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Abstract— This paper introduces a framework that guides
the design of stabilizing feedback control laws for systems
with Pfaffian constraints. A new class of N -dimensional vector
fields, the dipole-like vector fields is proposed, inspired by
the form of the flow lines of the electric point dipole. A
general connection between the dipole-like field and the Pfaffian
constraints of catastatic nonholonomic systems is exploited,
to establish systematic guidelines on the design of stabilizing
control laws. The methodology is applied to the stabilization of
the unicycle and of the nonholonomic double integrator. Based
on these guidelines, switching control laws are constructed. The
efficacy of the methodology is demonstrated through simulation
results.

I. INTRODUCTION

Nonholonomic systems model a wide class of mechani-
cal systems, including mobile robots, underactuated robotic
manipulators, unmanned vehicles (aerial-UAVs, underwater-
UUVs, ground-UGVs), surface vessels and spacecraft.
Brockett’s theorem [1] states that nonholonomic systems
can not be stabilized by continuously differentiable, time-
invariant state feedback control laws. In fact, nonholonomic
mechanical systems can not be asymptotically stabilized to
a single equilibrium using any control method that employs
smooth, or even continuous, time-invariant feedback [2].
Various solutions have been proposed, usually classified
as piecewise continuous feedback [2], [3], time-varying
feedback [4]–[8], discontinuous feedback [9]–[11] and hy-
brid/switching control strategies [12], [13].

The majority of these approaches, [4]–[7], [10], [11],
provide stabilizing controllers for drift-free, kinematic non-
holonomic systems, which are either in chained or in power
form. The so-called dynamic nonholonomic systems arise
either from the dynamic extension of nonholonomic kine-
matic systems [9], or from the modeling of underactu-
ated mechanical systems, which induces second-order non-
holonomic constraints. The controllability and stabilizability
properties of these systems are addressed in [14]. A robust
control architecture for mechanical systems that are subject
to p nonholonomic Pfaffian constraints is given in [15],
which guarantees the convergence of the system to a p-
dimensional desired manifold. The stabilization of dynamic
nonholonomic systems is also addressed in [2], [8], [16]–
[18]. Finally, various stabilization control schemes have
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been proposed for specific systems, like the unicycle and
Brockett’s nonholonomic double integrator [19]–[22].

When the nonholonomic system is to be stabilized in
the presence of state constraints (read obstacles), then one
is faced with a nonholonomic motion planning problem.
Among the variety of motion planning methods [23], poten-
tial fields [24] in general, and navigation functions (NF) [25]
in particular, are popular methods since they provide closed-
loop feedback control laws. However, using potential fields
for nonholonomic navigation brings challenges, since these
systems are not capable of moving at any direction the field
might require them to. The past decade has seen increased
interest in the use of scalar and vector potential fields for the
nonholonomic motion planning problem. A first approach is
given in [26], where the discrete gradient of a Random Path
Planner potential field is modified to yield a path that is
consistent with the admissible directions of motion. Local
minima cannot be avoided. A dipolar NF is introduced in
[27] for the nonholonomic motion planning of a mobile
manipulator. The idea is that its flow lines guide a unicycle-
like robot to the equilibrium without explicitly stabilizing
the orientation. Since its introduction, the dipolar NF frame-
work has been extended to the motion planning of multiple
unicycle-like agents in 2D and 3D environments [28]–[30].
A hybrid control scheme that incorporates the classic NF
is proposed in [31] for the navigation of a unicycle-like
robot subject to holonomic (sensing) constraints. In [31]
the system converges to an arbitrarily small neighborhood
of the goal configuration by switching between two distinct
vector fields; one that is potential-decreasing and one that
is potential-conserving. A harmonic potential field (HPF)-
based algorithm for the motion planning of a unicycle-like
robot has also been proposed in [32]; this approach is similar
in spirit to [27] in the sense of alignment to the field’s flow
lines, however the unicycle’s orientation is not stabilized. For
additional interesting vector field-based navigation schemes
for nonholonomic robots, one may refer to [33]–[35].

