

∂sss
gggs(sss) = fff s(ϖϖϖs(sss),sss,cccs(sss)), (15a)

000 = sss(ϖϖϖs(sss)). (15b)

Then, the graph of the mapping qqqs = ϖϖϖs(sss) is a output ze-
roing submanifold of the system, and by construction coin-
cides with an integral curve of the vector field F. On this
output zeroing submanifold, the vector field F belongs into
the vector space spanned by the m control vector fields gggi(·),
i ∈ {1, . . . ,m}.

The output regulation control design involves M ≤ m
control inputs; the system is forced tangent to the zeroing
output submanifold, i.e., to an integral curve of the vector
field F. To be able to force the system flow along the out-
put zeroing submanifold, the vector field F should belong
into the vector space spanned by the remaining m−M con-
trol vector fields gggi. If we denote g j, j ∈ {1, . . . ,m−M}
the remaining control vector fields, and consider the matrix
H0 =

[
g1 . . . gm−M F

]
∈ Rn×(m−M+1) evaluated on the out-

put zeroing submanifold, then as long as

rank(H0) = m−M, (16)

the vector field F always belongs to the vector space spanned
by the remaining m−M control vector fields.

Remark 3. In the case that, after selecting a candidate ref-
erence vector field F according to step (A), one is not able
to define appropriate outputs sµ(·) satisfying all conditions
(11), (15) and (16), then a viable option is to go back to (A)
and pick a different F.

To illustrate the proposed control strategy, let us con-
sider the following examples:

Example 1. Consider the unicycle and the distribution
∆F = {ggg111,ggg222,F}, spanned by the columns of the matrix

H =

[
cosθ 0 Fx
sinθ 0 Fy

0 1 0

]
=

[
cosθ 0 ‖F‖cosφ

sinθ 0 ‖F‖sinφ

0 1 0

]
,

where φ is the orientation of the vector [Fx, Fy, 0]T and
dim∆F = rank(H) = 3.

Choose a reference vector field F as described in step
(A); then, F is non-vanishing everywhere on the leafwise
space R2: ‖F‖ 6= 0, except for xxx = 000. For xxx 6= 000, one
has dim∆F = 2 if and only if θ = φ. Define the output
h(qqq) , AAA(qqq)F = −sinθFx+cosθFy = ‖F‖sin(φ− θ), and
note that, for xxx 6= 000, one has h(qqq)= 0⇔ sin(φ−θ)= 0. Thus,
one may define the consistency error s, θ−φ, for which the
system has relative degree r = 1. Enforcing asymptotically



the condition h , AAA(qqq)F → 0 via ṡ = −ks, k > 0, makes
the system’s vector field tangent to an integral curve of F,
and keeps the trajectories along a path to the origin xxx = 000.
Furthermore, the reference signal φ(x,y) vanishes by con-
struction at (x,y) = (0,0). Consequently, a straightforward
choice of a Lyapunov-like function is V = 1

2 (x
2 + y2 + s2).

Example 2. Let us now consider the NDI, and the case
where the constraint matrix has no zero columns in the given
coordinates: AAA(qqq) =

[
−x2 x1 1

]
. In this case, all system

states are characterized as leafwise. Following step (A),
choose an N = n− n0 = 3-dimensional vector field F out of
(10), dependent on the state vector qqq=

[
x1 x2 x3

]>, such that

AAA(qqq)ppp = 000; it is sufficient to set λ = 3, ppp =
[
1 0 0

]>. The
distribution ∆F = {ggg111,ggg222,F} is spanned by the columns of
the matrix

H =

[
1 0 2x1

2−x2
2−x3

2

0 1 3x1x2
−x2 x1 3x1x3

]
,

where rank(H) = 3. Define the output h(qqq) , AAA(qqq)F =
3x1x3− x2(x1

2 + x2
2 + x3

2). It is easy to verify that one has
h(qqq) = 0 if s1 , x3 = 0 and s2 , x2 = 0, and also that in
this case: rank(H) = 2. For the selected outputs, the sys-
tem has vector relative degree {1,1}. Thus, one can require
ṡ1 =−k1s1, ṡ2 =−k2s2, and complete the analysis using the
Lyapunov-like function V = 1

2 (s1
2 + s2

2 + x1
2).

