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Abstract: This paper discusses the interplay between networks and control systems. As we
gain more understanding about the structure and dynamics of physical networks, their effects
on the performance of closed-loop control systems, as well as the ability to control such
networks, provide fertile areas of research. The paper reviews such research with special
emphasis on the connectivity and delays in the information transfer across networks.
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Networks are a powerful metaphor for understanding
the organization of systems from disciplines as di-
verse as biology, computer science, physics, and social
science. In control systems, communication networks
are becoming increasingly pervasive, forcing control
engineers to expand their application domain by incor-
porating the communication infrastructure into their
designs, and by considering the impact of link ca-
pacity, delays, and packet loss on control systems
(Zhang et al., 2001; Walsh et al., 2002; Verriest and
Egerstedt, 2002). Insight is sought to better understand
how systems can be controlled across networks, how
to design distributed, multi-agent control systems, or
to predict when the network’s structure gives rise to
undesirable network behaviors such as congestion.
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Consider for example the system depicted in Fig-
ure 1, where a plant is being controlled across a
network shared by various systems, computers, and
communication devices. From a control perspective,
the communication links of Figure 1 are a means
of information exchange, which is generally assumed
to be instantaneous. The impact of the network’s
connectivity on the closed-loop system performance
is discussed in (Jadbabaie et al., 2002),(Moreau,
2005),(Ren and Beard, 2005),(Olfati-Saber and Mur-
ray, 2004),(Tanner et al., 2003b).

The need for new paradigms for control design is
evident in large-scale interconnected multi-agent sys-
tems. In this class of systems, signals need to flow
quickly and efficiently, but interconnected compo-
nents may not be able to store and manipulate the com-
plete state of the system. While complexity barriers
make the design of controllers for high-dimensional
systems extremely difficult, the ability to reason about
global network properties based on locally available
information enables the design of decentralized con-
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Fig. 1. Controlling across a network. Control signals,
measurements of the plant state, and external
inputs travel from their source to their destination
through the links of a communication network.

trol laws. When scaled to networked systems with
hundreds of thousands of components, decentralized
control laws allow unrealistic computation, communi-
cation, and storage requirements.

In control design, a network model such as a graph is
used to enable control, while, in network theory, mod-
els of network dynamics and growth are constructed
to simulate physical or engineering processes. Despite
the use of different analysis tools, network properties
such as connectivity, efficiency, and robustness are
common to both control and network theory. A ques-
tion that arises is whether pervasive ideas in network
theory can suggest new control design directions.

Network theory provides tools that characterize the
growth and topology of distributed networks (Faloutsos
et al., 1999) in relation to their navigability, conges-
tion, clustering, and robustness to failure (Bollobás,
1985). For some systems, such as social networks and
the World Wide Web, not only do short paths exist
between every pair of nodes, but such paths can be
found under certain conditions using only local infor-
mation (Milgram, 1967),(Kleinberg, 2000),(Clauset
and Moore, 2003). In this article we review analy-
sis tools used to study complex networks (Newman,
2003),(Dorogovtsev and Mendes, 2003),(Watts and
Strogatz, 1998),(Albert and Barabási, 2002),(Kleinberg,
1999), and discuss the possibility of using them to
facilitate control design.

This article presents an overview of problems at the
intersection of control theory and complex network
research. After a brief introduction of the relevant as-
pects of complex network theory and its methodologi-
cal differences and similarities to control engineering,
we discuss the potential benefits of knowledge transfer
between the two fields. Within a brief review of recent

results in cooperative control, we show how topologi-
cal network properties affect control performance and
that:

(1) Increased network connectivity does not neces-
sarily yield robustly connected networks with re-
spect to node failures;

(2) The structure of sensor networks and their al-
gebraic graph properties determine the perfor-
mance of distributed estimation;

(3) Properly interleaving communication and con-
trol can protect against the effect of delayed in-
formation.

1. NETWORK-THEORETIC ISSUES

By considering the network as a communication ser-
vice, we identify three properties that critically impact
the flow of information:

(1) Connectedness, which expresses the existence of
a path between the information transmitter and
the information receiver.

(2) Navigability, quantified by the difficulty of find-
ing a connecting path. Typically, this difficulty
depends on whether the path is predetermined,
or whether it is discovered in an ad hoc fashion.

