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1. Introduction

This paper shows how grammatical inference (GI) and game-theoretic techniques can be
jointly utilized for robotic planning. The planning problem is to find a sequence of robot
maneuvers so that a desired task is completed; the maneuvers themselves are assumed to
be implemented by some existing low-level controllers. The challenge here is that the en-
vironment in which the robot is operating is unknown, dynamic, and possibly adversarial,
and the role of GI is to enable the robot to learn from experience and improve its planning
capability over time. Our hypothesis is that under certain technical conditions, this im-
provement indeed takes place and can be demonstrated by the robot being able to devise
strategies that are guaranteed to accomplish the task—despite the dynamic, potentially
adversial environment.

Research in robotic planning largely addresses the problem of planning when the en-
vironment is static (Piterman and Pnueli, 2006; Belta et al., 2007; Lahijanian et al., 2010;
Wongpiromsarn et al., 2010; Kress-Gazit et al., 2011; LaViers et al., 2011). As for learn-
ing, in robotics it has been used primarily for adjusting parameters in the robot’s mod-
els or control laws during the robot’s interaction with its environment. The learning
methodologies are based primarily on reinforcement learning, applied to a wide variety of
problems, including multi-agent coordination (Matarić, 1997), walking (Byl and Tedrake,
2009), humanoid robots (Peters et al., 2003), varying-terrain wheeled robot navigation
(Brunskill et al., 2009), and unmanned aerial vehicle control (Abbeel et al., 2010). The
use of grammatical inference as a learning mechanism in robotics has been limited (with a
few exceptions, see Luzeaux (1996); Dean et al. (1992); Rivest and Schapire (1993); Rieger
(1995); Schmill et al. (2000); Krishnaswamy et al. (2011); Chen et al. (2012)). The afore-
mentioned learning techniques operate typically on discrete models, like a Markov chain
or a transition system. Other research on planning has focused on establishing formal
(rather than heuristic) relationships between the concrete domain of continuous system
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Figure 1: The architecture of robotic planning with a module for grammatical inference (a) and the
application example in the form of a noncooperative game (b).

dynamics in which behaviors are expressed in terms of differential equations, and the dis-
crete world of automata and transition systems (Tanner et al., 2012; Fainekos et al., 2009;
Kloetzer and Belta, 2007; Pola et al., 2008). These relationships are needed to ensure that
policies computed at the discrete level can always be implemented at the finer level of con-
tinuous dynamics. At the higher level, a planner computes a discrete plan which ensures
the completion of the task or the satisfaction of a specification expressed in some formal
logic, and then the formal abstraction interfaces translate the plan into control laws for the
lower-level continuous dynamics.

This paper assumes the actual low-level dynamics are given, and the challenge is to
compose them temporally so that a specification is met in the presence of unknown—but
rule-governed—environment dynamics. The proposed solution utilizes GI within the overall
architecture depicted in Figure 1(a). We envision a flexible and modular robotic system
which includes a grammatical inference module. The robot interacts with its environment
through its sensors and actuators. Both the robot and its environment are modeled as
hybrid dynamical systems (represented as ovals) and are assumed to admit discrete ab-
stractions in the form of some finite-state system (dashed rectangles). The robotic system
(enclosed inside the solid rectangle) has a certain objective, encoded in the form of a task
specification. The robot, equipped with an abstraction of its dynamics, the specification,
and its perception (theory of mind) of its environment, plans its actions and implements
them via some control loops. The same sensory data used by the robot’s low level controllers
serve as input to the GI module. With this information, the robot refines the abstract model
of its environment through a GI algorithm which learns the discrete environment dynamics
under some learning criterion. An important contribution of this paper is to present and
analyze such a system in the context of well-known and well-understood GI algorithms.

This architecture is illustrated and analyzed with respect to a simple scenario introduced
in §3. In this scenario, the robot’s task is to visit every room in a building. In Figure 1(b)
there are four rooms marked with numbers from 1 to 4. The rooms are connected through
doors marked with the letters a,. . . ,f. Doors can be open or closed (like e and b in Fig-
ure 1(b)) operated by an adversary of the robot. There are constraints on how the adversary
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operates the doors which are unknown to the robot. Once the robot has learned the nature
of these constraints, it outwits the agent whenever a strategy for completing the task ex-
ists. The term strategy indicates our approach to the planning problem from the viewpoint
of game theory: the scenario can be formulated as a two-player zero-sum game and the
robot and the adversary are both players. The game theoretic analysis offers algorithms
for the robot to make the best planning decisions. This analysis is presented in §3 and its
interaction with the GI module is described in §4.

