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ABSTRACT

Miniature autonomous systems are being developed under ARL’s Micro Autonomous Systems and Technology
(MAST). These systems can only be fitted with a small-size processor, and their motion behavior is inherently
uncertain due to manufacturing and platform-ground interactions. One way to capture this uncertainty is through
a stochastic model. This paper deals with stochastic motion control design and implementation for MAST-
specific eight-legged miniature crawling robots, which have been kinematically modeled as systems exhibiting
the behavior of a Dubin’s car with stochastic noise. The control design takes the form of stochastic receding
horizon control, and is implemented on a Gumstix Overo Fire COM with 720 MHz processor and 512 MB RAM,
weighing 5.5 g. The experimental results show the effectiveness of this control law for miniature autonomous
systems perturbed by stochastic noise.
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1. INTRODUCTION

This paper is motivated by the objective of controlling miniature bio-inspired crawling robots which are being
developed under ARL’s Micro Autonomous Systems and Technology (MAST) (Fig. 1(a)). The dynamics of these
robots is inherently stochastic due to a variety of reasons, including size, manufacturing process, compliance,
ground interactions, and battery charge fluctuations.1,2 Due to this stochastic uncertainty, many deterministic
control approaches may not produce acceptable results. For miniature systems, such as one shown in Fig. 1(a),
it is also desirable to have controllers that are input-optimal and computationally efficient, because of severe
limitations in terms of payload and available energy storage capacity. Our goal in this work is to demonstrate ap-
plication of input-optimal stochastic receding horizon controllers3,4 for autonomous navigation of these miniature
robots.

The OctoRoACH platform (Fig. 1(a)), the specific robot used for this work, is developed at University of
California, Berkley1 under MAST. The controller on-board this platform can receive left-right motor pulse width
modulation (PWM) signal commands through 802.15.4 radio and a lower-level cyclic rate control is implemented
on-board using motor back EMF feedback.1 The robot turns through differential steering. The turning rate
is observably inconsistent due to the uncertainty in the mechanics of the robot and the variation in friction
on different surfaces. To increase the turning rate, a dynamic turning control was demonstrated using a tail
attachment.1 Due to stochastic nature of this platform, a lot of effort has been on modeling of the stochastic
kinematics2,5 and on the performance analysis of this platform on different surfaces.6 There has also been
work on different steering mechanisms for similarly constructed hexapods.7,8 To our knowledge, there does not
exist any work on higher level control of this OctoRoACH platform, for deliberative navigation with obstacle
avoidance.

For the purpose of achieving autonomous control of these 8-legged walking robots, one needs have a math-
ematical model. It was shown that under certain conditions, the dynamics of similar type of walking robots
with differential drive mechanisms can be reasonably approximated in the form of a unicycle.9 We model the
OctoRoACH as a stochastic Dubin’s car type model, as this OctoRoACH robot walks only in forward direction.
Figure 1 shows a comparison of experimentally observed OctoRoACH trajectories for a straight, a left and a
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right motion command with simulated trajectories of a stochastic Dubin’s car equation. The system parameters
are identified by observing a set of open loop trajectories. In addition to actual stochastic uncertainty of the
platform, the mis-match of the model and actual robot is captured in the stochastic noise.
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(c) OctoRoACH experimental trajectories

Figure 1. Comparison of simulated trajectories of a stochastic Dubin’s car model with observed trajectories of an Oc-
toRoACH platform.

1.1 Related Work and Scope

There exist deterministic control methods for Dubin’s car type vehicles,10 but it is unclear whether these control
methods are robust under the effect of stochastic uncertainty. On the other hand, there has been recent efforts
on directly considering stochastic uncertainty during control design.3,4, 11,12 For stochastic Dubin’s car type
vehicles, there are minimum-expected-time controllers11 computed using the Hamilton-Jacobi-Bellman (hjb)
partial differential equation (pde), however obstacle avoidance is not addressed. A stochastic target tracking
problem has also been considered for Dubin-type vehicles.13 The application of obstacle avoidance for stochastic
Dubin-type vehicles is considered within the problem of maximizing the probability of satisfying a temporal
logic specification,12 however this method produces an open loop trajectory and not a feedback motion plan. To
construct a feedback motion plan capable of achieving obstacle avoidance and convergence to the goal, we apply
solution of a local stochastic optimal control problem in a receding horizon manner. This is achieved by first
computing a set of intermediate goals (or waypoints) that lead to the global goal set. The stochastic optimal
controller is computed off-line and applied on-line to achieve convergence to each intermediate goal set.