(3) Efficiency, as represented by the latency (delays)
of each utilized path. This latency, usually a
function of the number of hops and the individual
link latencies, must be sufficient to guarantee
desired end-to-end communication latencies.

All three properties affect the robustness of a network
with respect to node or link failures, as well as the reli-
ability of network protocols with respect to corruption.

1.1 Connectedness

Connectedness is mathematically identified with no-
tion of percolation (Bollobás, 1985). Percolation the-
ory characterizes how connected clusters in a random
graph aggregate as a function of the edge probabil-
ity. Given this fixed probability p, percolation can be
illustrated as a wildfire, initiated at a source node
that spreads across an edge connected to the burn-
ing node with probability p. By locating the nodes
reached by the process, it is possible to determine
whether a path connecting a given pair of nodes ex-
ists (Bollobás, 1985).

In network theory, percolation is typically analyzed in
two ways. The constructive approach determines the
number of random edges that must be successively
added to a collection of disconnected nodes before the
vast majority of nodes, termed the giant component,
are connected. In the destructive approach, edges or
nodes are successively removed until the giant com-
ponent vanishes and most pairs of nodes are no longer



connected. Surprisingly, the appearance and disap-
pearance of the giant component can be quite sudden,
and is often a genuine phase transition (Stanley, 1983).

One feature of many real world networks is a power-
law degree distribution, in which the probability of
a randomly chosen node having k neighbors scales
as P (k) ∝ k−α, where α is the scaling expo-
nent (Newman, 2003). The ubiquity of the power-
law degree distribution motivates the study of graph
models that exhibit this feature, but whose topological
structure is otherwise random. A network with many
redundant paths between all pairs of nodes is obvi-
ously very robust to node and edge failures. However,
if a minimal fraction of nodes pc is removed, the giant
component vanishes. This disappearance shatters the
network.

Consider a random graph with a power-law degree
distribution where a node fail or is removed with prob-
ability p. The after-failure degree distribution P ′(k) is
given by

P ′(k) =
∞∑

k0=k

P (k0)
(

k0

k

)
(1− p)k pk0−k, (1)

where k0 is the degree of a node before failure, k
is its degree after failure, and p is the probability of
failure. When the scaling exponent α for P (k0) is
larger than 3, (1) is used in (Cohen et al., 2000) to
show that the critical threshold of p for maintaining
the giant component of the network is pc ≈ 0.99. In
other words, more than 99% of the nodes must fail or
be removed before the network shatters. Hence, large
random structures are robust to random failures. For
finite-size networks, the exact value of pc is related to
the number of nodes n, and approaches 1 as the num-
ber of nodes n increases. A recent study shows, how-
ever, that the value of pc can be significantly smaller
than 1 for a specific subclass of these graphs (Link et
al., 2005). In such networks, removing nodes accord-
ing to the probability pc << 1, shatters the network.
Therefore, random graphs with a power-law degree
distribution exhibit various degrees of robustness to
random failures.

Unfortunately, the random removal of nodes is not
the only kind of failure that networks can suffer. For
instance, when nodes in a random graph are pref-
erentially removed according to a specified rule, for
example removing the 10% of nodes with the high-
est degree, the network quickly shatters (Gallos et
al., 2005), (Guillaume et al., 2004). More subtle forms
of failure, in which some fraction of nodes disobey the
network communication protocols, possibly in a mali-
cious way, are considered in the context of peer-to-
peer networks (Engle and Khan, 2006). These Byzan-
tine faults have been extensively studied, and continue
to drive much of the research in developing secure dis-
tributed communication protocols (Pease et al., 1980),
(Ben-Or et al., 1993).

1.2 Navigability

In a connected network, several paths may link a
transmitter to a receiver. The navigability of a network
is determined by how easily a connecting path can
be found, as well as by how many links or edges
such a path contains. The navigability problem may
be solved in one of two ways:

(1) using central authorities, in which the commu-
nication path between two nodes is determined
by an external source then communicated to the
network’s routers, and

(2) using decentralized techniques, in which routing
decisions are made independently by network
routers, possibly in an ad hoc fashion.

