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Abstract— In this paper we consider a nonholonomic system
in the form of a unicycle and steer it to the origin so that
both position and orientation converge to zero while avoiding
obstacles. We introduce an artificial reference field, propose a
discontinuous control policy consisting of a receding horizon
strategy and implement the resulting field-based controller in
a way that theoretically guarantees for collision avoidance;
convergence of both position and orientation can also be
established. The analysis integrates an invariance principle for
differential inclusions with model predictive control. In this
approach there is no need for the terminal cost in receding
horizon optimization to be a positive definite function.

I. INTRODUCTION

Model predictive control allows the design of (sub)optimal
control policies while avoiding solving directly the optimal
control problem for an infinite time horizon. The method has
been gaining popularity since it was first applied successfully
in chemical process control, fueled by advances in both
theoretical foundations [1] offering performance and stability
guarantees, as well as computational hardware and software
allowing for faster and more efficient computation. For linear
control systems the field is already quite mature [2], but
application to nonlinear systems remains a challenge [3]. A
good overview of model predictive control and the different
types applied can be found in [4].

This paper treats the problem of stabilizing a particular
nonlinear system subject to state constraints. The system at
hand is a unicycle, which serves as a model for a wide range
of wheeled mobile robots, and our goal is to regulate both
its position as well as its and orientation inside a workspace
populated by obstacles. There is an extensive amount of re-
search done in a) unconstrained nonholonomic stabilization,
and b) control of position amongst obstacles [5], [6]; these
are topics related but different from the goal of this paper,
and thus only a selected subset of efforts along these lines
is cited here. A notable alternative to the above methods,
regulating vehicle position and orientation in constrained
environments, is [7]; this is a multi-layered approach in
which a (holonomic) path is first constructed linking the
initial to final configurations, and then the path is locally
approximated by feasible trajectories taking advantage of the
system’s small time local controllability properties.

Establishing stability and convergence to the origin is
known to be nontrivial for nonholonomic systems, due to
Brockett’s necessary condition [8]. Brockett’s conditions

This work is supported in part by ARL MAST CTA # W911NF-08-2-
0004 and in part by NSF # 0907003. The authors are with the Department of
Mechanical Engineering, University of Delaware. Email: {kkaryd, valbuena,
btanner}@udel.edu

still apply to model predictive control solutions and thus
asymptotic stability in the Lyapunov sense is still elusive.
Invariance methods, however, ensure convergence without
necessarily promising stability and are therefore appealing as
a tool for analysis and design of nonholonomic controllers.
Receding horizon optimization approaches that do not rely
on terminal constraints [9], however, still require the use
of a positive definite control Lyapunov function. With few
notable exceptions [10], applying to unconstrained discrete-
time nonlinear systems, there are not many options for
ensuring convergence in continuous time using semidefinite
terminal costs and without imposing terminal constraints or
forcing switching near the desired equilibria.

Applying model predictive control strategies to nonholo-
nomic control is not new. A receding horizon controller
steers a unicycle in an environment without obstacles in [11].
Obstacle avoidance is treated in [12], however, the terminal
cost used is required to be a positive definite functione.

In terms of collision-free nonholonomic navigation, solu-
tions based on artificial (potential) fields are quite common.
Examples include [13], with the caveat that it applies to fully
actuated systems only, and [14] which uses artificial obsta-
cles to shape the vehicle’s final orientation. A navigation
function [15] approach, with provable collision avoidance
and convergence guarantees is found in [16]. One limitation
of this method is that it may require a significant about of
switching to ensure the decrease of the potential function.
Other potential field-based approaches include [17], although
it is not clear how it achieves nonholonomic stabilization
using continuous feedback.

This paper suggests a discontinuous nonholonomic control
strategy, that ensures obstacle avoidance and convergence
of the unicycle’s position and orientation. It couples a new
type of artificial fields for navigation and obstacle avoid-
ance with a receding horizon utilizing semi-definite terminal
cost functions, and analyzes the convergence of the overall
switching system in a differential inclusion framework using
an invariance principle approach [18]1 (cf. [19]).

Section II that follows briefly presents the model pre-
dictive navigation scheme, some useful results from [18],
and reviews the navigation function approach. Section III
sets the main objective and formulates the problem, while
Section IV presents the proposed control strategy. Section VI
summarizes the paper.

