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1 Introduction

Planning algorithms and navigation strategies have almost entirely aimed at
avoiding collisions, with the obstacles and workspace boundaries serving to im-
pose constraints on robot paths [1]. In the past, robots structural and internal
components were expensive, fragile, and in general not considered dispensable,
which clearly motivated the urge for collision avoidance. Today, however, new
methods for manufacturing and the development of affordable, smaller scale elec-
tronics have enabled the development of a different class of robots that can either
withstand collisions, or be considered dispensable when they do not always sur-
vive them. There has even been evidence that robotic missions can benefit from
contact with the environment [2, 3]. Yet efforts to understand, implement, and
exploit such behaviors are still at their infancy.

Boundary following is one exception, having its roots in early bug algorithms
where the presence of obstacles actually allows provable convergence [4]. In fact,
insects commonly collide with their boundaries continuing with no ill-effect [5].
Several aerial robots have been developed demonstrating similar behavior, with
intentional mechanisms adding robustness to collisions [6, 7]. Early work demon-
strates the potential for physical robot-environment interaction to contribute in
new strategies for motion planning [8].

Compared to aerial robots, ground mobile robots offer more room for the
designer to make them robust to collisions, add shielding, and even employ
mechanisms to exploit boundary interactions. Small-scale platforms in partic-
ular, have been shown to benefit by colliding with their boundary; traveling on
new, sometimes improved paths after a collision [3], or offering a foothold to
improve mobility after a collision [9].

Despite progress toward developing robust, collision resistant platforms, math-
ematical models that capture impact behavior, and planners that intensionally
incorporate these behaviors are currently under-developed. One model that has
been used to capture reflections in terms of a coefficient of restitution [10], pro-
vides a simplified proof of concept, but it does not go as far as capturing the
uncertainty that is inherent in robot-boundary interaction. A stochastic model
that could capture the mechanics of collision, recovery, as well as failure, could
be particularly useful in exploiting such phenomena in low-friction or high speed
scenarios [11].

This paper identifies such a model, based on existing mathematical mod-
els for partially reflected diffusions [12]. We construct a ground mobile robot
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called Omnipuck as an experimental testbed for validating the hypothesis that
the mathematics of partially reflected diffusions fit well in the context of robot-
environment collisions. Omnipuck is designed to benefit from impact events by
storing/releasing potential energy during collisions. The preliminary results re-
ported in this paper have utilized the Omnipuck to match probability distri-
bution parameters and thus compare analytical results to experimental reflec-
tion data. The results suggest that the partially reflected diffusion model shows
promise in describing robot-environment physical interaction phenomena, as well
as predicting not only the aftermath of collisions (excluding the possibility of
failure, at this moment) but also the evolution of the system during the process.

2 Technical Approach

Post collision behavior is studied as a partially reflected diffusion [12], capturing
the position of the robot after surviving a collision in the form of a distribution.
An absorption parameter controls the rate at which sample paths reaching the
bandwidth are not reflected back —this percentage models the rate at which
collisions lead to failure. The stochastic model seems appropriate to capture not
only the possible variability in the motion of the robot during the collision phase,
and the uncertainty regarding both the contact point, as well as the location the
robot will find itself after bouncing off.

Partially reflected diffusions [12] are characterized by a drift term a(x, t), and
a diffusion term σ(x, t) > 0. In practice, these terms —especially the latter—
are experimentally estimated. In this paper, we assume decoupled motion along
each direction, assumption which allows the analysis to proceed with a single-
dimensional model for the motion along each direction.

If x expresses the state (read: position) of a particle along a positive semiaxis
(with zero marking the workspace’s boundary), then the stochastic motion of
the particle may be modeled as

dx = a(x, t) dt+
√

2σ(x, t) dw (1)

The solution of (1) with partially absorbing boundaries has been defined
[12] to be the limit of the solutions of a Markov jump process x∆t, which for
s ≤ t ≤ s+ T <∞ and ∆t = T

N for N ∈ N, is generated by the Euler scheme

x∆t(s) = x

x∆t(t+ ∆t) = x∆t(t) + a
(
x∆t(t), t

)
∆t+

√
2σ
(
x∆t(t), t

)
∆w(t,∆t)

(2)

where the random variables ∆w are normally distributed with zero mean and
variance ∆t. In the Euler scheme of (2), the absorption at the boundary is mod-
eled through the boundary conditions. Let R denote the probability of reflection,
i.e., the event that the robot bounces off undamaged, and define [12]

P , lim
∆t→0

1−R√
∆t
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Then the boundary conditions for (2) are activated whenever it is detected that
the next iterate of (2) has crossed the (zero) boundary, namely when

x∆t(t) + a
(
x∆t(t), t

)
∆t+

√
2σ
(
x∆t(t), t

)
∆w(t,∆t) < 0

in which case it is reset to

x∆t(t+ ∆t) :=x∆t(t) + a
(
x∆t(t), t

)
∆t+

√
2σ
(
x∆t(t), t

)
∆w(t,∆t) w.p 1− P

√
∆t

process terminates w.p. P
√

∆t
(3)

When the process terminates in (3) it is understood as a catastrophic failure of
the robot after the collision.