2. Preliminaries

2.1. Languages, Automata and Game Theory

Let Σ denote a fixed, finite alphabet, and Σn, Σ≤n, Σ∗, Σω be sequences over this alphabet
of length n, of length less than or equal to n, of any finite length, and of infinite length,
respectively. The empty string is denoted λ, and the length of string w is denoted |w|. A
language L is a subset of Σ∗. For all w = σ1σ2 · · · σn ∈ Σ∗, the shuffle ideal of w is defined
as SI(w) := Σ∗σ1Σ

∗σ2 · · ·Σ
∗σnΣ

∗. A string u is a factor of string w iff ∃x, y ∈ Σ∗ such
that w = xuy. If in addition |u| = k then u is a k-factor of w. The function Fk maps words
to the set of k-factors within them: Fk(w) := {u : u is a k-factor of w}. This function is
extended to languages as Fk(L) :=

⋃

w∈L Fk(w).
A positive text S of a language L is a total function S : N → L ∪ {#} (# is a ‘pause’)

such that for every w ∈ L, there exists n ∈ N such that S(n) = w. Let Si denote the first
i elements of S. A learner φ is an algorithm which maps finite initial portions of positive
texts to grammars. The learner φ identifies a class of languages L in the limit from positive
data iff for all L ∈ L, for all positive texts S for L, there is some i ∈ N such that for all
j > i, φ(Sj) = φ(Si) is a grammar generating exactly L. A language class with such a φ is
identifiable in the limit from positive data.

A semiautomaton (SA) is a tuple A = 〈Q,Σ, T 〉 where Q is the set of states, Σ is
the set of alphabet symbols and the transition relation is T : Q × (Σ ∪ {λ}) → Q. The
transition relation is expanded recursively in the usual way. If T (q, w) 6= ∅, we write
T (q, σ) ↓; otherwise T (q, σ) ↑. A word w is admissible in A if there exist q1, q2 ∈ Q
such that T (q1, w) = q2. A finite state acceptor (FSA) is a tuple A = 〈A, I, F 〉 where
A = 〈Q,Σ, T 〉 is a SA and I, F ⊆ Q are the initial and final states, respectively. The
language accepted by the FSA is L(A) = {w | T (I, w) ∩ F 6= ∅}. A discrete event system
(DES) (Cassandras and Lafortune, 1999) is an FSA equipped with an active event function
Γ : Q → 2Σ, which singles out the labels of the defined outgoing transitions at each state:
Γ(q) = {σ | T (q, σ) ↓, σ ∈ Σ}. The activation function is practically redundant, since all the
information is included in the transition function; its introduction does, however, simplify
notation occasionally. For this reason we will abuse the definition of a SA at places and
implicitly equip this machine with an activation function as well.

A game G(X) on Σ is a set X ⊂ Σω. A play in the game is a word x = w0w1 . . . ∈ Σω in
which two players alternate so that player 1 plays w0, player 2 plays w1, etc. Player 1 wins
the play if x ∈ X; otherwise player 2 wins. Given a word u ∈ Σ∗, Gu(X) denotes the game
that starts at u.A strategy for player 1 is a function f : (Σ2)∗ → Σ from the set of words
of even length into Σ. A strategy for player 2 is a function g : (Σ2)∗Σ→ Σ from the set of
words of odd length into Σ. Strategy f is a winning strategy for player 1 if for any infinite
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word x ∈ Σω such that for all n ≥ 0, w2n = f(w0 . . . w2n−1), x ∈ X. A game is determined
if one of the players has a winning strategy.

2.2. Hybrid Dynamical Systems

A hybrid system is a dynamical process involving states that take values in a continuous
domain and evolve according to some differential equations, and states that take discrete
values and change based on some discrete logic. A hybrid system H is defined as a tuple of
objects (Lygeros et al., 2003) that includes the domains of continuous and discrete variables,
the subsets of initial states in those domains, the description of the family of continuous dy-
namics parameterized by the discrete states, and rules for resetting continuous and discrete
states and switching between the members of the family of continuous dynamics.