1Alternatives to [18] may be considered [20], [21], however these still
require positive definiteness for the Lyapunov-like function.



II. PRELIMINARIES

A. Model Predictive Control

Consider a nonlinear system of the form

ẋ = f(x,u) . (1)

Denote x ∈ Rn the vector of its generalized coordinates and
u ∈ Rm the control vector, with n,m ∈ N+. Given an initial
condition x0 and a control input u, the solution of (1) at time
t under u(t), passing through x0 at t = 0 is expressed as

xu(t; x0) = x0 +
∫ t

0

f
(
xu(τ ; x0),u(τ)

)
dτ . (2)

For an initial state x, we define the infinite horizon cost as
the integral over the trajectories xu(t; x) of (1), given by

J(x,u(·)) ,
∫ ∞

0

q
(
xu(τ ; x),u(τ)

)
dτ (3)

where q(·, ·) is a positive semi-definite function referred
to as the incremental cost. The aim in the finite horizon
optimization is to minimize the functional

JT
(
x,uT

)
,
∫ T

0

q
(
xu(τ ; x),uT (τ)

)
dτ + V

(
xu(T ; x)

)
(4)

that quantifies the cost of moving along a closed loop system
trajectory xu(t; x) starting at x, under the control law
uT (t,x), with t ∈ [0, T ]. Here, T > 0 is the prediction
horizon. The function V (·) : Rn → R+ in (4) is an
approximation of the tail of the infinite horizon integral (3),
truncated at T , denoted as the terminal cost.

The objective is to determine the optimal control law u∗T ,
which minimizes the finite horizon cost from (x,u∗T (x; ·)) ,
arg minJT

(
x,uT (·)

)
, producing an optimal finite horizon

trajectory
(
x∗T (t; x),u∗T (t; x)

)
, for t ∈ [0, T ], with x∗T

denoting the optimal closed loop trajectory for that time
interval. In a receding horizon strategy, u∗T (t; x) is used for
t ∈ [0, δ], with δ < T , and then is recomputed with initial
state xu

(
t; x∗T (δ,x)

)
. We denote δ the control horizon.

B. Invariance principle for differential inclusions

This section is a brief and incomplete review of relevant
results, taken from [18]. Let the set-valued map x 7→ F (x) ⊂
Rn with domain G to be upper semicontinuous with non-
empty compact and convex values and x(t) to be a solution
of the (Filippov) differential inclusion

ẋ ∈ F (x) . (5)

DenoteSx0 the set of solutions of (5) satisfying x(0) = x0.
Definition 1: A solution x(t) of (5) is called maximal if

it does not have a proper right extension which is also a
solution.

Definition 2: A solution x(t) of (5) is precompact if it is
maximal and the closure of its trajectory is compact.

For an interval I ⊂ R and S ⊂ RN , AC(I;S) denotes
the space of functions I → S that are absolutely continuous
on compact subintervals of I . A function x ∈ AC(I;G) is

said to be an X-arc if it satisfies the differential inclusion
in (5) almost everywhere (note: x(t) ∈ G).

Proposition 1: Every solution of (5) can be extended to
a maximal solution. Moreover, if x ∈ AC([0, α), G) is a
precompact solution of (5), then α =∞.

Definition 3: Let x ∈ AC([0, α), G) be a maximal so-
lution of (5). A point x̄ ∈ Rn is an α-limit point of x if
there exists an increasing sequence (tn) ⊂ [0, α) such that
tn → α and x(tn) → x̄ as n → ∞. The set A(x) of all
α-limit points of x is the α-limit set of x.

Definition 4: Let C ⊂ Rn be non-empty. A function x ∈
AC([0, α), G) is said to approach C, if dC(x(t)) → 0 as
t→ α where dC(y) , inf{‖y − c‖, c ∈ C}.

Definition 5: Relative to (5), Sx0 ⊂ Rn is said to be a
weakly invariant set if for each x0 ∈ Sx0 ∪G there exists at
least one maximal solution x ∈ AC([0, α), G) of (5) with
α =∞ and with trajectory x([0, α)) in Sx0 .