This paper is inspired by [27] and proposes a more
systematic control design framework, extended to a wider
class of systems with nonholonomic Pfaffian constraints. A
new class of vector fields, the dipole-like vector fields, is
introduced. These fields are defined in N -dimensional vector
spaces and can describe a wider class of nonholonomic
systems, which includes but is not limited to the unicycle.
The conceptual link between the dipole-like fields and the
Pfaffian constraints of nonholonomic systems is exploited to
establish a systematic method for the design of reference
vector fields for nonholonomic navigation. The dimension
N of the fields is found to depend on the nonholonomic



constraints. Control design guidelines are proposed and
application examples are given. The perceived advantage
of the proposed method is that the flow lines define a
foliation of submanifolds along which the system can flow
to reach the equilibrium, controlled in a reduced dimensional
space. Steering the system on this foliation is an output
tracking problem, which may be easier than the original
nonholonomic stabilization problem, especially when state
constraints are imposed. Finally, it should be noted that the
2-dimensional dipole-like field in the case of the unicycle
does not coincide with the gradient of dipolar NF as they
have appeared in literature, nor does its construction require
any artificial obstacles.

The remaining of the paper is organized as follows:
Section II provides a brief introduction on Pfaffian con-
straints. Section III describes the electric point dipole and
the proposed dipole-like vector field. In Section IV the con-
nection between the nonholonomic Pfaffian constraints and
the dipole-like field is presented and switching control laws
for the stabilization of the unicycle and of the nonholonomic
double integrator are proposed. Conclusions and thoughts on
further work are summarized in Section V.

II. PFAFFIAN CONSTRAINTS

Consider the class of mechanical systems described by

q̇ = f(q,u), (1)

where q ∈ C is the configuration vector, C ⊂ Rn is the
configuration space, u ∈ U is the vector of m < n control
inputs, U ⊂ Rm is the control space and f : Rn×Rm → Rn
is a vector-valued map describing the system dynamics. The
configuration vector q =

[
q1 · · · qn

]T
is the vector of

generalized coordinates. Assume that (1) is subject to κ < n
constraint equations. Each constraint i is of the form∑n

j=1 aij(q1, . . . , qn, t)q̇j + bi(q1, . . . , qn, t) = 0. (2)

The differential or Pfaffian form of (2) is∑n
j=1 aij(q1, . . . , qn, t)dqj + bi(q1, . . . , qn, t)dt = 0, (3)

and represents a restriction on the amount by which the
generalized coordinates may change in a time interval dt.
We consider the class of nonlinear systems described by (1),
which are subject to κ nonholonomic, time-independent con-
straints (2). The constraint equations are written in compact
form as

A(q)q̇ = b(q), (4)

and may refer to either kinematic or dynamic nonholonomic
systems. Due to space limitations, this paper describes the
construction of dipole-like fields and their connection to
systems with catastatic Pfaffian constraints (b(q) = 0) [36].

III. THE DIPOLE-LIKE VECTOR FIELD

The physical electric dipole is a pair of point charges of
equal magnitude but opposite sign; Q1 = +Q, Q2 = −Q,
separated by a distance 2a, a > 0. Let us consider an electric
dipole in a workspace W ⊆ R2, with the charges located at

x

y

Fig. 1. Flow lines of the Electric Point Dipole.

rQ1 =
[
a 0

]T
and rQ2 =

[
−a 0

]T
respectively, where

rQi ∈ R2 is the position vector of the charge i with respect
to the origin. The dipole moment p of the physical dipole
is defined as p = Q1rQ1 +Q2rQ2 = Q(rQ1 − rQ2) = Qd,
where d is the vector from the negative to the positive charge.

The point dipole is an idealization of the physical dipole,
obtained as the distance between the charges tends to zero,
d → 0, while the dipole moment p is kept constant. Using
polar coordinates, the intensity of this electric field at a point
A is written as [37]

Edip(r, θ) =
(

2p cos θ
4πε0r3

)
r̂ +

(
p sin θ
4πε0r3

)
θ̂, (5)

where (r, θ) are the polar coordinates of the position vector
r of point A and ε0 is a constant. From the definition of a
flow line one has

dr
rdθ

=
Er
Eθ
⇒ dr

rdθ
=

2 cos θ
sin θ

⇒ 1
r

dr =
2 cos θ
sin θ

dθ, (6)

which yields r = R sin2 θ, where R > 0 is a constant
associated with the particular flow line [38]. Thus, as the
distance to the origin tends to zero, r → 0, then sin θ → 0⇒
θ → 0 if x ≥ 0, or θ → π if x < 0, i.e. the flow lines of the
point dipole converge to the origin with direction parallel to
x-axis, see Fig. 1. The flow lines of a point dipole having a
moment p of polar coordinates (p, θ1) always converge to the
origin with direction parallel to p, since they are described by
r = R sin2(θ− θ1). In general, the field of the electric point
dipole, defined by a dipole moment p ∈ R3 in a workspace
W ⊂ R3 is [37]

Edip(r) =
1

4πε0r3
(
3(p · r̂)r̂ − p

)
− 1

3ε0
pδ3(r), (7)

where δ3(·) is a 3-dimensional Dirac function. Using spher-
ical coordinates, one can show that if the field is axial-
symmetric, then the flow lines converge to the origin, parallel
with the dipole moment p.