2.4 Control Design Guidelines
For kinematic nonholonomic systems in particular, the

steps of Section 2.3 can be further refined as follows: Given
(1) subject to (2),

1. Construct AAA(qqq) ∈ Rκ×n, which has 0 ≤ n0 < n zero
columns, where n is the number of generalized speeds q̇qq.
Refer to the n−n0 states (coordinates) qi, i ∈ {1, . . . ,n},
with each q̇i associated with a non-zero column of AAA(qqq)
classified as a leafwise, and all remaining n0 states clas-
sified as transverse states. The stack vector of leafwise
states is denoted sss, and the stack vector of transverse
states, ttt.

2. Decompose the configuration space C into L×T , where
L is the subspace of the leafwise states xxx, T is the sub-
space of the transverse states ttt, dimL = n−n0, dimT =
n0.

3. Pick a vector field F? from the family (10), dependent
only on the leafwise states xxx, so that AAA?(000)ppp = 000.

4. Construct the reference vector F : C → T C , having as
components along the leafwise directions the elements
of F?, and zeros along the directions of the transverse
space T .

5. Define a κ-dimensional system output as hhh(·) , AAA(qqq)F
and force the right hand side of (1) to align with F by
designing control inputs that make all elements of hhh(·)
converge to zero. To do this, you may want to define
a number of consistency error variables, sµ(·), such that
(11) is satisfied.

6. Establish the convergence of (1) to the origin using an
invariance argument based on a Lyapunov-like function
V of the form V = 1

2 (∑
m
µ=1 sµ

2 + . . .+ ‖xxx‖2), or by em-
ploying a singular perturbation analysis considering the
dynamics of ttt as part of the boundary layer subsystem.

This methodology has been applied to the control design for
n-dimensional chained systems in [33].

When time-invariant control laws are constructed based
on this process, input discontinuities are expected; the closed
loop vector field in (1) will be piecewise continuous, and so-
lutions can be understood in the Filippov sense, i.e. qqq(t) is an
absolutely continuous function of time on an interval I ⊂ R
for which the inclusion q̇qq ∈ F(qqq) holds almost everywhere.
In the inclusion, the set F(·) is a set valued map given by

F(qqq), co

{
lim

m

∑
i=1

gggi(qqq j)ui : qqq j→ qqq,qqq j /∈ Sq

}
,

where co denotes the convex closure, and Sq is any set of
measure zero [38].

3 Application to Nonholonomic systems with drift
The proposed guidelines apply also to the control de-

sign of a class of dynamic nonholonomic systems with drift,
in the following sense: the system is composed of the kine-
matic subsystem, describing the evolution of the generalized
coordinates qqq(t), and the dynamic subsystem, describing the
evolution of the system velocities ννν(t). One can then ap-
ply the guidelines to the kinematic subsystem, to design vir-
tual control laws that specify reference velocity signals to be
tracked by the dynamic subsystem.

To illustrate the application, we consider the horizontal-
plane motion control problem for an underactuated marine
vehicle, which has two back thrusters. The two thrusters
actuate the vehicle along the surge and the yaw degrees of
freedom, but there is no actuation along the sway degree of
freedom. Following [39], the kinematic and dynamic equa-
tions of motion are analytically written as:

ẋ = ucosψ− vsinψ (17a)
ẏ = usinψ+ vcosψ (17b)
ψ̇ = r (17c)

m11u̇ = m22vr+Xuu+Xu|u| |u|u+ τu (17d)

m22v̇ =−m11ur+Yvv+Yv|v| |v|v (17e)

m33ṙ = (m11−m22)uv+Nrr+Nr|r| |r|r+ τr, (17f)

where qqq =
[
x y ψ

]> is the pose vector of the vehicle with

respect to a global frame G , ννν =
[
u v r

]> is the vector of lin-
ear and angular velocities in the body-fixed coordinate frame
B , m11, m22, m33 are the inertia matrix terms (including the
“added mass” effect) along the axes of the body-fixed frame,
Xu, Yv, Nr are the linear drag terms, Xu|u|, Yv|v|, Nr|r| are the



nonlinear drag terms, and τu, τr are the control inputs along
the surge and yaw degree of freedom.

The system (17) falls into the class (3) of control affine
underactuated mechanical systems with drift, where here
x =

[
x y ψ u v r

]> is the state vector, including the gener-
alized coordinates qqq and the body-fixed velocities ννν. The
dynamics (17e), along the sway degree of freedom, serves as
a second-order (dynamic) nonholonomic constraint, which
involves the velocities ννν of the vehicle, but not the general-
ized coordinates qqq. Since the constraint equation is not of the
form aaa>(qqq)q̇qq = 0, the approach presented so far can not be
directly applied.