For a static network, namely one for which the num-
ber of nodes and the topology are fixed, a central
authority is easy to construct. A decentralized navi-
gation approach however, is called for when routers
are added or removed from the network. Current stan-
dards for routing on Internet-like networks, such as
the Internet protocol (IP), the open shortest path first
(OSPF) (Force, n.d.a) protocol, and the border gate-
way protocol (BGP) (Force, n.d.b), are a mixture of
both centralized and decentralized techniques. Each
protocol involves an initial consensus phase among
the nodes of the network that allows local connectivity
information to propagate, until each router constructs
its own map of the network for routing packets in the
future. After the consensus phase is completed, the
routers’ maps remain fixed until the local topology
changes sufficiently to trigger a new consensus phase.

1 2 3

Fig. 2. A small-world graph where the nodes inside
the shaded diamonds have the same Manhattan
distance to the node in the center. Nodes in area 1
are bi-directionally connected to the center node,
which is also uni-directionally connected to one
node in area 3.



While standard protocols, such as IP, OSFP, and BGP,
perform well for networks that change only occasion-
ally, dynamic networks pose a more challenging prob-
lem, since the overhead of reaching consensus must
be balanced against the efficiency of the network as
a communication medium. An alternative approach is
to use decentralized or ad hoc routing strategies, where
routing decisions are made on the fly based on the rela-
tive position of the current router, the packet’s destina-
tion, and possibly the current local connectivity. Nav-
igability of the resulting network requires that short
paths between source and destination nodes be easily
found in a decentralized way. A network is efficiently
navigable if the average length of a path T grows sub-
linearly with the number of nodes in the network, and
preferably as a polylogarithm such as O(log2 n). The-
oretical work in (Clauset and Moore, 2003) indicates
that such decentralized protocols can be developed
under reasonable assumptions. A brief description of
these results, along with their implications for control
systems follows.

Consider the network of Figure 2, which is a lattice
with nodes having bidirectional local connections to
their nearest neighbors, as well as a single, unidi-
rectional nonlocal connection to specified node. The
distance between nodes u and v is evaluated using
the Manhattan metric or l1 metric denoted by d(u, v),
and the dimensionality of the lattice is denoted by D
(in this example, D = 2). The diamonds in Figure 2
define the set of nodes at a fixed distance from the
node at the center. If each node (router) forwards
packets to its neighbor with the smallest remaining
distance to the packet’s destination, then this decen-
tralized routing protocol, for this particular topology,
guarantees packet delivery in an average of O(log2 n)
steps (Kleinberg, 1999). The receiving neighbor is
found as follows: first we choose a distance ` from
the distribution P (`) ∼ `−D. The distance ell is
the distance from the destination node to all potential
neighbors of the sending node. Then, out of all the
nodes at distance ell from the destination node, we
choose uniformly at random a receiving node.

To verify the average number of steps required for
delivery, we assume that a packet travels in phases
and that a phase ends when the remaining distance
is halved. Thus, there are at most log2 n phases in a
network of n nodes. If the distribution of lengths for
the nonlocal links is a power law with exponent D,
the packet visits a router with a non-local neighbor
that is roughly half as distant from the destination
after O(log n) trials. Thus, the expected routing time
is O(log2 n).

The algorithm presented in (Clauset and Moore, 2003)
constructs the Kleinberg-routable network through a
dynamic, decentralized rewiring process. The algo-
rithm assumes that local connections are fixed. Given
a source-destination pair (x, y), a packet is routed ac-
cording to the current topology, and a time threshold

t is chosen uniformly from the interval [1, d(x, y)].
If the routing time of the packet T , exceeds the
threshold t at a node z that is not the destination, x
“rewires” its non-local link so that it terminates at z.
In (Clauset and Moore, 2003), it is empirically shown
that this rewiring algorithm produces the power-law
link-length distribution P (`) ∼ `−D. This then guar-
antees fast ad-hoc routing over the entire network
T = O(log2 n), after a modest number of rewiring
actions R ∼ n1.77.

With the availability of global positioning (GPS)
systems that provide simple distance measurements,
these results may be adapted as a routing protocol for
packets on a wireless array of devices. In such cases,
local links are either physical connections or low-
power broadcast transmissions, and non-local links
are occasional high-power broadcast transmissions or
unidirectional long-range transmissions.