The present analysis focuses on a specific class of hybrid systems wherein the continuous
dynamics have specific (set) attractors, the shape and location of which are dependent
on a finite set of parameters that are selected by the system’s supervisor (Tanner et al.,
2012). By judiciously selecting the parameters, a controller activates a specific sequence of
continuous and discrete transitions, steering the hybrid system H from a given initial state
to a final desired state. Tanner et al. (2012) describe an abstraction process which derives
a SA which is observably bisimilar (Stirling, 1996) to H; in other words, the sequences of
discrete modes executed by H can be matched by words admissible in the SA, modulo some
subset of symbols in Σ that are thought of as silent, and vice versa. Moreover, the abstract
system that is derived in Tanner et al. (2012) is deterministic in transitions, as ensured by
the convergence of vector fields for each discrete mode.

3. Game Theoretic Analysis

3.1. Constructing the game

In a game theory formulation the behaviors of the two competing players can be modeled
as SAs. Let these SAs be A1 = 〈Q1,Σ1, T1〉 for player 1 and A2 = 〈Q2,Σ2, T2〉 for player 2.

In the example case study considered here, there are two players: the robot and its
adversary. Time is discretized into turns, and agents alternate taking turns and making
their moves. During its turn, the robot chooses an adjacent room with an open door to
visit. The adversary can open exactly one door and close exactly one other, provided that
the two doors closed belong to a predetermined list. This list is a parameter of the game,
allowing different configurations of the game to be played (example configurations are shown
in Table 1).

Opposite Only opposite doors can be closed at any time:
{a, d}, {a, e}, {a, f}, {b, f}, {c, e}, {e, f}

Adjacent Only adjacent doors can be closed at any time:
{a, b}, {a, c}, {b, c}, {b, d}, {b, e}, {c, d}, {c, f}, {d, e}, {d, f}

General Any pair of doors can be closed at any time

Table 1: Rules for the adversary (controlling the doors).
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The SA for the robot is denoted A1 and is shown in Figure 2(a), while the behavior
of the adversary in the Opposite configuration (Table 1) is captured by A2 depicted in
Figure 2(b). In A1, there is one state for each room and each transition is labeled with
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Figure 2: Semiautomata for the robot (left) and for a fragment of the adversary (right).

the room the robot is going into. In A2, the states correspond to pairs of doors currently
closed, and a transition label indicates the pair of doors that are subsequently closed.

In the robotics literature, task specifications are typically given in higher-level for-
malisms which are translated into a Kripke structure (Belta et al., 2007), essentially a finite
SA with marked initial states, which is also equipped with a function labeling each state
with a set of atomic propositions that are true there (Clarke Jr. et al., 1999). Different
task specifications result in different types of games, such as a reachability game where
X ∈ (Σ1 ∪ Σ2)

∗, or a Büchi game where X ∈ (Σ1 ∪ Σ2)
ω.

In the example scenario, the robot needs to visit all four rooms in any order; this
specification is expressed as the union of shuffle ideals of the permutations of 1234.1 A
fragment of the FSA As representing this specification is shown in Figure 3. With these
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Figure 3: Fragment of the specification automaton As, in which x = Σ2.

three ingredients in place—A1, A2 and As—we define what we call the turn-based product,
through which we construct a bipartite graph that expresses the moves players can make in
alternation. The standard product of the bipartite graph with the specification yields the
representation of the game.

Note that a move by one player may influence a move of the other; this is captured
by the interacting functions Ui : Qi × Qj → 2Σj , (i, j) ∈ {(1, 2), (2, 1)}, which for each
player i, single out the transitions that the other player cannot take. For example, when
the adversary closes a door, the robot cannot go through it on its next turn.