However, if we momentarily consider the kinematic sub-
system in isolation, we see that (17a)–(17b) are combined
into

[
−sinψ cosψ 0

]︸ ︷︷ ︸
aaa>(qqq)

 ẋ
ẏ
ψ̇

= v⇒ aaa>(qqq)q̇qq = v, (18)

which for v 6= 0 is a non-catastatic Pfaffian constraint. Equa-
tion (18) implies that qqq= 000 is an equilibrium point if and only
v
∣∣qqq=000 = 0 , i.e., when (18) turns into catastatic constraint at

qqq = 000. Equivalently, one can see that qqq = 000 is an equilibrium
if and only the drift vector field

[
−vsinψ vcosψ 0

]> of the
kinematic subsystem is vanishing at the origin; occurs only
if v = 0.

With this insight, one can steer the kinematic subsys-
tem augmented with the constraint (17e) to qqq = 000 using the
velocities u, r as virtual control inputs, while ensuring that
the velocity v along the sway degree of freedom vanishes
at qqq = 000. The constraint equation (18) can now be used to
apply the steps of the methodology presented in Section 2.4:
the structure of the vector aaa>(qqq) implies that x, y are the leaf-
wise states and ψ is the transverse state. Thus, a candidate
reference vector field F can be defined according to step (A),
where the vector field components Fx, Fy, Fψ read

Fx = x2− y2, Fy = 2xy, Fψ = 0 . (19)

To enable the alignment of the system’s vector field
with (19), we define an output h(qqq) = 〈aaa>(qqq),F〉 =
−sinψFx+cosψFy, and require that it is regulated at zero.
For a non-vanishing vector field F, having h(qqq) = 0 implies
ψ = arctan Fy

Fx
, φ, where φ is the orientation of the vector

field F with respect to the global frame G .
To design a feedback control law r = γ2(·) for elimi-

nating the consistency error s = ψ− φ, one can require that
ṡ =−k2s, where k2 > 0,

ψ̇− φ̇ =−k2(ψ−φ)
(17c)⇒ r =−k2(ψ−φ)+ φ̇ . (20)

Then, one can consider a function V = 1
2 (x

2 + y2 + s2) =
1
2

(
x2 + y2 +(ψ−φ)2

)
, which is positive definite with re-

spect to [x y s]> and radially unbounded. The time deriva-
tive of V is:

V̇
(20)
=
[
x y
][cosψ

sinψ

]
u+
[
x y
][−sinψ

cosψ

]
v− k2s2. (21)

The behavior of V̇ depends on the velocity v. If v is seen as
a bounded perturbation that vanishes at [x y s]> = 000, then
000 is an equilibrium of the kinematic subsystem (in the sense
that, at x = y = 0, one has s = 0⇒ ψ = φ|x=y=0 = 0).

With this in mind, consider in isolation the subsystem
(17e) with ur in the role of input, and apply the following
input-to-state stable (ISS) argument: take Vv =

1
2 v2 as an ISS-

Lyapunov function, and expand its time derivative as

V̇v =−
m11

m22
v(ur)−

(
|Yv|
m22

v2 +
|Yv|v||
m22

|v|v2
)

where by definition Yv,Yv|v| < 0, and w(v) = |Yv|
m22

v2 +
|Yv|v||
m22
|v|v2 is a continuous, positive definite function. Take

0 < θ < 1, then V̇v = −m11
m22

v(ur)− (1− θ)w(v)− θw(v)⇒
V̇v ≤−(1−θ)w(v), ∀v :−m11

m22
v(ur)−θw(v)< 0. If the con-

trol input ζ = ur is bounded, |ζ| ≤ ζb, then V̇v ≤ −(1−
θ)w(v), ∀|v| : |Yv||v|+ |Yv|v|||v|2 ≥ m11

θ
ζb. Then, the subsys-

tem (17e) is ISS [40, Thm 4.19]. Thus, for any bounded
input ζ = ur, the linear velocity v(t) will be ultimately
bounded by a class K function of supt>0 |ζ(t)|. If further-
more ζ(t) = u(t)r(t) converges to zero as t → ∞, then v(t)
converges to zero as well [40]. Consequently, if the control
inputs u = γ1(·), r = γ2(·) are bounded functions which con-
verge to zero as t→∞, then one has that v(t) is bounded and
furthermore, v(t)→ 0 as t→ ∞.