Definition 6 ([22]): The generalized directional derivative
V o(z, φ) of a locally Lipschitz function V : G→ R at z in
the direction of φ is

V o(z;φ) = lim sup
y→z
h↓0

V (y + hφ)− V (y)
h

. (6)

The map (z;φ) → V o(z;φ) is upper semicontinuous and
for each z the map φ→ V o(z;φ) is Lipschitz continuous.

Theorem 1: Let l : G → R be lower semicontinuous.
Suppose that U ⊂ G is non-empty and that l(z) ≥ 0 for all
z ∈ U . If x is a precompact solution of (5) with trajectory
in U and l ◦ x ∈ L1(R+) then x(t) approaches the largest
weakly invariant set in Σ = {z ∈ cl(U) ∩G : l(z) ≤ 0}.

Theorem 2: Let V : G→ R be locally Lipschitz. Define

u : G→ R, z → u(z) = max{V o(z;φ) : φ ∈ F (z)} .

Suppose that U ⊂ G is non-empty and that u(z) ≤ 0 for all
z ∈ U . If x(t) is a precompact solution of (5) with trajectory
in U , then for c ∈ V (cl(U)∩G),x(t) approaches the largest
weakly invariant set in Σ ∩ V −1(c) where

Σ = {z ∈ cl(U) ∩G : u(z) ≥ 0} .

C. Navigation Functions

Consider a point robot moving in a planar environment
populated by obstacles. Let x , (x, y)T be the position of
the robot and assume that x ∈ X , cl(BR) ⊂ R2, where
cl(·) denotes closure and BR is an open ball of radius R
containing the origin.2 Assume the obstacles in the robot’s
workspace X are represented by open balls, Oi ∈ X, for
i ∈ {1, . . . ,m}. These spheres are isolated, that is Oi ∩
Oj = ∅ for every i 6= j with i, j ∈ {0, . . . ,m}, where
index 0 denotes the workspace boundary. This is defined
as an obstacle, expressed as the complement of X in R2:
O0 , R2 \ X.

A navigation function [15], [23] for the considered robot
can be defined as a map ϕ : X \

⋃m
i=0 Oi → [0, 1] which

2Note that star-shaped region can be diffeomorphically transformed into
a sphere [15].



1) is smooth (or at least twice differentiable),
2) has a unique minimum at a single point xd ∈ X \⋃m

i=0 Oi,
3) is uniformly maximal on the boundary of X \

⋃m
i=0 Oi,

4) is a Morse function.
Define the function

ϕ(x) =
‖x− xd‖2

(‖x− xd‖2κ + β(x))1/κ
, (7)

where β =
∏
βi and ∀i ∈ {1, . . . ,m}, βi = ‖x− xi‖ − ri.

Each βi represents a spherical obstacle of radius ri centered
at xi ∈ X. Then, for a sufficiently large value of the
parameter κ > 0, (7) is a navigation function [24].

III. MAIN OBJECTIVE AND PROBLEM STATEMENT

In this paper we consider a point robot with the kinematics
of a unicycle

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω

(8)

where x = (x, y)T ∈ X ⊂ R2 is the position vector and
u = (v, w)T ∈ R2 is the control input.

We want to find a static state feedback controller, which
with minimal switching enables the unicycle to converge to
the origin with zero orientation, i.e., x(t) → 0 and θ →
0 as t → ∞, while staying away of certain areas of the
field (obstacles and attraction regions of saddle points of ϕ).
We will formally define this admissible set of states as the
operational workspace in Section IV.

IV. TECHNICAL APPROACH

We propose a discontinuous controller which induces two
component dynamics for the resulting switching system: a) a
model predictive control mode, and b) an artificial reference
field alignment mode. The artificial reference field is a two
dimensional vector field on X constructed in a way that
its integral lines pass through the origin with a desired
orientation. This vector field will be used as a reference
velocity generator for the system. Because of the fact that
all integral lines of that field pass through the origin with
the same orientation, we call this field, dipolar.

A. Properties of the dipolar field

Consider the map Γ(z) : R2 → R2

Γ(z) =

(
− cos z sin z
− sin z − cos z

)
where

z , sd(x, y; a) arctan 2(y, x) + πsign(y)(1− sd(x, y; a))

sd(x, y; a) , exp(− a

(1− ϕ(x, y))2
+ a) ,

and a is a positive parameter. This map is a discontinuous,
nonsingular map that rotates a vector at a given point (x, y)
by an angle equal to the vector from the origin to (x, y).
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(a) Stable proper node.

