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ABSTRACT
Instrumental helping has been reported in infants toward other
humans but not toward robots. Providing infants with opportunities
for action-based assistance to robots might lead to more efficient
infant-robot interactions. This paper presents preliminary findings
on infants’ spontaneous instrumental helping to robots exhibiting
motion challenges, and proposes a novel decision-making model
for infant-robot interaction that encompasses instrumental helping
in its parameters; both in the context of pediatric rehabilitation.
Six infants were engaged in a chasing game with a wheeled robot
with the goal to follow the robot and ascend an inclined platform (8
sessions, 4 weeks). After infants’ instrumental helping toward the
robot was identified, a decision tree model was created to evaluate
a set of annotated variables as potential predictors to the observed
behavior. Next, a Markovian model for robot control was developed
where these predictors were used as parameters to promote, in turn,
action-based goals for the infants.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Collaborative and social computing; • Computer
systems organization → Robotics.
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1 INTRODUCTION
From a very young age, humans are capable of perceiving the need
for assistance and assisting other humans in their pursuit of action-
based goals (i.e. instrumental helping) [35]. As early as in the second
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year of life, infants can pass objects to adults that are out of the
latter’s reach, remove physical obstacles for them, and use pointing
gestures to indicate object locations [23, 36]. In the first year of
life, they can assist adults in chores and their own self-care tasks at
home [11]. More fascinating is that infants engage in these actions
spontaneously; either for no apparent tangible benefit or some-
times to receive social praise, whereas receiving a material award
may reduce the probability for further assistance [37]. On the other
hand, prior observation of prosocial behavior in adults increases
the number of instrumental helping actions by infants [34]. Yet,
we neither know if this prosocial behavior exists in infants toward
machines, nor the circumstances (e.g., reward type needed) under
which this behavior could be elicited. Recently, there has been an
increased interest in infant-robot interaction [4, 9, 17, 29] for the
potential benefits it may offer if applied in the early stages of hu-
man development. Therefore, assessing infants’ prosocial behavior
toward robots is essential so as to create mathematical models in
infant-robot interaction, that can be used to elicit this behavior for
various early life applications (e.g., rehabilitation, education, etc.).

In our context, instrumental helping refers to assisting a robot
when the latter is unable to reach its goal on its own. One can
contrast this to the traditional role of assistive robots in which they
help the human they interact with. Instrumental helping toward
robots, however, can lead to more efficient, symbiotic human-robot
interactions [32]. Limited work with older children supports their
capacity to assist robots in handover tasks [1, 24, 25, 39]. Children
in kindergarten are capable of passing objects to a humanoid robot
that drops those in front of them [39]. Three-year old children are
even capable of attributing goals to a robot and understanding the
latter’s need for help by assisting only in cases when the latter
drops the object unintentionally [25]. Yet to our knowledge, no
studies have examined if instrumental helping toward robots can
be exhibited even earlier in life, in infancy.

Realizing natural and efficient human-robot interaction (HRI) can
be facilitated by dynamic and highly-adaptive automated decision-
making models (such as [14, 26]). In infant-robot social interaction,
developing such models is even more challenging, due to unique
population characteristics, such as the rapidly-changing learning
mechanisms and the high levels of infants’ curiosity and distraction
when they explore their environment. Such models and algorithms,
therefore, need to be quickly adaptive and personalized in applica-
tions that involve young populations. Few mathematical models
to address these challenges have been proposed [40, 41]. We build
upon these models to develop a new model for infant-robot interac-
tion that contains the behavior of interest in this paper, instrumental
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helping; the foundation of which was based on first-time real obser-
vations of a group of infants spontaneously assisting robots while
participating in a complex motor task.

This paper sheds some light into the underlying factors that
facilitate the emergence of infants’ assistive actions toward robots,
and proposes a new decision-making model for robot control to
artificially elicit this prosocial behavior in infants toward robots.
Infant-robot interaction data were collected in a motor rehabilita-
tion paradigm, and thus, the proposed work is within this context.
We aimed to: (a) quantify infants’ action-based helping behavior to-
ward robots when the latter exhibited challenges in completing the
task, (b) examine the factors under which infant-to-robot assistance
has greater probability to be observed, and (c) outline ways these
insights can inform the construction of mathematical infant-robot
prosocial interaction models that capture this early behavior.