The behavior of the dipole flow lines around the origin
is the motivation for the control strategy adopted in this
paper. Assume that the dipole moment p ∈ R2 is assigned
at a goal position rG =

[
xG yG

]T
such that its direction

coincides with a desired orientation θG. Then, the resulting
flow lines converge to the goal position rG with direction



θG ± ξπ, ξ = 0, 1. Then, one could claim that the control
objective for the system (1), where q =

[
x y θ

]T
, is to

design a feedback control law u = γ(q) such that the system
reaches the desired configuration qG =

[
xG yG θG

]T
by

following the flow lines as reference paths.
Following (7), the dipole-like vector field is proposed

F(q) =

F1(q)︷ ︸︸ ︷
λ(p · q)q − p+

F2(q)︷ ︸︸ ︷
p exp−‖q‖

2
, (8)

where q ∈ Rn is the vector of generalized coordinates or the
system state vector, p ∈ Rn is the dipole moment, ‖q‖ is the
Euclidean norm of q and λ > 0 is a constant. The vector field
F1(q) defines the direction of the flow lines to be consistent
with the point dipole flow lines, whereas the vector field
F2(q) expresses the n-dimensional Dirac function.

IV. DIPOLE-LIKE VECTOR FIELDS AND NONHOLONOMIC
SYSTEMS

A. The Unicycle

Consider the motion of a robot in a bounded workspace
W ⊂ R2, which is described by the unicycle kinematicsẋẏ

θ̇

 =

cos θ
sin θ

0

u1 +

0
0
1

u2, (9)

where q =
[
x y θ

]T ∈ C ⊂ R3 is the configuration
vector, C is a smooth manifold denoting the configuration
space of the robot, x, y are the position coordinates and
θ is the orientation of the robot with respect to a cartesian
frame G. The control inputs are u1 and u2, i.e. the linear and
the angular velocity of the robot, respectively. Denote u =[
u1 u2

]T ∈ U ⊂ R2 and g1(q) =
[
cos θ sin θ 0

]T
,

g2 =
[
0 0 1

]T
. System (9) is subject to κ = 1 nonholo-

nomic catastatic constraint

[ sin θ − cos θ 0 ]︸ ︷︷ ︸
aT (q)

[
ẋ
ẏ

θ̇

]
= 0⇒ aT (q)q̇ = 0, aT (q)dq = 0.

The constraint implies that the subspace of the infinitesimal
displacements dq at fixed q is given as the kernel (or null
space) of aT (q).

Let us now assume that the goal configuration qG is the
origin. The constraint equation at qG reads[

0 −1 0
]︸ ︷︷ ︸

aT (qG)

[
ẋ
ẏ

θ̇

]
= 0⇒ 〈aT (qG), q̇〉 = 0, (10)

where 〈·, ·〉 stands for the inner product. Thus, the vector
of generalized velocities q̇ at the goal configuration qG is
restricted to lie in the n − κ = 2 dimensional subspace
(hyperplane) V of the tangent space TqG

(C) of C at qG. The
hyperplane V is the set of all q̇ =

[
ẋ 0 θ̇

]T
satisfying

the constraint at the goal configuration qG, see Fig. 2. Thus,
only the n−κ components of q̇ can be chosen independently,
whereas the remaining κ need to be set to satisfy the Pfaffian
constraints [39].

Fig. 2. The hyperplane V serves locally as the n−κ dimensional constraint
surface at the goal configuration qG, whose normal is the constraint vector
aT (qG). The allowed generalized velocities q̇ at qG lie tangent to V .