!1.0 !0.5 0.0 0.5 1.0

!1.0

!0.5

0.0

0.5

1.0

(b) Rotated field via Γ.

Fig. 1. The effect of Γ on a convergent vector field. The field in 1(b) was
produced by mapping the field in 1(a) through a map Γ in which sd was
set identically to one.

Application of this map to the vector field defined by the
negated gradient of (7) (i.e., −∇xϕ(x)) produces a dipolar
potential field denoted DF (x).

Definition 7: We define the dipolar potential field as the
image of the negated gradient of a navigation function under
the transformation Γ(x)

DF (x) , −Γ ∇xϕ(x) (9)
A number of properties can be shown for DF (x).
Lemma 1: All integral manifolds of −Γ(x, y)T are closed

lines that contain the origin, and the latter is the only
singular point of the vector field. Furthermore, as the integral
lines approach the origin, the direction of the tangent vector
converges to zero.

Proof: Let us consider the two fields −Γ(x, y)T and
(x2 − y2, 2xy)T . The cross product of the two vector fields
when embedded in R3 produces a third, which has as its
third component the expression −y cos (arctan 2(y, x)) +
x sin (arctan 2(y, x)) ≡ 0. This means that at any point
(x, y, 0), the directions of vector fields −Γ(x, y)T and (x2−
y2, 2xy)T , coincide. The latter field, (x2 − y2, 2xy)T , is
known in literature [25] to produce closed orbits which are
circles tangent to each other at the origin.

The fact that the origin is the only singular point follows
from Γ being nonsingular, and −(x, y) has the origin as a
stable node. Therefore, as the flow of any one of these vector
fields moves along these orbits, it eventually encounters the
origin. On the other hand, the argument that the direction of
the vector fields, given by 2 arctan 2(y, x) converges to zero
as the integral line approaches the origin is found in [26].

Lemma 2: The field −Γ ∇ϕ preserves the collision avoid-
ance properties of the field −∇ϕ that has been generated by
the navigation function ϕ.

Proof: On the boundary of the free workspace,
∂
⋃m
i=1 Oi(x) = 1 and therefore sd(x, y; a) = 0. When

this happens, z = π sign(y) = ±π which means that
Γ(z) = I2, where I2 is the identity matrix on R2. If ϕ
is a navigation function, then its negated gradient points
away from ∂

⋃m
i=1 Oi. On the workspace boundary, the

transformed field coincides with the navigation function field,
and thus inherits its collision avoidance properties.



Lemma 3: Transformation Γ introduces stationary points
with empty attraction regions.

Proof: The Γ function exhibits discontinuity on the y =
0 line, because of the sign function it involves. The positive
x semi-axis is particularly problematic, because this is where
the transformed field −Γ ∇ϕ will be directly opposed that
of −∇ϕ (Fig. 1); somewhere on this line the vector field
will have to reverse direction, and this is exactly where the
stationary point appears.

For any small neighborhood of (x, y) = (0, 0) and any
ε > 0, there are points in this neighborhood for which
there is a sufficiently small a such that sd(x, y; a) < ε.
This essentially ensures that the transition, or “blending,”
of the dipolar field of Fig. 1(b) with that of −∇ϕ occurs
within that neighborhood. Note that as (x, y)→ (0, 0), since∏m
i=1 βi converges to a constant and Γ(x, y) → 0, we have

ϕ(x, y) ∝ ‖x‖2. Naturally, 〈−∇ϕ,−x〉 > 0 there,3 and
locally, the negated gradient field of ϕ resembles that of the
stable node shown in Fig. 1(a).

Along the x-axis where y = 0, −x is tangent to the x-axis
and along each side of the axis the vector field of −x points
toward the axis. In the same area, where y is very small
and x is positive, Γ(x) rotates −x by more than π

2 , so that
〈Γ(x)(−x),−x〉 < 0. What this implies is that the Filippov
solutions [27] of −Γ∇ϕ that start from the discontinuity
line when x > 0 diverge from it. In contrast, the Filippov
solutions that start at y = 0 when x < 0 form a sliding mode
and “slide” along the axis as they approach the origin —these
are not problematic because they converge with the desired
orientation. Thus, along the discontinuity surface the only
sliding motion that exists converges to the origin, whereas
no solution converging to the stationary point at the positive
x semi-axis exists.