2 METHODS
Six pre-walking infants (M=12.7 months of age, one with Down syn-
drome [DS]) participated in eight 1-hour sessions over four weeks.
In each session, infants engaged in motor tasks while interacting
with socially assistive robots. This paper focuses specifically on
a platform ascending task (PAT), which provided more frequent
and consistent opportunities for infants to interact prosocially with
the robotic play companion. In PAT, infants were encouraged to
climb an inclined platform by following a small wheeled robot
(Dash™ Wonder Workshop) (Fig. 1). Both companions started the
task at the bottom of the inclined platform. The robot started as-
cending first, in an effort to entice the infant into chasing it. At the
top of the platform, the infant would receive reward through social
praise by adults, manipulation of Dash, and/or Dash making sounds
and flashing lights. In half of the trials, infants used the assistance
of a body weight support system (BWSS) that provided mechanical
support to ease moving [15, 16, 18, 31]. Sessions were recorded (@15
frames/sec) via a network of five cameras (Kinect™ Microsoft).

Figure 1: Snapshots of an infant participating in PAT trials
without (a-c) and with (d-f) the assistance from the BWSS.

PAT was designed to exploit infant-robot social interactions to
elicit and assess infants’ motor response in a natural, play-type sce-
nario. As is typical in such scenarios involving young children, PAT
trials did not always evolve according to plan; e.g., infants may not
follow the robot, or Dash may slip and/or fall over to the side. To
maintain the interaction between the two agents and see through

task completion, the researcher would often physically assist the
robot facing a challenge (i.e., put it back on course). The random
nature of the robot’s challenges, as well as that of researcher’s
assistive interventions in the robot’s motion, presented varying
(unplanned) opportunities (within each session, across sessions,
and across subjects) to the infants for expression of spontaneous
instrumental helping toward the robot. Nonetheless, these oppor-
tunities proved sufficient for the infants to exhibit this behavior at
a frequency that attracted the researchers’ attention, and triggered
them to pose questions related to the emergence of this behavior
in multi-factorial environments resembling natural real-world situ-
ations [20], and at no cost of simplifying a complex phenomenon
that would undermine ecological validity [22, 33].

This paper’s approach involves three steps. First, variables of in-
terest were annotated from recordings of 117 PAT trials to quantify
if and when infants assisted the robot, and describe the conditions
under which infant-to-robot assistance occurred (Table 1).

Table 1: Annotated Variables and Descriptions

Robot Faces Challenge (Y/N): Cannot ascend, falls off or slides
back down on platform, decelerates and/or remains stationary.
Robot’s Position Within Infant’s Reach (Y/N): Robot is within
infant arm’s reaching distance at any point during its challenge.
Infant Looks at Robot (Y/N): Infant shifts visual attention
toward robot at any point during the latter’s challenge.
Infant Assists Robot (Y/N): Infant gently pushes robot into
ascending at any point during the latter’s challenge.
Latency to Infant’s Assistance (No. of Frames): Time elapsed
from 1st frame robot entered infant’s reaching space or faced
challenge (if within that space), to 1st frame assistance occurred.
Location on Platform Assistance Occurred (B/M/T)]:
Bottom: on the ground and up to 25% of platform length,
Middle: at any point between 25% and 75% of platform length,
Top: over 75% of platform length and on the top flat surface.
Mechanical Support to Infant’s Body (Y/N): Infant uses the
assistance from the body weight support system during ascend.
Study Session Assistance Occurred (1st/2nd half): 1-4/5-8.

Then, decision trees were formed from the annotated dataset
to get an insight on how these variables interacted to result in the
behavior of interest. To create those, two Chi-square Automatic
Interaction Detection (CHAID) data mining methods for categori-
cal variables were applied (simple and exhaustive). CHAID detects
associations between predictors and the outcome variable to iden-
tify those factors that predict best the likelihood of the outcome
variable to occur [6, 10, 13]. The analysis was performed in SPSS
v.24 (IBM Statistics, Armonk, NY) without restrictions (consider-
ing any number of cases in the nodes). Chi-square analysis was
used to determine node splitting and category merging using the
likelihood-ratio method, considered more appropriate than Pear-
son’s for small data sets. The alpha level for all statistical tests was
adjusted for multiple comparisons using the Bonferroni correction.