For analyzing the behavior of the trajectories of the kine-
matic subsystem let us define the metric

Vµ =
1
2

x2 + y2

cos2(arctan( y
x ))

+
1
2

s2,

(see [41]). Its time derivative is:

V̇µ =
x2 + y2

x4

(
(x3− xy2)ẋ+2x2yẏ

)
+ sṡ⇒

V̇µ =
x2 + y2

x4

[
x3− xy2 2x2y

][ cosψ

sinψ

]
u+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v− k2s2. (22)

Then, one can pick the control law u = γ1(·) as

u =−k1 sgn(x)
(
(x2− y2)cosψ+2xysinψ

)
, (23)

which basically projects the vector field F(·) on the vehicle’s
direction, and assigns the sign based on which side (on the



plane) of the x axis the vehicle is located at: if the vehicle
is on the right, it goes to zero in reverse; otherwise it goes
forward. Then, the time derivative of Vµ reads:

V̇µ =− k1
x2 + y2

|x|3
([

x2− y2 2xy
][ cosψ

sinψ

])2
− k2s2+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v. (24)

If θ ∈ (0,1), then one has:

V̇µ ≤− k2(1−θ)s2− k2θsin2 s−

− k1
x2 + y2

|x|3
([

x2− y2 2xy
][ cosψ

sinψ

])2
+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v,

which further reads:

V̇µ ≤− k2(1−θ)s2− k2θ−

− k1
x2 + y2

|x|3
([

x2− y2 2xy
][ cosψ

sinψ

])2
+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v.

Since ‖F‖= x2 + y2, one has:

V̇µ ≤− k2(1−θ)s2− k2θ

(x2 + y2)2

([
x2− y2 2xy

][ cosψ

sinψ

])2

− k1
x2 + y2

|x|3
([

x2− y2 2xy
][ cosψ

sinψ

])2
+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v

≤− k2(1−θ)s2−

−min
{

k2θ

(x2 + y2)2 ,k1
x2 + y2

|x|3

}([
x2− y2 2xy

][ cosψ

sinψ

])2
+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v

≤− k2(1−θ)s2−min
{

k2θ

(x2 + y2)2 ,k1
x2 + y2

|x|3

}
‖F‖2+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v.

One may easily verify that:
∥∥∥( ∂Vµ

∂x ,
∂Vµ
∂y

)∥∥∥2
= (x2+y2)4

x6 . Then,

we may further write:

V̇µ ≤− k2(1−θ)s2−

−min
{

k2θ

(x2 + y2)2 ,k1
x2 + y2

|x|3

}
x6

(x2 + y2)2

∥∥∥∥(∂Vµ

∂x
,

∂Vµ

∂y

)∥∥∥∥2

+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v

=− k2(1−θ)s2−

−min
{

k2θx6

(x2 + y2)4 ,k1
|x|3

(x2 + y2)

}∥∥∥∥(∂Vµ

∂x
,

∂Vµ

∂y

)∥∥∥∥2

+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v

≤− k2(1−θ)s2−

−min
{

k2θx6

(x2 + y2)4 ,k1
|x|3

(x2 + y2)

}(
x2 + y2

cos2(arctan( y
x ))

)
+

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v

≤−2min
{

k2θx6

(x2 + y2)4 ,
k1|x|3

(x2 + y2)
,k2(1−θ)

}
Vµ +

+
x2 + y2

x4

[
x3− xy2 2x2y

][−sinψ

cosψ

]
v︸ ︷︷ ︸

Ω

, (25)

where Ω≤ x2+y2

x4 |x|‖F‖|vb|=
(

x2+y2

x2

)2
|x||vb|, with vb being

the upper bound of the sway velocity trajectories v(t), i.e.,
|v(t)| ≤ vb. Then, the trajectories of the kinematic subsystem
are ISS with respect to the metric Vµ and the input v(t) [41].

Consequently, the system (17a)–(17c), together with
(17e) can be seen as an interconnection of a kinematic sub-
system (17a)–(17c) with a dynamic subsystem (17e), where
each one of the subsystems is ISS. This suggests that the cou-
pled system is ISS. Then, applying [42, Thm IV.1] one can
conclude that for suitable gain selection (see Appendix), the
interconnected system is globally asymptotically stable with
respect to the metric Vµ, i.e. the trajectories x(t), y(t), ψ(t),
v(t) globally asymptotically converge to zero. Note that the
choice of the metric Vµ is critical, since a metric equivalent to
the Euclidean one would not work. For the design of the con-
trol inputs τu, τr, one can use a feedback linearization trans-
formation for the dynamic subsystems (17d), (17f) given as

τu = m11α−m22vr−Xuu−Xu|u||u|u, (26a)

τr = m33β− (m11−m22)uv−Nrr−Nr|r||r|r, (26b)

that yields u̇ = α, ṙ = β, where α, β are the new control in-
puts. Thus, the system should be controlled so that the veloc-
ities u, r track the virtual control inputs γ1(·), γ2(·). To design
the control laws α(·), β(·), consider the candidate Lyapunov
function Vτ =