Given A,B ⊂ Rn, their Minkowski sum is A ⊕ B ,⋃
b∈B(A+ b), while their Minkowski difference is A	B ,⋂
b∈B(A− b). Define the following sets:

•
⋃l

i=1 Si is the set that contains all stationary (singular)
points of DF .

• L is the set containing all the integral lines of the dipolar
field that pass through a critical point of ϕ.

• Wε = {
⋃m

i=1 Oi ∪
⋃l

i=1 Si ∪ L} ⊕ Bε for some ε > 0
represents an undesirable region for the position of the
system. Note that Bε denotes an open ball of radius ε.
Initial states too close to the critical points of ϕ and their
attraction regions will turn out to be problematic for
establishing convergence due to the vanishing gradient.

• G = {x ∈ X\Wε} × S1 is the operational workspace,4

that is, the set of admissible states for the system. Note
that G is compact by its definition.

Corollary 1: The integral lines of DF on the boundary
of G point inwards.

Proof: By Lemma 3, it follows that saddle points of ϕ
have regions of attraction of measure zero. Then, any small
neighborhood of this regions cannot be invariant. At the

3〈·〉 denotes inner product.
4Sk denotes a k-dimensional circle.

boundary of some Oi, on the other hand, Lemma 2 suggests
that DF points away from Oi. Then, by continuity there
exists ε-neighborhood for which DF points inside G.

Lemma 4: All integral lines of −Γ(x)∇ϕ(x) converge to
x = 0 asymptotically along the negative x axis, and their
common derivative at x = 0 is aligned with the x axis.

Proof: The integral lines of DF are bounded in a
compact set cl(X \

⋃m
i=1 Oi), so there is a limit set inside

the compact set where the trajectories converge. The critical
points of −∇ϕ other than x = 0 do not change nature under
the transformation, because Γ is continuous around any one
of these critical points, and ϕ is Morse. Thus all critical
points other than the destination x = 0 remain unstable,
with an attraction region of measure zero. Unless there are
additional attractors, the origin must be the only attractive
component of the limit set.

In principle, the transformation induced by Γ may intro-
duce a limit cycle. For a sufficiently small a, Γ is bound
to apply only around x = 0, so if there is a limit cycle
the equilibrium encircled must be x = 0. This implies
that that hypothetical limit cycle must intersect with the x-
axis. However, the proof of Lemma 3 states that Γ makes
the positive x-axis around the origin, repulsive. Therefore,
it is not possible for trajectories to cross it on their way
to the hypothetical attractive limit cycle. By contradiction,
the possibility of limit cycles existing around the origin is
excluded, leaving the origin as the only attractive component
of the positive limit set in cl(X \

⋃m
i=1 Oi).

To see why the integral lines of the vector field F (x) near
the origin (Fig. 1(b)) approach x = 0 with zero slope, note
first that these lines cannot reach the origin from the right
half plane; this is because the positive x-axis is rendered
repulsive. On the left half plane, near the origin and close
to the x-axis, Γ(x) converges to the identity matrix; along
the y-axis the −Γ∇ϕ(x) tends to (±y, 0)>, with the sign
depending on the side of the x axis the limit is evaluated
on. The only possible direction of approach to the origin for
the integral lines of −Γ∇ϕ(x) is along the negative x-axis,
which suggests that the slope of the vector field −Γ∇ϕ needs
to tend to zero as x→ 0−.

B. Convergence

The closed loop system (8) is a switched system

ż = fσ(z, u) (10)

with z = (x, θ) and Ω denoting its space of solutions.
Assume that all initial conditions for x belong in G. In (10)
• σ ∈ {1, 2} is the discrete system mode indexing the

component continuous dynamics.
• With ωRH being a rotational velocity input to be deter-

mined by a receding horizon optimization algorithm,

u = (v, ω) =

{
(kv tanh(x2 + y2), ωRH) if σ = 1

(0,−kω(θ − θd)) if σ = 2

where kv and kω ≥ 0.5 are positive constants and θd =
arctan 2(DFy, DFx), with (DFx, DFy)T = DF (x).