1. This whole operation of constructing such an FSA can be fully automated.
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Definition 1 (Turn-based product) Given two semiautomata A1 = 〈Q1,Σ1, T1〉 and
A2 = 〈Q2,Σ2, T2〉 with interacting functions U1, U2, the turn-based product P = A1 ◦ A2

can be obtained as follows: (i) for each Ai, i = 1, 2, add a state 0 and transitions Ti(0, λ) =
qi,∀qi ∈ Qi. The set of states in P is Qp = (Q1 ∪ {0}) × (Q2 ∪ {0}) × {0, 1}; (ii) Σ1 ∪ Σ2

is the alphabet; and (iii) T is the transition relation defined as follows:

• T
(

(0, 0, c), σ
)

=

{

(T1(0, λσ), 0, 0) if c = 1, σ ∈ Σ1

(0, T2(0, λσ), 1) if c = 0, σ ∈ Σ2

• T
(

(q, 0, 0), σ
)

=
(

q, T2(0, λσ), 1
)

if σ ∈ Σ2

• T
(

(0, q, 1), σ
)

=
(

T1(0, λσ), q, 0
)

if σ ∈ Σ1

• For q1 ∈ Q1 and q2 ∈ Q2,
2

T
(

(q1, q2, c), σ
)

=

{

(T1(q1, σ), q2, 0) if c = 1, σ ∈ Γ(q1;A1) ∩ {Σ1 \ U2(q2, q1)}

(q1, T2(q2, σ), 1) if c = 0, σ ∈ Γ(q2;A2) ∩ {Σ2 \ U1(q1, q2)}
.

The construction of Definition 1 is an important step for defining a two-player turn-
based game as a run in an FSA. The turn-based product involves a binary variable, or
“coin” c which keeps track of whose turn it is: c = 1 if player 1 is to play, c = 0 if player 2
moves next. A fragment of the A1 ◦A2 for our example is shown in Figure 4. The machine
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Figure 4: Fragment of turn-based product P = A1 ◦A2 for the robot and its adversary.

being at state (r, d1d2, c) is interpreted as the robot being in room r, doors d1 and d2 being
closed, and c telling us whose turn it is to play. We define a set of legitimate initial states
of the turn-based product as I ⊆ Q, which essentially is the set of possible configurations
the game can be initialized from. By taking the set of legitimate initial states I as the
set of initial states and setting all states final, we can obtain a non-deterministic FSA:
(A1 ◦ A2)

0 = 〈A1 ◦ A2, I,Qp〉.
3 Then, we can embed the winning condition into the game

by taking the intersection of (A1 ◦A2)
0 and the specification FSA As. The outcome of this

operation is the game automaton.

Definition 2 (Game automaton) The game automaton is a FSA and is defined as G =
〈Q,Σ, T,Q0, F 〉 = (A1 ◦ A2)

0 × As where (A1 ◦ A2)
0 = 〈A1 ◦ A2, I,Qp〉, Ai = 〈Qi,Σi, Ti〉

i = 1, 2 represent the players’ behaviors, I is the set of legitimate initial states and the set
of final states includes all states in A1 ◦ A2. The FSA As = 〈Qs,Σ, Ts, q0s, Fs〉 encodes the
winning conditions for player 1.

A fragment of the game automaton for the room visiting game is shown in Figure 5.

2. In what follows, Γ(q;A) denotes the Γ(q) map of A.
3. (A1 ◦A2)

0 is non-deterministic because of the existence of multiple initial states and is deterministic in
transitions.
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Figure 5: Fragment of the game automaton G = (A1 ◦A2)
0×As for the door-robot game, where the

set of legitimate initial states is I = {(q1, q2, 1) | q1 ∈ Q1, q2 ∈ Q2}, i.e. the game can start with the
robot in any room and any pair of opposite doors closed, and the robot is to make a move first.

3.2. Computing the winning strategy

Since the task specification is described as a regular set, the game is a reachability game
(Thomas, 2002) and is determined. The control synthesis problem has been converted into
computing the winning strategy for player 1 in the game. The following result is obtained
by adapting the computation of strategy in a two-player zero-sum game in (Mazala, 2001).

Let G = 〈Q,Σ, T,Q0, F 〉 be a game automaton where Q0 ⊆ Q is the set of possible
initial states for the game and F ⊆ Q is the subset of the states in which player 1 has won
the game. Let Γ be its event activation function. Then the attractor of F , denoted Attr(F ),
is the largest set of states W ⊇ F in G from which player 1 can force the play into F . It is
defined recursively as follows. Let W0 = F and define

Wi+1 = Wi ∪ {q =
(

(q1, q2, 1), qs
)

∈ Q | for some σ ∈ Γ(q), T (q, σ) ∈Wi}

∪ {q =
(

(q1, q2, 0), qs
)

∈ Q | for all σ ∈ Γ(q), T (q, σ) ∈Wi} . (1)

Since G is finite, there exists the smallest m ∈ N such that Wm+1 = Wm. Then Attr(F ) =
Wm. On the other hand, since G is determined, the complement of Attr(F ) forms a trap for
player 1; it contains all the states from which player 2 can prevent player 1 from winning
the game. By construction, therefore, the following theorem is proved:

Theorem 3 Player 1 has a winning strategy iff Attr(F ) ∩Q0 6= ∅.