1
2 (u− γ1(·))2 + 1

2 (r− γ2(·))2 and take its time



derivative as

V̇τ = (u− γ1(·))
(

u̇− ∂γ1

∂x
ẋ
)
+(r− γ2(·))

(
ṙ− ∂γ2

∂x
ẋ
)

= (u− γ1(·))
(

α− ∂γ1

∂x
ẋ
)
+(r− γ2(·))

(
β− ∂γ2

∂x
ẋ
)
,

where x =
[
qqq> ννν>

]> is the state vector, comprising the pose
qqq of the vehicle and its body-fixed velocities ννν, the gradient
vector ∂γ1

∂x coincides with the gradient vector ∂γ1
∂qqq , since γ1(·)

is independent of the velocity vector ννν, and the gradient vec-
tor ∂γ2

∂x can be written as ∂γ2
∂zzz , where zzz, [x y ψ u v]>. Then,

under the control inputs

α =−ku(u− γ1(·))+
∂γ1

∂qqq
q̇qq,

β =−kr(r− γ2(·))+
∂γ2

∂zzz
żzz,

where ku, kr > 0, the vector q̇ comprising the right-hand
expressions of (17a)-(17c) and the vector ż comprising the
right-hand expressions of (17a)-(17e), respectively, one gets:

V̇τ =−ku(u− γ1(·))2− kr(r− γ2(·))2,

which verifies that the velocities u, r are globally asymptoti-
cally stable to γ1(·), γ2(·), respectively.

The system trajectories qqq(t), ννν(t) under the control laws
(23), (20), (26) are shown in Fig. 2. Values for the iner-
tia and hydrodynamic parameters of the system’s dynamic
model are borrowed from [43].
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Fig. 2. The system trajectories x(t) under the control laws (23),
(20), (26).

4 Conclusions
Control design for a class of n-dimensional nonholo-

nomic systems, subject to κ≥ 1 constraints in Pfaffian form,
can be performed within a unified framework. In this frame-
work, one picks a suitably defined candidate reference vec-
tor field F, and then seeks control laws that align the system
vector field with F, while flowing towards the origin. The
problem of steering the states to the origin is thus reduced
into an output regulation problem, in which outputs quan-
tify the “misalignment” between F and the system’s vector
field. The definition of these outputs suggests Lyapunov-like
functions V for the subsequent control design and analysis.

Due to the nonholonomic nature of the systems, the
time-invariant control laws derived have singularities. To
overcome these singularities the control law may have to
switch whenever the system is initialized on the singular-
ity manifolds, but away from the latter there is no need for
switching. The proposed methodology offers a uniform logic
into the control design of n-dimensional nonholonomic sys-
tems, by providing guidelines for the construction of state
feedback controllers, and leads to initial control designs
which form a good basis for further refinement. An underac-
tuated marine vehicle has been considered as an illustrative
example of how this idea can be extended to nonholonomic
systems with drift, and feedback control laws have been con-
structed following the proposed guidelines. Future work can
be towards the consideration of uncontrollable drift terms,
which often model external (additive) disturbances and un-
certainties that apply to robotic systems.
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5 Appendix
The subsystem (17e) describing the dynamics of v is ISS

from input ζ = u(x,y,ψ) r(x,y,ψ) to state v with ultimate
bound γ1(|ζ|) = m11

θ
|ζ|. For the subsystem describing the

evolution of the kinematic states x, y, ψ, consider (25): given
a θ1 ∈ (0,1) and that k1 << k2, one has that V̇µ ≤ −2(1−
θ1)

k1|x|3
x2+y2 Vµ as long as

−2θ1k1|x|3

x2 + y2 Vµ ≤−
(

x2 + y2

x2

)2

|x||v| ⇒

Vµ ≥
(x2 + y2)3

2θ1k1x6 |v|=
1

2k1θ1

1
cos6(atan( y

x ))
|v|.

Note that as (x,y)→ (0,0) one has cos(arctan( y
x ))→ 1. Thus

the kinematic subsystem is ISS from input v to the metric Vµ
with ultimate bound γ2(|v|) = 1

2k1θ1
1

cos6(atan( y
x ))
|v|.

Consequently, the interconnected system is asymptoti-
cally stable with respect to the metric Vµ for γ2(γ1(r)) <
r, ∀r > 0, which yields 1

2θ1
1

cos6(atan( y
x ))

m11
θ

< k1.