Having a geometric interpretation of the Pfaffian con-
straint, one is interested in designing a dipole-like field F(q)
such that its flow lines
• converge to the goal configuration qG,
• are consistent with the constrained dynamics.
We call a flow line consistent if its tangent vector satisfies

the Pfaffian constraint. For the unicycle, the flow lines of a
3-dimensional vector field F(x, y, θ) = Fxx̂ + Fyŷ + Fθθ̂
should satisfy

[ sin θ − cos θ 0 ]︸ ︷︷ ︸
aT (q)

[
Fx
Fy
Fθ

]
= 0⇒ Fx sin θ − Fy cos θ = 0. (11)

Note that the Fθ component of the field does not affect
whether the constraint is satisfied. In this case, one can define
a N = 2 dimensional dipole-like field, in terms of Fx, Fy
only, with Fθ = 0. (This decision is system-dependent.)

The field is generated by a dipole moment p ∈ RN so
that the flow lines converge to qG having tangent vectors
that satisfy the Pfaffian constraint. This condition is equiv-
alent with the requirement that the vector p satisfies the
Pfaffian constraint at qG, 〈aT (qG),p〉 = 0, which holds
for p =

[
p 0 θ

]T
, for any θ. Nevertheless, since the

field is defined in a N = 2 dimensional subspace of Rn,
one can simply choose p =

[
p 0

]T ∈ RN , neglecting
thus the generalized coordinate that is not involved with the
satisfiability of the nonholonomic constraint. Taking (7), and
ignoring the p

4πε0r3
factor, one gets a simple choice of a

dipole-like vector field:

Fx = 2 cos2 φ− sin2 φ, Fy = 3 sinφ cosφ, Fθ = 0,

with (r, φ) being the polar representation of (x, y). The flow
line equation is dr

dφ = 2r cosφ
sinφ , and assuming that the unicycle

vector field is initially aligned to the flow line tangent vector,
implying 3xy cos θ+(y2−2x2) sin θ = 0, we can verify that
the flow line is consistent, by computing the derivative of the
above condition and verifying that the choice of inputs

u1 = −y[(y2 − 2x2) cos θ − 3xy sin θ − 4x sin θ cos θ],

u2 = 2x2 sin2 θ + y2 cos2 θ + 1 6= 0,



keeps the system on the flow line. To design the stabilizing
control law, define the projection of F(q) on a(q) as the
system output,

h(q) , 〈aT ,F〉 = 0.5[3 sin(2φ− θ)− sin θ],

and seek a control law that stabilizes h(q) to zero. One can
verify that the choice of u2

u2 =
2kh(q)

3 cos(2φ− θ) + cos θ

− 6u1(x sin θ − y cos θ) cos(2φ− θ)
r2(3 cos(2φ− θ) + cos θ)

, (12)

with k > 0, renders the closed loop dynamics of h(q)
exponentially stable: ḣ = −kh. Note that in (12), the term
3 cos(2φ − θ) + cos θ appearing in the denominator may
become zero. To avoid this singularity one may resort to
switching and set:

u2 =

{
2kh(q)−6u1r

−2(x sin θ−y cos θ) cos(2φ−θ)
r2(3 cos(2φ−θ)+cos θ)

, |3 cos(2φ−θ)+cos θ|>ε

k(θd−θ), |3 cos(2φ−θ)+cos θ|≤ε,
(13)

where θd denotes the direction of F, and ε is a small constant.
Setting arbitrarily a constantly positive forward speed for the
unicycle, u1 = tanh r,1 one obtains a closed loop system that
converges to qG following the flow lines of F (see Fig. 3,
4, 5).
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Fig. 3. Closed loop behavior of a unicycle, initialized at (x, y, θ) =
(0.1, 0.5,−π

2
), with a control law forcing it to follow the flow lines of a

dipole-like vector field.

1Although it is possible to set u1 as proportional to r2, to cancel the
effect of r2 in the denominator of (12), the choice made here yields faster
convergence.
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Fig. 4. State trajectories for the unicycle tracing the path shown in Fig. 3.

B. Brockett’s Nonholonomic Double Integrator

Consider the nonholonomic double integratorẋ1

ẋ2

ẋ3

 =

 1
0
−x2

u1 +

 0
1
x1

u2, (14)

where q =
[
x1 x2 x3

]T
is the state vector, g1(q) =[

1 0 −x2

]T
and g2(q) =

[
0 1 x1

]T
are the control

vector fields. The κ = 1 nonholonomic constraint is

[
x2 −x1 1

]︸ ︷︷ ︸
aT (q)

ẋ1

ẋ2

ẋ3

 = 0⇒ 〈aT (q), q̇〉 = 0. (15)

The constraint vector at the origin is aT (qG) =
[
0 0 1

]
.