The development of dynamic and decentralized rout-
ing algorithms that guarantee efficient navigability
under a variety of assumptions is an active topic of
research in network theory. In the ad-hoc routing algo-
rithm presented in (Şimşek and Jensen, 2005), packets
are routed under assumptions about the connectivity
of nodes with similar properties (homophily), and the
assumption that higher degree nodes are likely to be
closer to the target. In the model used in (Şimşek and
Jensen, 2005), it is assumed that each node has a set
of attributes, and that nodes are linked to others that
are similar to themselves. Thus, a homophily-sensitive
algorithm adjusts the routing based on the assumption
that a node close to the destination node in their at-
tribute space, is in fact geographically closer to the
destination.

1.3 Efficiency

In network theory, efficiency is quantified by the cost
of a network property as a function of the number
of nodes n in this network. Thus in this context, ef-
ficiency is related to that of scalability, and the bounds
on the related cost are expressed using asymptotic O-
notation. Generally, for a property to have a small
cost, it should scale sub-linearly, and ideally as a poly-
logarithm O(logk n). For example, the decentralized
routing algorithm (Kleinberg, 1999) described in the
previous section, guarantees that the average number
of intermediate nodes that a message passes through
is O(log2 n). On the other hand, if a property needs to
be true for the largest possible portion of the network,
then it must scale as a constant fraction of the nodes
O(1), and ideally to be 1 − o(1). For connectedness,
the question of efficiency boils down to determining
what fraction of the network remains connected, after
a fraction of the nodes is removed. In this context,
(Gallos et al., 2005) shows that random networks with
a power-law degree distribution, are increasingly more



efficient at guaranteeing connectedness under random
failures as the network grows.

These definitions of efficiency are highly applicable
to random graph models used in network theory. Effi-
ciency, however, is being understood quite differently
in control. Depending on optimality criteria in a given
control application, efficiency may be related to the
input signal strength, or the output rise and settling
times. Bridging this gap, and producing network the-
oretic results for control performance specifications
may be a fertile area of cross-collaboration between
the two fields.

2. CONTROL-THEORETIC ISSUES

Networked control system (NCS) applications such
as teleoperation and robot formation control, require
measurement and control signals to travel across com-
munication networks. Even when the distance traveled
is short (as in the case of a modern car or a smart
house), a general purpose communication network in-
troduces new issues into the feedback loop, such as
time-varying delays, and the potential loss of infor-
mation. While some communication applications may
suffer from the same limitations, a feedback control
system is especially vulnerable, not only to the un-
availability of sensory information and control signals,
but also to their timing. In particular, in a NCS, the
issues of connectedness, navigability, and efficiency
of message propagation manifest themselves as de-
scribed in the following sections.

2.1 Connectivity, dropped packets, and lost links

From the perspective of control design for networked
control systems, connectedness (or connectivity) ex-
presses the ability of two systems to communicate
information and actuation signals over the network
connecting them. Connectivity is therefore related to
the existence of a network path from any node u to any
other node v. In recent studies linking the dynamics
of the networked systems to the connectivity proper-
ties of the network, certain graph algebraic properties
of the latter seem to be pervasive. In (Jadbabaie et
al., 2002), the dynamics of the networked system is
formally related to the Laplacian matrix of the graph
representing the network of interconnections between
the system components.The researchers in (Jadbabaie
et al., 2002) established algebraic conditions for the
matrices related to the graph, to guarantee that all
interconnected subsystems asymptotically reach con-
sensus over a quantity of interest. The consensus is
reached by when each subsystem replaces the value of
its quantity of interest by the average value of its net-
work’s neighbors. For this consensus update algorithm
to to be asymptotically stable, i.e. for all individual
quantities of interest to asymptotically converge to
the same value, the communication network should

be connected. In algebraic graph theoretic terms, con-
nectivity is quantified by means of the second small-
est Laplacian eigenvalue, also known as the alge-
braic connectivity of the graph (see the sidebar titled
“Graphs”). In (Tanner et al., 2003a) it was shown
that if connectivity were permanently lost, stability
can no longer be guaranteed. If connectivity is how-
ever regained across a sequence of compact intervals
[ti, ti+1), reference (Jadbabaie et al., 2002) demon-
strates that consensus stability may still be reached.
More information can be found in the sidebar “Con-
sensus Problems.”