For general nonlinear systems, there exist formulations of the stochastic optimal control problem.14–17 For
a specific stochastic optimal control problem, a logarithm transformation14 can be used that linearizes the
associated hjb pde, and enables solutions using path integral methods.16 Path integrals have been used for
control design in applications ranging from reinforcement learning,17 to variable stiffness control,18 risk sensitive



control,19 and more recently, receding horizon-based robot motion planning.3,4 Although theoretically possible,
global solutions of stochastic optimal control problem become intractable or inaccurate as the workspace becomes
non-convex and large. Our receding horizon-based framework can provide sub-optimal solutions3,4 even in case
of large non-convex workspaces by using appropriate planning method. The theoretical foundations of stochastic
optimal control with exit constraints15 was used in a recursive fashion3,4 to achieve probabilistic guarantees
of reaching each intermediate goal sets. While the aforementioned work3,4 applies stochastic receding horizon
control to holonomic systems and tests it in simulation, in this paper, we demonstrate through experimentation,
the application of the same method to nonholonomic stochastic Dubin’s car type vehicles and achieve convergence
to a goal while avoiding workspace boundary. The associated hjb pde is computed off-line using a novel
computation method based on an application of the Feynman-Kac Lemma20 (see also15,17). The solution of the
pde yields a numerical potential field that steers the stochastic system away from the workspace boundary and
toward the target set. The experiments were performed on a OctoRoACH platform while the receding horizon
controller was implemented on a Gumstix computer-on-module (COM) with 720 MHz processor and 512 MB
RAM, weighting 5.5 g. The objective was to travel a narrow wall like structure without hitting the boundary
(which will result in fall) while achieving convergence to intermediate waypoints.

1.2 Organization

The paper is organized in the following way. Section 2 states the problem. It is followed by Section 3, which gives
technical details of our input-optimal stochastic receding horizon control framework. Section 4 presents details
of experimental evaluation of our controller on OctoRoACH platform followed by Section 5 which concludes this
paper.

2. PROBLEM STATEMENT

Let D ⊆ R2 × S is the obstacle free workspace. Let Di ⊂ D be open bounded domains with each set having a
closed set E i ⊂ Di, where i = 1, . . . , N . Assume that the boundary of Di, denoted ∂Di and the boundary of E i,
denoted ∂Ei, are described by a twice differentiable function (i.e., in C2), and consider a Dubin’s car perturbed
with stochastic noise evolving in Di \ E idx
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where q = [x, y, θ]ᵀ ∈ R2 × S is the state, v is a fixed linear velocity, ω is the angular velocity input, b(q) :
R2 × S→ R3 is the uncontrolled drift term, G(q) : R2 × S→ R3×1 is the control matrix, ui(q) : R2 × S→ R1 is
the control input, and Σ(q) : R2 × S → R1 is a state-dependent variance. Let W = {W (t),F(t) : 0 ≤ t < ∞}
model a 1-dimensional Brownian motion on the probability space (Ω,F ,P), where Ω is the sample space, F is
a σ-algebra on Ω, P is a probability measure, and {F(t) : t ≥ 0} is a filtration (i.e., an increasing family of
sub-σ-algebras of F), assumed right-continuous and such that F0 contains all P-null (of measure zero) sets.20

Problem 1 (Stochastic Receding Horizon Control). Find a sequence of feedback control laws
{ui(q)}Ni=1 for each set Di for system (1), such that if given a set of waypoints {qi}Ni=1, q0 = q(0), qi ∈ Di∩Di+1

the application of {ui(q)} to (1) results in sample paths q(t) that achieve

(i) P
[
q(t) ∈ ⋃N

i=1Di

]
= 1, ∀t > 0 (almost-sure safety);

(ii) P
[
∃ ti <∞ : ‖qi − q(ti)‖ < ε, i = 1 . . . N

]
= 1 (almost-sure convergence with accuracy ε > 0);

(iii) E
[∫ ti

ti−1
L
(
q(s), ui(s)

)
ds+ Φ

(
q(ti)

)]
is minimized, where ti−1 and ti are the first times q(t) enters an ε-

neighborhood of qi−1 and qi (ti − ti−1 = τi), respectively, and Φ(q) : Rn → R+ is a terminal cost function
(local optimality).