• The system operates in mode σ = 2 iff

x ∈ {x ∈ ∂Wε : 〈D̂F , η〉 ≤ 〈D̂F , (cos θ, sin θ)〉}

where η ∈ R2 is the vector tangent to the boundary of
the undesirable region for the position, ∂Wε.

Define the incremental and terminal costs as

q(x; θ) , k(θ − θd)2 = V (x) (11)

with k a positive constant.
Proposition 2: There exists an ωRH in (10) such that

V̇ (x;u) + q(x; θ) ≤ 0 (12)

holds ∀ t ≥ 0.
Proof: We have V̇ = 2k(θ − θd)(ω − θ̇d). Thus (12)

⇐⇒ 2k(θ − θd)(ω − θ̇d) ≤ −k(θ − θd)2. If θ = θd then
(12) trivially holds. For θ 6= θd, V̇ ≤ −q is equivalent to

|θ − θd| ≤ 2|ω − θ̇d|. (13)

In addition, θ̇d = v(∂θd

∂x cos θ+ ∂θd

∂y sin θ). For a bounded v,
there is always an ω to satisfy (13).

Proposition 3: When σ = 2, the unicycle’s orientation
aligns with the integral lines of DF exponentially fast.

Proof: By Proposition 2 we have V̇ ≤ −q =⇒ q̇ ≤
−q. The comparison lemma [28] implies

0 ≤ q(t) ≤ q(0)e−t ⇐⇒
0 ≤ (θ(t)− θd(x(t)))2 ≤ (θ0 − θd(x0))2e−t . (14)

Then, θ(t)→ θd(x(t)) exponentially fast.
Proposition 4: Let E = {x ∈ Ω : V̇ = 0}. The largest

invariant set in E is Σ = {x ∈ Ω : q(x; θ) = 0}.
Proof: Let σ = 1. By its definition, the terminal cost

V is a continuously differentiable function and since (12)
can be assumed to hold ∀t ≥ 0 we have that for all time
V̇ ≤ −q ≤ 0. There are two cases for which V̇ = 0, namely
{θ−θd = 0} and {ω− θ̇d = 0}. Suppose {θ−θd = 0}; then
necessarily ω = θ̇d. Now suppose that ω = θ̇d, with θ 6= θd.
For the set to be invariant, we need ω − θ̇d = ω̇ − θ̈d =
ω̈ −

...
θ d = · · · = 0. But when ω = θ̇d it follows that there

exists some c , θ − θd 6= 0 implying q = kc2 > 0 ∀ t ≥ 0.
Then V̇ < 0 ∀t ≥ 0, and this implies that there exists finite
T > 0 such that V (T ) < 0 which is a contradiction. As a
result, θ−θd = 0 too and then θ−θd = 0 ⇐⇒ q(x; θ) = 0
so that Σ = {x ∈ Ω : q(x; θ) = 0} is the largest invariant
set in E where V̇ = 0.

Now let σ = 2. Then ω = −kω(θ − θd) aligns the
unicycle’s orientation with that of the dipolar field exponen-
tially fast while x remains constant. There is a finite time
at which the system will switch back to σ = 1. During
the time that σ = 2, note that V̇ = −2kkω(θ − θd)2 ≤
−k(θ − θd)2 = q(x, θ); thus the discussion of the previous
paragraph applies.

When evaluated on the boundary ∂Wε, the component
vector fields of (10) on each side do not point to the other
side. Thus, [29] the boundary is not a sliding surface and
therefore not invariant. Then, since there is no invariant set
when switching occurs, any invariant set must be inside the

complement of {x ∈ ∂Wε : 〈D̂F , η〉 ≤ 〈D̂F , (cos θ, sin θ)〉}
in G.

Theorem 3: The switched system (10) converges to the
set Σ = {x ∈ Ω : q(x; θ) = 0} under a receding horizon
strategy. Moreover, convergence to Σ = {x ∈ Ω : q(x; θ) =
0} implies convergence to the origin.