If Attr(F ) = Wm ∩ Q0 6= ∅, we can ensure that for a particular initial state q0 ∈
Attr(F ) ∩ Q0, there exists a winning strategy WS1 for player 1: WS1 : Q → 2Σ1 defined
as WS1(q) = {σ | q =

(

(q1, q2, 1), qs
)

, σ ∈ Γ(q), T (q, σ) ∈ Attr(F )}. This winning strategy
is not necessarily optimal, i.e., the one involving the least number of moves. To compute
an optimal winning strategy, partition Wm into a set of subsets Vi, i = 0, . . . ,m in the
following way: let V0 = W0 = F and set Vi := Wi \Wi−1, for all i ∈ {1, . . . ,m}. The sets
Vi partition the attractor into layers.

Lemma 4 For each q ∈ Vi+1, i = 0, . . . ,m− 1, there exists at least one σ ∈ Γ(q) such that
q′ = T (q, σ) ∈ Vi. Moreover, if at q it is player 2’s turn, then for each σ ∈ Γ(q), there is a
j ≤ i such that T (q, σ) ∈ Vj .
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Proof Let q ∈ Vi+1. According to (1), either (i) it is player 1’s turn and so ∃σ ∈ Γ(q) :
T (q, σ) ∈ Wi, or (ii) it is player 2’s turn and ∀σ ∈ Γ(q), T (q, σ) ∈ Wi. Consider player
1’s turn and suppose there exists k < i, T (q, σ) ∈ Vk. Then according to (1), q belongs to
Vk+1. But since the sets Vi partition the states of the attractor, Vk+1∩Vi+1 = ∅ since k 6= i.
This contradicts the assumption that q is also in Vi+1. Thus T (q, σ) 6∈ Wi−1 and belongs
instead to Vi. When it is player 2’s turn, the same argument shows there exists at least one
σ such that T (q, σ) = Vi. Additionally, if it is player 2’s move at state q, and σ ∈ Γ(q) with
T (q, σ) /∈ Vi, then it follows that T (q, σ) ∈ Vj for some j < i because T (q, σ) ∈Wi.

Lemma 4 suggests that if the current state is in player 1’s attractor, then the move of player
1, and all moves of player 2, will lead to a state with rank strictly decreasing by at least 1.
It implies that at this stage the best player 2 can do is to slow down the victory of player
1 by selecting an action that results in a state with level decreased by 1.

Proposition 5 Suppose q0 =
(

(q1, q2, 1), qs0
)

and that q0 ∈ Vk for some k ≤ m. Then
player 1 wins the game in at most k turns following the strategy WS

∗
1, according to which

WS
∗
1(q) = {σ | T (q, σ) ∈ Vi−1, q ∈ Vi, i ≥ 1} . (2)

Proof Given a state q =
(

(q1, q2, 1), qs
)

∈ Vi, player 1 adhering to WS
∗
1 will choose σ∗ such

that T (q, σ∗) = q∗ for some q∗ ∈ Vi−1 (Lemma 4). At q∗ it is player’s 2 turn. Any move
also forces the game automaton to a state q′′ ∈ Vj for j < i− 1. Again by Lemma 4, player
2 can only slow player 1’s victory by selecting a σ such that j = i−2. It follows inductively
that player 1 wins in at most k turns.