In other words, the problem is to find N intermediate goal sets, and then design local stochastic optimal
controllers acting on small sub-domains of the workspace defined as Di, each containing previous and current
intermediate goal set, to make the system transition in finite time from one goal set to the next. The controllers
minimize a cost functional which penalizes input effort and provide a probabilistic guarantee of convergence at
an intermediate goal set in finite time.

3. STOCHASTIC RECEDING HORIZON CONTROL DESIGN

The following section describes the main mathematical framework of stochastic receding horizon control. We
refer to our previous work3,4 for more rigorous treatment of this framework.

3.1 Planning & waypoint generation
The stochastic receding horizon algorithm begins by computing an obstacle free reference path which can be
re-planned at specific time intervals. The reference path is computed without consideration of noise and hence
deterministic planning methods can be used. In our previous work3,4 we have used a receding horizon approach21

to obtain such a reference path, however a multitude of alternative methodologies, including potential field
methods,22 rapidly exploring random trees rrts,23 or cell decomposition methods10 can also be used. The
planning problem is assumed to be solved here, and for the purpose of this paper, the path planning stage is not
described. Instead, we assume that through one of the above methods we are able to determine N successive
waypoints leading to the goal qN where, q0 = q(0). For waypoints qi = [xi, yi, θi]ᵀ we define the intermediate
goal sets as

E i , {q ∈ Di :
√

(x− xi)2 + (y − yi)2 ≤ ε, ∀θ, θi ∈ S}, i = 0, . . . , N .

We want to design controller ui, that can drive the system within domain Di and ensure convergence to
E i, and the controller is switched to ui+1 on the state hitting the boundary ∂Ei. This requires the condition
that E i, E i+1 ∈ Di, i = 0, . . . , N − 1. Moreover, we also impose a condition that the intermediate goal sets
are disjoint, which leads to a condition on waypoints,

√
(xi−1 − xi)2 + (yi−1 − yi)2 > 2ε, i = 1, . . . , N . We

define domains Di ⊂ D around these waypoints that satisfy E i, E i+1 ∈ Di. It is important to remember that
definition of domains Di and waypoints can be a parallel process if there are constraints of keeping domains Di

free of obstacles as discussed in our previous work.3,4 Figure 2 shows an illustrative example of definition of
domains Di and intermediate goal sets E i around waypoints qi. Once the set of waypoints are determined, a set
of stochastic optimal controllers are used in a recursive way to achieve convergence to each waypoint qi. The
stochastic optimal controllers are computed as described in the following section.

∂Ei
∂Di

qi−1 Di \ E i

qi

Figure 2. Illustration showing domains Di and intermediate goal set Ei.

3.2 Stochastic optimal controllers
The system state is a Markov process q(t) that evolves between way-points according to the sde

dq(t) = b
(
q(t)

)
dt+G

(
q(t)

)[
ui

(
q(t)

)
dt+ Σ

(
q(t)

)
dW (t)

]
given q(0) = q0 .

(2)

where we assume that b(q), G(q), Σ(q), and Σ−1(q) are bounded and Lipschitz continuous on Di and together
with ui, are all bounded in Di. The latter is the control input responsible for taking the state from ∂Ei−1 to ∂Ei
while avoiding ∂Di. Let ti is the first time q(t) hits the boundary of ∂(Di \ E i)



When (2) under ui hits ∂Ei at some time ti, it undergoes a forced transition with ui switching to ui+1, and
the switch occurs upon the state hitting a part of the boundary ∂Ei. Control law ui gives a solution to the
stochastic optimal control problem

min
ui

E

"Z ti

ti−1

1

2
uᵀ

i (q(s)) a−1(q(s))ui(q(s)) ds+ Φ
(
q(ti)

) ∣∣∣ q(ti−1) = q

#
=: Vi(q) (3)

where a(q) = Σ(q)Σᵀ(q) and the terminal cost Φ is chosen in theory as

Φ =

{
0 on ∂Ei
∞ on ∂Di

.