Proof: Let ωRH be selected as a result of a receding
optimization strategy that abides to (13), and recall that for
finite dimensional spaces, the Filippov inclusion of the closed
loop (10) is given as [20]

F (z) = cl
(

co
{

lim
zi→z

fσ(z) | xi /∈ ∂Wε

})
where co{·} denotes convex hull. Then, when the system
switches between modes, and given that for both modes V̇ ≤
−q(x; θ), for φ ∈ F (z), V o(z;φ) must necessarily satisfy
V o(z;φ) ≤ −q(x; θ).

The fact that ∂Wε is not a sliding surface and that the
component vector fields there point outside Wε practically
means that a solution starting in the closure of G will never
leave this set, so Ω ⊆ G. In addition, Ω is non-empty,
compact (since G is also compact) and positively invariant.
A solution x(t) ∈ Ω is maximal, since it stays in G for all
times and as Ω is compact, it follows that the solution x(t)
is precompact.

Moreover, V : G → R is locally Lipschitz. Define ζ :
G→ R,x→ ζ(x) = max{V o(z;φ) : φ ∈ F (z)}. We have
proven that the stability condition (12) holds at all times, in
both modes and during switching so, ζ(x) ≤ −q(x; θ) ≤ 0
for all x ∈ Ω. In addition, define the set S = {x ∈
cl(Ω)∩G : ζ(x) ≥ 0}. Then all the hypotheses of Theorem 2
are met and so, for some constant c ∈ V (cl(Ω) ∩ G), the
solution x(t) approaches the largest weakly invariant set in
{S ∩ V −1(c)} = E = {x ∈ Ω : V̇ = 0}. By Proposition 4
the largest weakly invariant set in E is the set Σ = {x ∈ G :
q(x; θ) = 0}. Thus, a receding horizon strategy will make
the unicycle converge to the set Σ = {x ∈ Ω : q(x; θ) = 0}.

By the definition of q it follows that q(x; θ) = 0 ⇐⇒
(θ − θd) = 0. If (θ − θd) = 0 ⇐⇒ θ = θd, the unicycle’s
orientation is aligned with a dipolar field’s integral line and
moves along it. By Lemma 4, all the integral lines of the
dipolar field converge to x = 0, with θ = 0.

V. DISCUSSION

A key feature of the work presented in this paper is the
control of the orientation. This is crucial when we want to
perform tasks that combine obstacle avoidance with other
tasks that require a specific final orientation. Moreover,
navigation function-based methods are typically tuned by
trial and error, and if parameters are not set appropriately,
convergence guarantees may be lost—a receding horizon
approach allows the system to avoid myopic navigation
decisions and alleviates the impact of inappropriate tuning.
Still, the real-time, state feedback character of the control
loop is preserved.

Dipolar vector fields have limitations. One issue is that
small perturbations along the axis orthogonal to the direction



of desired orientation in the neighborhood of the destination
generate large orientation errors θ − θd which may in turn
produce high amplitude input oscillations. In that respect,
a model predictive loop introduces dwell time between
control updates and alleviates this problem. Problems of this
nature manifest themselves in real implementations—not in
numerical simulations. In preliminary tests we performed
with skid-steering mobile robots, which have inherently
inaccurate orientation control, we observed the generation
of both orientation, as well as position errors as the platform
approached its desired posture. The latter are due to the
discrete-time nature of (piece-wise constant) control input
update which tends to force the system to overshoot its
desired position. The nature of the dipolar reference field
couples position and orientation, and thus complicates the
treatment of such errors.

In part, some of these problems are inherent in non-
holonomic stabilization. Along the lines of the particular
approach, however, we have obtained better results in terms
of residual orientation errors by “dilating” the vector field in
the x direction, and terminating the control action once the
system has reached a sufficiently small neighborhood of the
desired posture.

VI. CONCLUSIONS

A specially constructed vector field, which cannot be
derived as a gradient of a potential function, is constructed.
All of the integral lines of the field pass through the origin,
and thus the field serves as a velocity reference for a unicycle.
A discontinuous control law, involving a receding horizon
scheme in one of its modes steers the unicycle along the
flow lines of the field and enables the system to converge
to the origin with a specific orientation. The approach to
convergence analysis introduces a novel integration of Ryan’s
invariance principle for differential inclusions with receding
horizon control, that guarantees convergence without relying
on the positive definiteness properties of the terminal cost.
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