Thus, generalized velocities q̇ are restricted to lie in the n−
κ = 2 dimensional hyperplane V of the tangent space TqG

(C)
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(a) The denominator in (12).
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Fig. 5. As the denominator expression in (12) crosses zero from negative
to positive values, near simulation time 0.04, the control input u2 switches
between the two branches of (5). What keeps the input u2 bounded is that
it is given by the lower branch of (5) for that short time period of the
transition. Here ε is set at 10−3.

at qG, which is the set of all q̇ =
[
ẋ1 ẋ2 0

]T
that satisfies

(15), see Fig. 6. The field F(q) = Fx1 x̂1 + Fx2 x̂2 + Fx3 x̂3

Fig. 6. The hyperplane V serves locally as the n−κ dimensional constraint
surface at the goal configuration qG, whose normal is the constraint vector
aT (qG). The allowed generalized velocities q̇ at qG lie tangent to V .

should satisfy the constraint equation

[ x2 −x1 1 ]︸ ︷︷ ︸
aT (q)

[ Fx1
Fx2
Fx3

]
= 0⇒ Fx1x2 − Fx2x1 + Fx3 = 0. (16)

In this case, (16) requires a N = 3 dimensional dipole-
like field, in terms of Fx1 , Fx2 , Fx3 , that is dependent on
the full state vector q. A dipole moment p satisfying the
nonholonomic constraint at the goal configuration qG gives

Fig. 7. Response of x1, x2, x3 under the control law (17). x3 converges
to zero faster than x1, x2, as expected. Actually, x3 → 0 exponentially, as
verified by the closed loop dynamics: ẋ3 = (−k + k1)x3, where k1 < k.

〈aT (qG),p〉 = 0, which holds for p =
[
p1 p2 0

]T
, p1,

p2 ∈ R. With p =
[
1 0 0

]T
and λ = 1, (8) yields: Fx1 =

x2
1−1+exp−(x2

1+x
2
2+x

2
3), Fx2 = x1x2, Fx3 = x1x3. The field

is symmetric with respect to the axis of the dipole moment
p. Condition (16) can serve as an output to be regulated,
h(q)→ 0, so that the system vector field is aligned with the
dipole field. By substituting the field components Fx1 , Fx2 ,
Fx3 in (16) one has

h(q) = x1x3 − x2[1− exp−(x2
1+x

2
2+x

2
3)].

This condition suggests that the system can be stabilized with
a strategy that brings first x3 → 0 and then x2, x1 → 0,
i.e. in a way such that x3 converges faster than x1, x2 to
zero. This is consistent with other relevant control designs
for Brockett’s integrator [19], [20].

A simplified field of the form F(q) = λ(p · q)q, where
λ = 1, Fx1 = x2

1, Fx2 = x1x2, Fx3 = x1x3, enables an
easier controller design, since now h(q) = x1x3. Then, if
x1 6= 0, choosing u2 = −k x3

x1
− x3−x2x1

x2
1

u1, where k > 0
and u1 = −k1x1, where k1 > 0, results in ḣ = −kh. Since
x1 = 0 results in F = 0, a stabilizing switching strategy can
be formulated as:

u1 =
{
−k1x1, if x1 6= 0
−k3x3, if x1 = 0 (17a)

u2 =
{
−k x3

x1
− x3−x2x1

x2
1

u1, if x1 6= 0
−k2x2, if x1 = 0

(17b)

where k2, k3 > 0. The closed loop system response is given
in Fig. 7.

V. CONCLUSIONS

The goal of this paper is to suggest a framework for motion
planning of systems with Pfaffian constraints, in which
guidelines for a stabilizing control design can be established
in a uniform way across different dynamics. The control law



examples presented, therefore, may not claim performance
but rather demonstrate that the same design rules can be used
for different systems. The basic idea is that one can define a
dipole-like vector field, the flow lines of which are consistent
with the constraints imposed, and then regulate to zero
an output expressing the misalignment between the system
vector field and the dipole-like field, in order to stabilize the
constrained dynamics. Preliminary work suggests that this
idea may be compatible with artificial potential field methods
used for robot navigation, in which case the development of
a new, unified framework for stabilization under combined
holonomic and nonholonomic constraints may be feasible.
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