A network may not have a constant topology when
communication links are dynamically established and
lost (Tanner et al., 2003b),(Jadbabaie et al., 2002),(Olfati-
Saber and Murray, 2004). Physical ad-hoc networks
are typically modeled by nearest-neighbor type graphs,
where nodes are distributed uniformly at random over
a certain area, and are assumed connected if nodes
are within a certain distance r0 from each other. Thus
nodes u, and v, are connected if |u − v| < r0, where
|u− v| denotes the Euclidean distance between them.
The question of whether such an ad-hoc network is
connected or not does not have a deterministic an-
swer, especially when the number of nodes grows
very large. Results in this area are typically asymp-
totic and probabilistic in nature. Whether the network
is connected is thus given with a certain probability,
which usually relates to the minimum degree of the
nodes in the network, as exemplified in (Xue and Ku-
mar, 2004), or to the minimum communication range
r0 (Bettstetter, 2002), (Santi and Blough, 2003). In
(Xue and Kumar, 2004) it is shown that if each node is
connected to less than 0.074 log n other nodes, the net-
work is disconnected with probability one, as the total
number of nodes n increases. If, on the other hand,
each node has more than 5.1774 log n neighbors, the
network is asymptotically connected with probability
one when n tends to infinity. In (Bettstetter, 2002) it is
shown that if the network is required to be connected
with probability p, the transmission range r0 must sat-

isfy r0 ≥
√

− ln(1−p1/n)
πρ , where ρ is the node density

in nodes per unit area.

In networks where information flows in a unidirec-
tional manner, directed graphs are used to capture the
network topology. For directed graphs we differentiate
between strong and weak connectivity, with the for-
mer property guaranteeing that a message originating
from one node can reach any other node, following
paths in the graph that respect the orientation of all
edges. The existence of a (directed) spanning tree over
the union of the graphs that describe the evolution of
the network over time (Ren and Beard, 2005) how-
ever, may be sufficient to ensure asymptotic consen-
sus in the network, provided that the graph switching
frequency is bounded, on average. This condition is
definitely weaker than strong connectivity, though still
stronger than weak connectivity (expressed again by



the second smallest eigenvalue) for which edge orien-
tation is irrelevant. The gap between these conditions
seems to be the missing piece in a uniform character-
ization of stability in terms of network topology. Of
course, another approach for ensuring stability is to
restrict the dynamics, as described in (Moreau, 2005),
(Angeli and Bliman, 2005).

In most practical models connectivity is binary, that
is, two nodes are either connected at a particular time
instant, or disconnected. In the former case the second
smallest eigenvalue is positive, in the latter it is zero.
In order to capture the quality of a communication
link, or the cost of broadcasting information from
one node to another, weighted graph models may be
used. The edge weights quantify the energy required
for a message to be sent over an edge (u, v), usually
expressed as |u − v|e, where e ≥ 2 is a constant.
Weighted graphs are not as well understood as their
unweighed counterparts, but connectivity analysis us-
ing the second smallest eigenvalue of the (weighted)
Laplacian can be extended to this situation as well.

The effect of network topology and connectivity on
the performance of cooperative localization algo-
rithms is pointed out in (Hidaka et al., 2005), in which
a genetic algorithm is used. The genetic algorithm
selects network topologies that result in smaller traces
of the covariance matrix for the extended Kalman filter
(EKF) constructed for the whole networked system.
The analysis in (Hidaka et al., 2005) suggests that in-
creased connectivity may be beneficial for localization
accuracy. Intuitively, “the more sensor links between
robotic nodes, the better.” Define the sensor graph
as one in which nodes are mapped to mobile robots
and environment landmarks, and where directed edges
denote relative position measurements. While a ge-
netic algorithm favors complete sensor graphs, other
approaches may suggest “cheaper” solutions. In the
special case where a landmark’s location is accurately
known, the expression of the upper right submatrix
Prr∞ in the steady-state value for the EKF covariance
matrix (Hidaka et al., 2005),(Mourikis and Roumeli-
otis, 2005) contains the eigenvalues of a minor of the
sensor graph Laplacian weighted by the variances of
the relative distance measurements. Specifically,

Prr∞ = Q1/2
o Udiag

{
1
2

+
(

1
4

+
1
λi

) 1
2
}

UT Q1/2
o ,

(2)
where Qo is a diagonal matrix with entries that de-
pends on the characteristics of the mobile sensors and
their speed, U , is the matrix of eigenvectors, and λi is
the ith eigenvalue of the matrix

C = Q1/2
o HT

o R−1
o HoQ

1/2
o , (3)

in which Ro is a diagonal matrix of the noise covari-
ance, and Ho relates to the incidence matrix of the
sensor graph. In the example depicted in Figure ??,
the location of a single landmark is accurately known
and three robots can measure distances and bearings

to each other or the landmark. A dotted edge in the
graph denotes an additional measurement. In this case,
Ho contains a block of zeros that eliminates the graph
node corresponding to the landmark, and HT

o R−1
o Ho

turns out to be a minor of a weighted Laplacian.