Lastly, information obtained from previous steps was used to
construct a mathematical HRI model that captures aspects of infant-
robot prosocial interaction. The underlying robot control laws that



are represented abstractly in this model, are discussed. A typical
model for HRI is a Markov decision process (MDP) [14, 26], where
optimal decision-making policies can be derived for maximizing the
utility the robot extracts toward defined goals. In the instantiations
of MDP models developed for infant-robot interaction [17, 40, 42],
the transition probabilities are tuned based on observational data.
Different configurations or modes that the combined infant-robot
system can find itself into are encoded, and transitions are labeled
based on controlled robot actions designed to elicit particular hu-
man motor responses. This paper extends prior work and reveals
new ways for the robot to engage with the infant by including and
eliciting prosocial behavior in its parameters.

3 RESULTS
Assistance to Robot. Infants had 214 opportunities to assist the robot
facing a motion challenge. They looked at the robot in most of these
instances (𝑁 = 163, 76%); however, the robot was within infants’
reach only in half of the instances (𝑁 = 106, 50%). Researchers
assisted in 74% of the 214 instances (𝑁 = 159). Infants looked at
the robot in 79% of these instances (𝑁 = 126). In the remaining 55
cases, the robot was either assisted by the infants (𝑁 = 18, 33%) or
not at all (𝑁 = 37, 67%). In the cases it was assisted, assistance was
provided within a second (median Latency = 10 frames).

Factors Linked to Assistance. Both CHAID analyses (considering
five annotated predictors along with DS diagnosis) were conducted
on the 55 remaining opportunities infants had to assist the robot.
The first predictor to infant-to-robot assistance was distance be-
tween infant and robot (𝑝 = 0.000, 𝜒2 = 29.165), followed by infant
looking at the robot (𝑝 = 0.014, 𝜒2 = 5.999), and then by location of
assistance (𝑝 = 0.035, 𝜒2 = 4.460) (Fig.2). Predictions in this model
are likely to be wrong in roughly one in ten cases (risk value=0.109).

Model for Robot Decision Making. The proposed model builds
upon a previous MDP model designed for games of chase, and is a
parallel composition of abstract transition systems for the infant
and robot, respectively [19, 40]. The new insights obtained from the
analysis of action-based assistance in this paper allow for refine-
ment of the MDP model when applied to PAT cases, through the
introduction of new states and transitions. The more sophisticated
MDP model (cf. [19, 40]) created for the PAT scenario includes four
actions of the robot, getting values from the set {𝑓 , 𝑏, 𝑠, ℎ}: 𝑓 for
moving forward; 𝑏 for moving backwards; 𝑠 for staying still; and ℎ
for pretending to struggle. The two possible states of the infant are
denoted𝐺 and 𝑁 , representing the infant responding or not, respec-
tively, to a robot action. The three predictors of the decision tree in
Fig. 2 are also states in this model: if the robot is within reach from
the infant or not {𝐷𝑌, 𝐷𝑁 }; if the infant is looking at the robot or
not {𝐿𝑌, 𝐿𝑁 }; and the location of the robot (bottom or top) {𝐵,𝑇 }.
States labeled with {?} signify that the particular predictor state
component can have either of the two possible values.

The new MDP model for PAT, extended with the new states and
transitions, as dictated by the observations and statistical analysis
of this paper, is shown in its prior form in Fig. 3. This MDP model
is conservatively initialized essentially assuming that robot actions
have no effect on infant motor behavior—thus not all the parts of
theMDP are connected. However, as new instances of the behaviors
of interest are observed, a learning algorithm [40, 42] adds new

transitions and tunes their probabilities. This process will continue
until our model converges to a hypothesized true probabilistic
model of this personalized HRI.

In addition to the states and transitions in the MDP model, the
factors that are found likely to trigger the assistive behavior of
interest also inform the design of the robot controllers behind each
robot action in the set {𝑓 , 𝑏, 𝑠, ℎ}: for instance, for action ℎ, we now
know what the robot should need to ensure before pretending to
struggle as a means of inciting infant assistance. The analytic design
of these control laws is beyond the scope of this paper.