It is suggested that WS
∗
1 ensures player 1 will win in a minimal number of steps, which is

crucial if a cost is associated with each action. Let us see how Proposition 5 applies to the
robotic case study we consider here, by looking at Figure 5. The winning set of states is
F = {(q, 1234) ∈ Q | q ∈ A1 ◦A2}; Attr(F ) is obtained by computing the fixed-point of (1).
Space limitations prevent us from enumerating all the states in Attr(F ), so we will only give
a winning path for the robot according to the winning strategy WS

∗
1, assuming that the rules

for the adversary correspond to the Opposite game configuration (Table 1) and that the
initial states lies in Q0 ∩Attr(F ) = {

(

(1, ad, 1), 1
)

,
(

(1, ce, 1), 1
)

,
(

(2, ad, 1), 2
)

,
(

(2, bf, 1), 2
)

,
(

(4, ce, 1), 4
)

,
(

(4, bf, 1), 4
)

}.
Let us arbitrarily select q0 =

(

(1, ad, 1), 1
)

∈ Attr(F ) ∩ Q0. Following WS
∗
1 of (2) the

robot’s fastest route (play) to victory is

(1, ad, 1, 1)
4
→ (4, ad, 0, 14)

ae
→ (4, ae, 1, 14)

2
→ (2, ae, 0, 124)

ce
→

(2, ce, 1, 124)
1
→ (1, ce, 0, 124)

ef
→ (1, ef, 1, 124)

3
→ (3, ef, 0, 1234) .

On the other hand, in the cases of the Adjacent and General configurations (Table 1),
the robot cannot win no matter what the initial state is since in both cases Attr(F )∩Q0 = ∅.
In these game configurations, the robot player, even with perfect knowledge of the moves
the adversary can and cannot make, can never win.
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4. The Grammatical Inference Module

4.1. Overview

The previous section outlined a methodology for computing optimal strategies (if they exist)
in noncooperative, adversarial games when the behavior of both players can be captured in
the form of SAs. The computation of a winning strategy hinges on complete knowledge of
these behaviors. In this section, this assumption is relaxed such that only one player—the
adversary—has full knowledge of the rules of the game; the robotic player does not.

Instead, the robot is equipped with a GI module. This module itself is straightforward
because any GI algorithm (de la Higuera, 2010) can be plugged into the modular archictec-
ture developed here. Prior knowledge, if available, can help select the particular algorithm.

The behavior of the unknown environment becomes a positive learning text for the GI
module. Inference over this text yields an abstract model of the environment’s dynamics
(Figure 1(a)). This model can then be used to recompute the game and the attractor as
described in §3. It is therefore guaranteed that the robot’s theory of mind for the unknown
adversary will eventually converge to the true abstract model of the adversary, provided
(i) the true model lies within the class of models inferrable by the GI module, and (ii) the
unknown environment’s behavior suffices for a correct inference to be made (in other words,
a characteristic sample for the target language is observed).

4.2. Theory of Mind

The theory of mind refers to the ability of an agent to infer the mental (read: hidden,
unobservable) states of others (Frith and Frith, 2003; Premack and Woodruff, 1978). When
the robot begins planning, it is unaware of the capabilities of its adversary. Its initial theory
of mind about its adversary is that the latter is absent, or if present, cannot act at least in
a way that affects how it accomplishes its task.

In our toy example, this means the unsuspecting robot initially assumes that its envi-
ronment is static. If the game begins with doors e and b closed then the robot’s “theory of
mind” is that the doors e and b will remain closed and every other door will remain open.
Hence in the robot’s mind, the environment is a SA with only one state eb with a self-loop
labeled eb. The robot uses this hypothesized model for the adversary to compute the game,
based on which a strategy is computed. As outside observers, we see the robot entertains a
false belief about its environment. Therefore, the robot can easily make a move which keeps
it inside its hypothesized attractor, but which actually takes it outside the true attractor.
And once this mistake has been made, the adversary will win because it knows the true
nature of the game, and can therefore prevent the robot from visiting all four rooms.

This is where GI enters the picture. Our approach is to use GI to enable the robotic
player to incrementally construct an increasingly more accurate model of the behavior of
its adversary. We expect that as this model becomes more accurate, the planning efficacy
of the player increases. After a sufficient period of observation, it should be able to devise
strategies that enable it to succeed regardless of the play of its adversary, at least from
those initial starting positions where winning strategies for the robot exist.
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4.3. Learning to play using strictly local models

A language L is Strictly k-Local (SLk) iff there exists a finite set S ⊆ Fk(⋊Σ∗
⋉), such that

L = {w ∈ Σ∗ : Fk(⋊w⋉) ⊆ S}. Languages which are SLk form a subclass of the regular
languages (McNaughton and Papert, 1971; Rogers and Pullum, 2011) with some interesting
and useful properties. For example, it is decidable a) whether the language of a regular
grammar is Strictly k-Local, and b) if so what the value k is (Trahtman, 1998).