The Fokker-Planck equation (fpe) associated with (1) is [12]

∂p(y, t|x, s)
∂t

= −∂ a(y, t) p(y, t|x, s)
∂y

+
∂2 σ(y, t) p(y, t|x, s)

∂y2
(4)

with initial condition p(y, t|x, s) → δ(y − x) as t ↓ s, and radiation boundary
condition

a(0, t) p(0, t|x, s)− ∂ σ(0, t) p(0, t|x, s)
∂y

= −κ p(0, t|x, s)

with κ =
P
√
σ(0,t)√
π

denoting the reactive coefficient related to the probability of

absorption at the boundary y = 0 [12].
In one dimension, and for constant a and σ, the fpe (4) has an explicit

solution with initial condition x(0) = x0 [12]

p(x, t|x0) =

a√
4πσt

exp

{
− (x− x0 − at)2

4σt

}
+ exp

{
−ax0

σ
− (x− x0 − at)2

4σt

}
− 2κ+ a

2σ
exp

{
ax+ κ

[
x+ x0 + (κ+ a)t

]
σ

}
erfc

[
x+ x0 + (2κ+ a)t√

4σt

]
(5)

The goal now is to express the distribution of the location of the robot after
impact, and as soon as it is capable of reassuming control of its motion, by a
probability distribution function of the form (5), with time t counting from the
time of impact (Fig. 1).

In order to validate the hypothesis that (5) can capture the outcome of
workspace boundary collisions, at least in a single-dimension, we constructed
a collision -tolerant, omni-directional ground mobile robot (Fig. 2). Its omni-
directional wheels allow it to independently generate motion along directions
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Fig. 1. How the density given in (5) changes over time. As time t increases, the peak
of p(x, t|x0) shifts to the right of the boundary x = 0.

on the Cartesian plane A specially designed ring surround the robot including
embedded springs that allow impact energy to be stored and redirected. The
Omnipuck was designed by a combination of 3D printing and off-the-shelf com-
ponents. This afforded flexibility for iteration of the design and reduced the time
and cost of assembling the platform. The omni-wheels can be used in multiple
configurations; in this particular case, three wheels were chosen because they
maintain consistent ground contact and require only three motors controlling
the origin of a body centered robot frame in R2.

(a) (b) (c)

Fig. 2. The Omnipuck robot constructed to study workspace boundary reflections. (a)
an Atmega 328 micro-controller sits at the core of the Omnipuck and controls motors
through pwm to three independent motor controllers; (b) a reflection ring provides
robustness to collision while storing/redirecting impact energy; (c) nine equally spaced
springs encompass the robots perimeter.

3 Results

The parameters of the reflection model (5) are estimated experimentally, based
on a body of trajectory data collected from 500 head-on collisions with the
Omnipuck. Each one of these experiments proceeded as follows. The robot was
positioned automatically to the same initial position, at a distance of x0 = 1.866
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m relative to the reflection boundary, and then commanded to travel in a straight
line perpendicular into a synthetic wall boundary at a velocity of 2 m/s. Data
collection for the experiment ceases when the collision is detected by the on-
board accelerometer. For this body of data, a final time of t = 2.366 seconds,
and setting κ = 0 (pure reflection), the parameters of (5) were estimated at
a = 0.01943 and σ = 2.9145× 10−5.

A histogram of the final positions recorded is shown in Fig. 3(a), where one
can also see an empirical probability distribution function is fitted over these
data. Next to this figure, in Fig. 3(b) one can see how this empirical density
function compares to the theoretical model (5) when parameterized with the
estimated values of a and σ given above.
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(b)

Fig. 3. Matching data to model. (a) a histogram of the positions recorded at (total)
time t = 2.366, and an empirical density function that is constructed based on the
histogram; (b) comparison of the empirical density (dashed) with the model (5).

We anticipate that if a larger sample size becomes available, the bi-modal
aspect of the empirical distribution of Fig. 3(a) will subside, allowing even better
matching to the theoretical model.

4 Scheduled Experiments

The results obtained herein will be extended in three ways. First, we will test
the efficacy of the partially reflected diffusion model for capturing reflection
behaviors at different wall angles and velocities. We will identify nominal model
parameters that best capture experimental data and support the hypothesis that
reflection behaviors can be well captured by a partially reflected diffusion model.

Next, we will collect N=250 sample paths for 30, 45, 60 degree collision angles
and provide these results as a set of motion primitives for extension into planning
and navigation strategies. Finally, we will quantitatively compare ”there-and-
back” experiments for free space and reflection scenarios in order to validate the
proposed benefits.
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5 Main Experimental Insights

The preliminary analysis conducted suggests that the effect of physical robot-
environment interactions on the robot position can be captured in the form of
analytically defined probability distributions with parameters capable of captur-
ing not only the location of the robot after impact, but also the possibility for
terminal, catastrophic collisions. The theoretical model suggested shows promise
in being able to describe this phenomenon probabilistically, and thus develop into
a crucial component of motion planners that seek to exploit collisions between
robust (or dispensable) robot designs and their surrounding environment, when
the trade-offs between the risk of failure and the probability of improving mission
objectives through collisions appear favorable.
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