Figure 2: Decision tree showing the independent variable
(predictor) with the strongest interaction with the depen-
dent variable (assistance) at each step of CHAID analysis.



Figure 3: MDP model for infant-robot prosocial interaction.

4 DISCUSSION
This paper provides, for the first time, support for infants’ instru-
mental helping toward robots, and describes the underlying con-
ditions surrounding the emergence of infant-to-robot assistance
when the latter exhibits motion challenges during participation in a
complex, but ecologically-valid, motor task. These results are impor-
tant as they lay the foundation for building infant-robot prosocial
interaction environments and models that can be utilized in various
applications early in life, an example of which is described here.

In human interactions, there is an ongoing debate on the nature
of this prosocial behavior. Some researchers suggest that it indicates
infants’ affiliative motives [27, 28], whereas others suggest that it is
just the result of a simple desire to carry out an incomplete action
[5]. It has also been proposed that early helping behavior is based
on infants’ understanding of others’ needs [7, 38]. More recent
work, however, suggests that the emergence of this behavior may
be more complex; it can be the output of a developmental system
characterized by the infants’ ability to understand the needs of
others along with their social and motor capabilities [20]. Although
our preliminary results can not accurately answer this question
with respect to infant-to-robot assistance at this time, they open
the ground for a similar debate in infant-robot interaction and the
examination of the nature of this behavior in the future.

Finding that infants are capable of instrumental helping to robots
was surprising as (a) the neurotypical infants that participated in
this study were younger than 12 months old (infants begin to re-
liably help others around 16 months of age [21]), and (b) a non-
anthropomorphic agent was on the receiving end of the assistance

(compared to humanoids and robotic arms previously used in child-
robot prosocial interaction paradigms [1, 24, 25, 39]). Nevertheless,
the fact that the infant with DS (24 months of age) showed higher
assistance rates (11 assists) than the neurotypical peers (7 assists),
supports previous work on reliable demonstration of helping be-
havior toward humans during the second year of life of infants
with [30] and without DS [21]. Further testing with slightly older
neurotypical infants will examine if infant-to-robot assistance rates
increase during the second year of life.

Regarding the underlying conditions surrounding infant-to-robot
assistance, it came as no surprise that close distance between infant
and robot was the first predictor for helping actions. Proximity
has been suggested to be an important factor for interactions of
crawling infants (i.e., like the participants of this study) displaying
a tendency to interact with nearby objects [8, 12] and to help less
in out-of-reach tasks [21]. The second predictor to instrumental
helping, looking at the robot facing a motion challenge, suggests
that infants gather information regarding the robots’ need of assis-
tance through visual cues (e.g., robot getting stuck on the platform)
and through observation of the researcher’s assistance toward the
robot [34]. Infants as young as nine months of age are capable
of understanding others’ needs in looking paradigms—this under-
standing appears even before they engage in helping behaviors
themselves [21]. Lastly, the location where most assisting actions
occurred was the bottom of the platform, possibly due to the greater
number in opportunities for assistance within reaching distance in
the beginning of the chasing game.

Other variables deemed important to instrumental helping were
not identified as predictors. For example, time in study did not seem
to affect helping; indeed observations of this behavior were spread
out, starting as soon as the second session. Another variable was
the mechanical support to the infants’ bodies, which was used to
alleviate the effects from gravity on movement [16, 17]. We hypoth-
esized that the increase in motor competency would allow infants
to use cognitive and attentional resources to evaluate the robot’s
motion challenge and assist it [2, 3]. Given these expectations, it
was surprising that the above variable were not predictors.

A number of limitations may warrant future consideration. Al-
though the ecological nature of the experimental paradigm is a
strength, it did lead to some infants having more opportunities for
assistance than others. Another limitation is the small amount of ob-
servations in this study. Although data were collected over several
sessions (N = 48), a larger sample size may produce different results.
Such limitations are common in human experimental paradigms
but can impact models of infant-robot prosocial interaction, such
as the one presented here. The implication is that naive methods
for updating the transition probabilities (e.g. maximum likelihood
estimation) produce a poor MDP model parameterization [40]. A
remedy to issues arising from small data sets such as this one can
be data smoothing, which has been previously proposed in HRI
[40, 42], and can help overcome the scarcity of learning data in
infant-robot prosocial interaction applications.
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