This terminal cost Φ imposes an infinite penalty for hitting the boundary of Di. The hjb equation associated
with (3) is24

min
ui(q)

{
AVi(q) +

1
2
uᵀ

i (q)a−1(q)ui(q)
}

= 0 (4)

where A is the second-order partial differential operator

A ,
(
b(q) +G(q)ui(q)

)ᵀ ∂

∂q
+

1
2

tr

[
a(q)

∂2

∂q2

]
.

The optimal control law u∗i that solves (4) is

u∗i (q) = −a(q)Gᵀ(q)
∂Vi(q)
∂q

. (5)

Substituting (5) in (4) and applying the logarithmic transformation14 Vi(q) = − log gi(q), yields

bᵀ(q)
∂gi(q)
∂q

+
1
2

tr
{∂2gi(q)

∂q2
G(q) Σ(q) Σᵀ(q)Gᵀ(q)

}
= 0 (6)

with boundary conditions {
gi

(
q(ti)

)
= 1 if q(ti) ∈ ∂Ei

gi

(
q(ti)

)
= 0 if q(ti) ∈ ∂Di

.

Using the Feynman-Kac formula,20 the solution of (6) becomes

gi(q) = P
[
ζi(τ) ∈ ∂Ei | ζi(0) = q

]
(7)

where ζi(t) is the Markov process

dζi(t) = b
(
ζi(t)

)
dt+G

(
ζi(t)

)
Σ
(
ζi(t)

)
dW (t) (8)

evolving on Di \ E i and τ is the first exit time for process ζi(t).

The optimal control (5) can thus be computed as

u∗i (q) = −a(q)Gᵀ(q)
∂

∂q
log P

[
ζi(τ) ∈ ∂Ei | ζi(0) = q

]
. (9)

Since there is infinite penalty for hitting the boundary of Di, if an optimal control law exists, it ensures that
the system exits at the goal boundary E i with probability one. This exit occurs in finite time, i.e., E[ti | q(ti−1) =
q] <∞ ∀q ∈ Di \ E i, if [20, Lemma 7.4]

min
q∈Di\Ei

all(q) > 0 (10)



for some 1 ≤ l ≤ m. The assumption that Σ and Σ−1 are bounded, ensures all is nonzero and positive for some
1 ≤ l ≤ m, hence satisfies (10). Assuming that an optimal control input u∗i exists, imposing infinite penalty on
exit through ∂Di is equivalent to a constraint (see15)

P
[
q(τ) ∈ ∂Di | q(0) = q

]
= 0 .

The above constraint means that the stochastic optimal controller ensures that the robot avoids obstacles and
converges to the goal set with probability one in finite time; hence it satisfies all the requirements of problem
statement, namely, almost-sure safety, almost-sure convergence in finite time and minimization of cost. The
caveat is that infinitely large inputs may be required arbitrarily close to the workspace or obstacle boundary
(∂Di). Since, realistically, control inputs are always bounded, depending on the magnitude of noise and control
input bounds, the true probability of success of convergence to goal is actually smaller—and can be estimated
using methods in.25

Given a sequence of waypoints {qi}Ni=0, the process of transitioning from waypoint qi−1 to waypoint qi under
(9) is repeated. By the time a new waypoint is reached, the reference path can be recomputed in a receding
horizon manner, and the waypoint sequence {qi}Ni=0 can be redefined with the initial element q0 being the way-
point just reached. What is important for real-time implementation is that for predetermined domains Di, the
optimal control law u∗i (9) can be precomputed off-line.

4. EXPERIMENTAL EVALUATION

Figure 3 shows the experimental setup used in this paper. Figure 3(a) shows the coordinate system and Oc-
toRoACH dimensions, while Fig. 3(b) shows the workspace boundary in thick black line. For this experiment,
it is required to have a map of workspace, which can be either observed using onboard sensors such as a camera
or laser or it can be known a priori. Here it is assumed that the map was provided a priori, and a sequence of
waypoints with initial condition {qi}5i=0, q0 = q(0) is given. Figure 3(b) also shows the domains Di constructed
around these waypoints along with the intermediate goal sets E i.
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Figure 3. (a) Platform dimensions and the coordinate system (b) Workspace divided into domains Di and intermediate goal
sets Ei, dotted lines show overlapping boundary of the next domain (c) Experimental setup showing different components
involved. The complete experiment was performed using ROS (Robot Operating System).