A problem that arises in the scenario of Figure ?? is
how to select a new observation (add a new edge) that
can most improve the accuracy of position estimates.
In view of (2) and (3), and using eigenvalue interlacing
theorems, it can be shown that the trace of Prr∞ is
related to the nonzero eigenvalues of the (weighted)
sensor graph Laplacian Lw as follows

(n− 1)2√
trace{Lw}

≤
n−1∑
i=1

1√
λi

≤ n− 1√
λ2(Lw)

.

Thus, forming a complete sensing graph minimizes
the localization error, but comes at a cost of obtaining
and processing the maximum number of observations.

Network connectivity appears to be a catalyst since
nothing useful can happen without it. Messages cannot
reach their destination, consensus among the network
nodes over a certain quantity cannot be achieved us-
ing only nearest-neighbor communicated information,
and estimation errors may grow unbounded. Nonethe-
less, in (Byrne et al., 2005) it is shown that high
algebraic connectivity does not necessarily imply high
robustness in terms of maintaining connectedness in
the presense of randomly failing links. In other words,
while the network connectivity is certainly improved
as the second smallest eigenvalue increases thus de-
creasing the diameter of the network (characteristic
path length – see sidebar Graphs), the network remains
vulnerable to targeted attacks at edges. In particular,
there may be few nodes or links that guarantee the
connectivity of the newtork, and the removal of as few
as one or two such nodes may shatter the network.

Consider a network represented by a graph G. The
algebraic connectivity of G, λ2(G), satisfies (Fiedler’s
inequality (Fiedler, 1973))

λ2(G) ≤ ν(G) ≤ η(G), (4)

where ν(G) measures the nodes connectivity, and
η(G) denotes the edges connectivity (see sidebar
Graphs). While increasing the algebraic connectivity
increases the lower bound on node-connectivity ν(G),
it was shown in (Byrne et al., 2005), that for circu-
lar and mesh lattice graphs, an increase in algebraic
connectivity often corresponds to a decrease in node-
connectivity ν(G) and edge-connectivity η(G).

In fact, let us consider first the small-world network
introduced in (Watts and Strogatz, 1998). This net-
work is based on an n-nodes one-dimensional lattice
on a ring where each node is connected to its k nearest
neighbors. In (Watts and Strogatz, 1998) it is shown
that the random rewiring of nodes according to a small
probability p greatly reduces the characteristic path
length, and results in a small-world network. Figure
3 shows the effects of random rewiring for a network



n = 20, k = 4,  p = 0 n = 20, k = 4,  p = 0.1

n = 20, k = 4,  p = 0.5 n = 20, k = 4,  p = 1

Fig. 3. Random ring lattice graph G = C(n, k) with
n = 20, k = 4, and different edge probabilities.
For p = 0 a node is only connected to its two
closest neighbors along the perimeter. As the
probability increases, a larger number of these
links are rewired and connect the node to other
remote nodes.

with 20 nodes, and k = 4. In (Olfati-Saber, 2005),
the author shows that this random rewiring also results
in a large increase in algebraic connectivity for ring
lattices, and the author then concludes that the network
becomes more robust to node and link failures.
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AC( p=0.9)/AC( p=0) = 29.493058

Algebraic Connectivity
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Fig. 4. Results for a ring lattice random graph, N =
100, k = 4. Although algebraic connectivity
increases, node and edge connectivity decreases
monotonically with mean path length. AC stands
for algebraic connectivity and the ratio appearing
on the Figure expresses how much algebraic con-
nectivity increases in the range of probabilities
tested.