By combining the results of Caron (1998) and Trahtman (1998), we verified for all sets
of rules in Table 1 that the behavior of the adversary is a Strictly 2-Local (SL2) language.
(This is obvious from Figure 2(a) which is clearly a Myhill graph.)

Garcia et al. (1990) proved the following:

Theorem 6 (Garcia et al. (1990)) For every k, Strictly k-Local languages are identifi-
able in the limit from positive data.

The algorithm by Garcia et al. (1990) essentially constructs a prefix tree of the observed
strings, and then merges those states that have the same incoming path of length k− 1. A
functionally equivalent algorithm described in set-theoretic terms also exists (Heinz, 2010).

The implications of this theorem for the example scenario are that a robot equipped with
a Strictly 2-Local learner will eventually develop a true model of its adversarial environment
(assuming the adversary’s behavior is a positive text).

4.4. Simulation

Figure 6 serves as an illustration of the motion planning of a robot incorporated with a
GI. Through interacting with the environment, the robot employs GI to update its theory
of mind for the adversary A2 and then consequently the game G using the products, with
which a winning strategy is computed that determines its own action. We allow the game
to be played repeatedly with random initial game states. The convergence of GI ensures
that the robot’s strategy will converge to the true winning strategy.

Update WS
∗

1

Hypothesis for the game G0 G1 G2 · · · Gi · · · → G

↑ ↑ ↑ · · · ↑ · · ·

Adversary model A0

2
A1

2
A2

2
· · · Ai

2
· · · → A2

↑ ↑ ↑ · · · ↑ · · ·

Presentation S0 S1 S2 · · · Si · · ·

Figure 6: Motion planning with a grammatical inference module. The superscript i indicates that
the environment model and the game are updated as the game is played repeatedly.

Algorithm 1 shows how the simulation is implemented. In the simulation, the robot
and the adversary play intelligently: they move within their attractor if such a move is
available. If no such move exists for the robot, the game is restarted as the robot resigns.
Otherwise, if the state is in the robot’s attractor, the environment makes a move to slow
down the victory of the robot.4 When a game is restarted, the configuration stays the same,

4. More intelligent choices exist which take us beyond the scope of this paper. For example, if the adversary
maintained a theory of what the robot player believed, it could choose to open and close doors in a manner
that would make the robot player take longer to converge to the true model of the adversary.
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Algorithm 1: Motion planning of the robot with a GI module through repeated games.
input : The abstract model A1, task specification As, and S0 = λ
output: A semiautomaton A2

Let i = 1, starting the first game with state q = (q1, q2, 1, q0s) and S1 = q2. The upper limit
on the number of turns in repeated games is set to N .
while t ≤ N do

Ai
2 ← BuildEnvModel (Si); ; // Constructing Ai

2 from presentation Si with GI.

Gi = 〈Q,Σ, T,Q0, F 〉 ← ComputeGame (Ai
2, A1, As)

Attr(F )← Attractor (Gi, F ); WS
∗
1 ← WinningStrategy (Gi,Attr(F ))

Attr(Q \ F ) ← Attractor (Gi, Q \ F ); WS
∗
2 ← WinningStrategy (Gi,Attr(Q \ F ));

// The strategy played by the adversary environment is computed

simuliarly by taking Q \ F as the target states.

if q ∈ Attr(F ) then
if q /∈ F then

a← RobotMove (WS
∗
1, q); q ← T (q, a); t← t+ 1;

if q /∈ F then
b← EnvMove (WS

∗
2, T (q, a)); Si+1 ← AddEnvMove (Si, b)

i← i+ 1; t← t+ 1; q ← T (q, b)
end

else Restart the game with a random initial state.
q = (q1, q2, 1, q0s)← Choice (Q0); Si+1 ←AddEnvMove (Si, q2)

end

else The robot resigns, and the game is restarted.
q = (q1, q2, 1, q0s)← Choice (Q0); Si+1 ←AddEnvMove (Si, q2)

end

end

the robot is randomly placed in an initial room and a permissible pair of doors is randomly
closed, but the model of the adversary (A2) is passed forward.