Two parameters in the stochastic Dubin’s car model (1) are required to be identified, which are linear
velocity v and variance Σ. These parameters are approximated based on open loop observed trajectories. We
approximated the constant linear velocity in our model to be 20 mm/s and constant variance Σ = 0.25 mm/s.
With these model parameters, the stochastic optimal controller is computed in an off-line manner by simulating
(8) and computing g(q) using (7), which is part of the control input. A grid is created on the set Di \ E i and the
process (8) is simulated at each grid point for 500 sample paths. Based on the outcome of these sample paths, g(q)
is computed using (7) for each grid point. Finally, the control input is computed by taking numerical gradient
of g(q). The optimal control input is computed off-line for a set of bounded domains with different objectives



and boundary definitions, which can be used repetitively. We identified three different shapes of domain Di, and
corresponding functions g(q) are shown in Fig. 4. This figure shows a three slices in a four-dimensional data
space, with color representing the forth dimension—the value of the function g(q). These controllers are used in
a receding horizon manner to achieve each waypoint as an intermediate goal.
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(c) Right turn controller

Figure 4. The function g(q) for three different domain shapes. Function g(q) was computed off-line for each of these
domain. Value of g(q) is shown using a color-map at three different angles for each of the controllers.

Figure 3(c) shows the flow of information for the experimental setup. The stochastic receding horizon con-
troller was executed on a Gumstix Overo Fire COM board running at 720 MHz with 500 MB RAM. While
linear velocity is fixed, the stochastic controller generated optimal angular velocity commands which were then
converted into six discrete motion commands to be executed by OctoRoACH as shown in Table 4. A 2 GHz

Table 1. Continuous angular velocity commands mapping to discrete input motor gains.

Command Name Required angular velocity (ω
[rad/s]) Applied input motor gains

Stop 0 [0, 0]
Straight −0.0625 ≤ ω ≤ 0.0625 [80,80]
Clockwise Turn −0.125 ≤ ω ≤ −0.0625 [80,40]
Sharp Clockwise Turn ω ≤ −0.125 [90, 0]
Counter-clockwise Turn 0.125 ≥ ω ≥ 0.0625 [40,80]
Sharp Counter-clockwise Turn ω ≥ 0.125 [90, 0]

linux machine was used as a communication server. The state feedback was obtained at 50 Hz through a Vicon R©

motion capture system; however the stochastic controller used feedback only at 3 Hz due to constraints imposed
by the robot’s firmware, although the Gumstix processor is able to execute stochastic controller at a frequency
higher than 20 Hz. For the given five waypoints, we concatenated controllers in the sequence {Straight Con-
troller, Straight Controller, Left Controller, Right Controller, Straight Controller} and the resulting path of
the OctoRoACH is shown in Fig. 5(a) along with the input motor gains applied to the robot. Figures 5(b)
and 5(c) shows the time trajectories for x − y and θ components. The goal was to reach the final waypoint
[x, y, ·]ᵀ = [0, 50, ·]ᵀ mm with any orientation.

The theoretical framework of stochastic receding horizon control provides probability one of reaching goal set
without hitting the outer (or obstacle) boundary. However, due to various approximations (state-time discretiza-
tion, input discretization, approximate linear velocity and noise variance) used for experimental realization of the
controller, the actual probability of reaching goal set will be less than one. However, depending on the available
control authority and size of workspace, it is possible to get realization of probability of reaching goal close to
one.

5. CONCLUSION

We have shown that the stochastic receding horizon framework3,4 described in this paper can be applied for
control of miniature bio-inspired robots that exhibit inherent stochastic behavior. Existing methods on path
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Figure 5. Observed experimental data (a) The left figure is the observed path superimposed on the workspace. Black solid
lines is the outer boundary which is to be avoided at all time, blue line is the observed x− y trajectory and red ∗ are the
waypoints used within the stochastic receding horizon control. The figure on the right shows input motor gains applied
during the experiment.(b) Observed x− y trajectory for the experiment with goal x = 0 mm, y = 50 mm (c) Observed θ
trajectory of the experiment.

planning can be combined with stochastic controllers (which are computed off-line) to create a switching strategy
and achieve convergence to the goal in a receding horizon manner. Moreover the framework provides theoretical
guarantee of convergence with probability one.
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