For certain types of networks however, large increases
in algebraic connectivity often correspond to a de-
crease in node-connectivity and edge-connectivity.
For example, let us start with a ring lattice of n = 100

nodes, and k = 4 edges per node (Figure 4), then
rewire each edge at random with a probability p. As p
increases from 0 to 0.9, the graph algebraic connectiv-
ity increases sharply, and the mean path length of the
network decreases. However, the node-connectivity
and edge-connectivity of the network decrease as the
probability p increases. Similar results were obtained
for a regular mesh lattice of 100 nodes (Figure 5), with
each node having a communication radius R = 1.
As p becomes larger, the edges connecting nearest
neighbors are increasingly rewired, and link nodes
in remote locations are directly connected. As shown
here however, this does not necessarily improve the
node or edge connectivities.
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AC( p=0.9)/AC( p=0) = 3.138105
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Fig. 5. Results for a mesh lattice graph, N = 100,
R = 1. Although algebraic connectivity in-
creases, node and edge connectivity decreases
monotonically with mean path length.

In a system where nodes are redundant or dispens-
able, improving algebraic connectivity does indeed
improve the overall robustness of the network in terms
of link failures, by reducing the characteristic path
length. In systems where each node is critical how-
ever, node-connectivity and edge-connectivity are the
truly important parameters for assessing robustness of
connectivity with respect to randomly failing links.
Evaluating node-connectivity or edge-connectivity for
large networks is unfortunately much more costly than
computing the graph’s algebraic connectivity.

2.2 Navigability: path lengths and hops

When designing controllers for a networked system, it
is typically assumed that paths exist between arbitrary
node pairs of the communication network. The prob-
lem of determining these paths is usually ignored, or
assumed solved by the routers that direct the flow of
information through the network.

Standard routing protocols make use of assumptions
that may not be generally favorable to control system
design. For instance, Ethernet is a broadcast protocol,



and thus only a limited number of participants can
communicate over a given portion of a network. The
open shortest path first (OSPF), as well as the bor-
der gateway (BGP) protocols, are susceptible to the
propagation of corrupt or maliciously faulty informa-
tion (Nordstrom and Dovrolis, 2004).

To provide the most basic packet delivery service,
such as on the Internet at the IP-level, protocols like
Ethernet, OSPF and BGP, combined with the com-
modity network hardware do well enough when most
nodes are connected, the network is navigable, paths
are relatively short, and service is fairly reliable. Such
is the case on the Internet, where the average hop-
count at the IP-level is at most a few dozens, de-
spite there being potentially billions of routable IP
addresses. Notably however, deviations from ideal
conditions result in several serious interruptions in
global Internet service. For applications such as sensor
networks or ad-hoc networks among mobile devices
(such as cell phones), all of these issues are active
areas of research in both the control systems and net-
work theory communities.

Even if determining paths from source to destination
is not an issue, the lengths of such paths matter, espe-
cially when information is processed as it propagates
through the nodes of the network. One such example
is the case of leader-follower control architectures.
When the leading vehicle in a platoon suddenly de-
celerates, the more vehicles are between a follower
and the leader, the faster this follower must decelerate.
Depending on the size of the platoon and the dynamics
of the vehicles, there comes a point where actuators
reach their physical limits, control signals saturate,
and collisions between vehicles occur.

String stability (Swaroop, 2002) is a theoretical frame-
work that addresses this issue by treating propagating
destabilizing information as a disturbance. By appro-
priate control design, these disturbance signals are
attenuated as they propagate through the string of in-
terconnected systems, and stability is preserved. Mesh
stability (Pant et al., 2002) generalizes this idea to
multiple (physical) dimensions.

When the propagated information is not regulated in
terms of its effect on the receiving nodes, it is shown
in (Tanner et al., 2004) that the network distance of a
follower from the source of the signals (the leader),
has an adverse effect on the ability of the follower
to track its desired position in the formation. In such
cases, routing the information signals through shorter
paths improves stability (Tanner et al., 2004). Thus,
in network control system design, two options seem
to be available: either regulate the system dynamics
so that it can cope with information traveling over
long paths, or make sure that short paths (up to a
certain length) can be found. Regarding the latter, ad-
hoc routing algorithms that improve the navigability
of the network are needed.

2.3 Efficiency: capacity, link quality, and delays

As far as control design is concerned, a communi-
cation channel is merely a medium for obtaining or
sending information (measurement signals, or control
commands). From this perspective, what seems to be
important is: (i) how much information can be carried,
and (ii) how fast can it be transferred.