The robotic simulations use the Khepera IITMminiature wheeled mobile robot, whose
position and orientation feedback is provided by a motion capture system (VICONTM). The
robot’s wheels are internally controlled by PID loops. This enables simple motion primitives
(move straight, turn in place). This behavior can be formally captured as a hybrid system
of the form described by Tanner et al. (2012) (§2.2), which affords finite abstractions.

Three robots each played 300 games of the Opposite Door configuration. Robot 1 had
no prior knowledge of the adversary and no GI module. Robot 2 only differed from robot 1
in that it was equipped with a GI module. Robot 3 only differed from robot 1 in that it had
complete prior knowledge of the adversary. Robot 1 lost every game; robots 2 and 3 won
79 and 82 games, respectively. In this toy example, the incorporation of an appropriate GI
module allows robots to nearly reach their maximal potential.

5. Discussion

Our approach accomplishes two goals: a) it offers a game-theoretic framework for robotic
planning in an unknown, dynamic, but rule-governed environment, and b) it demonstrates
how the inclusion of a GI module makes a difference in terms of the robot’s successful
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outcomes. Moreover, the theory presented is modular and flexible, in the sense that as long
as the hypothesized abstract models of the environment, the robot model, and the task
specification are finite-state, the GI learning algorithm is guaranteed to work.

An additional desideratum would be to show that the theoretical analysis also provides
practical procedures. In this brief discussion, we explain why we are optimistic.

• The time complexity for computing the attractor Attr(F ) is O(|Q| × Σ).

• The example game G consisted of 1008 states. While a concern about the size of G
becoming too large when more complex problems are considered is reasonable, we believe
there are representations of the game that enable the computation of the attractor (or
at least the next move) without requiring the utilization of the full state space.

• While § 4 suggests that the game automaton G = (A1 ◦A2)
0×As has to be recomputed

with every new hypothesis on A2, we anticipate the number of product operations actu-
ally required will remain quite limited since portions of G can be precompiled. This is
partly because A1 and As are known in advance and fixed. Indeed, aspects of A2 that
are known can also be precompiled. In our ongoing simulations, we avoid computing
the product at every instance by using a larger, more general representation of the game
with many of the transitions turned off.

The interaction of an adaptive agent with its environment as defined by a probablistic
process can alternatively be modeled as a Markov Decision Process (Watkins and Dayan,
1992), in which reinforcement learning (RL) is applied for the planning of the agent. In
the case of an agent-environment scenario, there are minimax Q-Learning (Littman, 1994),
Nash-Q (Hu and Wellman, 2003), Friends-or-Foe Q (Littman, 2001) and other extensions
that can be used to decide what action of the agent will maximize the reward over time.
In Q-Learning, the convergence has probability 1 if the sampling of state and action pairs
happens infinitely often. In the case of an adversarial environment, certain conditions
have to be enforced or assumed in order to prove convergence. Our formulation of the
agent-environment interaction is fundamentally different because (a) the environment is not
probablistic and hence is not a Markov game; and consequently (b) the target of learning
is different: here we aim to learn a (class of) languages while RL is a stochastic process.
Moreover (c) it is unclear how to ensure that the agent will win in the shortest number
of actions in the setting of RL. Yet, this requirement can be crucial in agent-environment
interactions if costs are associated actions in the dynamical system.Although the problem
addressed in this paper can probably be reformulated so that RL is applicable, this paper
aims to introduce an alternative method, which, although in a preliminary stage, builds a
bridge between GI and the symbolic planning and control of systems.

6. Conclusion

This paper has demonstrated that the utilization of grammatical inference (GI) in a game-
theoretic framework for the purpose of robotic planning can guarantee that the desired
task for the robot can be completed even when its environment is unknown, dynamic, and
possibly even adversarial. The conditions under which such a result can be achieved are
that the robot dynamics can be abstracted in the form of a semiautomaton, the task can be
expressed by a finite state acceptor, and the unknown environment dynamics are rule-based
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and equivalent at an abstract level to a language belonging to a learnable class of languages.
It has been shown in related literature that there are nontrivial families of models for each
category (robot, task, and environment) that fulfill these requirements. When they do, a GI
algorithm allows the robot to create a model for its environment and refine it in the course
of observation, in such a way that it gradually converges to an accurate representation of its
world. As soon as this happens, the computation of optimal strategies for the completion
of the task becomes possible.
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