The first question is related to the channel’s capacity
as studied in Information theory, and results linking
information theory to control have recently been re-
ported (Wong and Brockett, 1997; Wong and Brockett,
1999; Nair and Evans, 2000; Ballieul, 2002; Brock-
ett and Liberzon, 2000). While information theory
models the communication channel as an informa-
tion transmitting medium that corrupts portions of the
signal, the main issue for control-based applications
are the delays (as well as corruption) suffered by the
signals as they are carried across the channel. In the
case of noiseless channels, a necessary condition for
asymptotic observability and stabilizability for lin-
ear, time-invariant, discrete-time systems, is that the
rate of communication R (which must be less than
the capacity C of the channel) is bounded below as
R >

∑
λu(A) max{0, log|λu(A)|}, where λu(A) are

the unstable eigenvalues of the system matrix A. In
some cases, this condition is also sufficient. Similar
results hold in the case of noisy channels, as de-
scribed in (Tatikonda and Elia, 2005). Article (Martins
and Dahleh, 2005) investigates the fundamental lim-
itation of performance for networked feedback sys-
tems, in which the feedback loop is comprised of a
discrete-time, linear, time-invariant plant, a channel,
as well as an encoder and a decoder. The disturbance
rejection ability is found to be bounded from be-
low by

∑
λu(A) max{0, log |λu(A)|} − C. This par-

ticular result shows that the excess capacity C −∑
λu(A) max{0, log |λu(A)|} is all that is available

for disturbance rejection. A discussion on the links
between control and information theory can be found
in the sidebar “Control and Information.”

The speed at which information travels from source
to destination is usually measured by a ”communi-
cation delay,” the time elapsed between transmission
and reception. Depending on where the network is in-
cluded in the feedback loop of the network control sys-
tem, such communication delays can cause actuation
delays, measurement delays, or both. It is generally
recognized that the delays degrade the performance
of control systems. It is natural to expect, therefore,
that communication delays will adversely impact the
performance of a networked control system, possibly
even causing instabilities.

Initial investigation seemed to support this claim. In
(Olfati-Saber and Murray, 2004), stability analysis in
the frequency domain suggests the existence of an
upper limit in the (uniform) communication delays
that a continuous, nearest neighbor interconnected



system can tolerate before becoming unstable. How-
ever, more recent analysis of state space, discrete-
time models of interconnected systems, have led to
different conclusions: in some (not so special) cases,
arbitrary (but bounded) communication delays may
be tolerated at the expense of convergence speed.
Moreau (Moreau, 2005) was among the first to ad-
dress the consensus problem in the presence of time
delays, giving convexity conditions on the set of ad-
missible control inputs that ensure asymptotic velocity
synchronization. In (Angeli and Bliman, 2005), the
approach of (Moreau, 2005) is extended, showing that
if the agents dynamics are appropriately restricted,
stability can still be maintained. A different approach
in (Tanner and Christodoulakis, 2005) focuses on the
communication protocol, and shows that velocity syn-
chronization in a connected group of autonomous mo-
bile agents, may still be achieved when the agent
controllers use delayed information, regardless of the
size of this delay, if control and communication are
properly interleaved. In (Morse, 2006) the composi-
tion properties of graphs are used to show that under
certain assumptions on the communication topology,
delays have no effect on the stability of the system.
In fact, in a somehow counterintuitive situation, it
turns out that longer delays (if used judiciously) can
improve the stability of some systems (Abdallah et
al., 1993).

3. CONCLUSIONS

Any conceptual links between networked control sys-
tems, cooperative control, and complex networks
through graph theoretic analysis, provide opportuni-
ties for control theory to reach out and exploit the ar-
senal available in complex network research and com-
puter science. This article offers such a suggestion by
highlighting the recently revealed power of random-
ized algorithms in routing, network design, resource
allocation, and game theory.

Mechanism design, as recently developed in the area
of computer science, seeks to allow selfish individ-
uals to interact in a networked environment in such
a way that no outcome is particularly disadvanta-
geous to any of the nodes. Such approaches yield
results for routing, network design, and resource al-
location (Tardos, 2004), and seem directly applicable
to open networked control systems in which the con-
trol engineer must ensure that corrupt or misbehaving
nodes do not negatively affect the functionality of the
system.

With this brief review of a small selection of intrigu-
ing ideas, we hope to establish further links between
network theory, physics, and control systems.
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