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Abstract. Deformable objects under manipulation can be modeled using finite
elements. The resulting model is in fact an underactuated mechanical system. The
consequences of any type of constraints revealed by the modeling procedure is
explored. The study of deformable object models within the framework of under-
actuated mechanical systems indicated the existence of second order nonholonomic
constraints. For the identification of this kind of constraints, the authors have devel-
oped computationally efficient and significantly simpler mathematical tools. Their
methodology is illustrated and tested by an example.

1. Introduction

In robot manipulation the object that was being handled was traditionally con-
sidered rigid. This assumption on the object's nature simplified significantly the
problem. The approach was justified from nearly every point of view. It allowed
researchers to focus on the new system being developed, namely the robot, and
adjusted its environment to facilitate analysis: no obstacles present, clean and ab-
solutely known environment, rigid objects.

As problems involved in robot manipulation find their solution with time and
great effort by the robotics community, all of these assumptions are gradually re-
lieved. Obstacle avoidance has been considered, adaptation methods explored,
sensor information taken into account. It is about time we did something about the
assumption concerning the object being rigid.



In what follows we shall discuss some properties of a model obtained for de-
formable objects being manipulated by robotic arms. The motivation for investi-
gating deformable materials came from the study of a multiple mobile manipulator
system which handles a deformable object [1]. When focusing on the object issue,
we first had to choose an appropriate model to describe its behavior.

Previous approaches to deformable object handling focused mainly on formu-
lating general continuous dynamic equations for the object. The aim was to con-
struct an appropriate model to enhance computation or allow for the application of
certain control strategies. Sun et al. [2] followed Terzopoulos' [3] hybrid approach
to deformable objects. This approach originated from the study of Computer Aided
Design and computer graphics. It is characterized by the decomposition of the de-
formable object to a reference component and a deformation component. The for-
mer represents the original shape of the object and the latter the change in its shape
as a result of the applied load. The position of any point in the body can be then
determined by a superposition of the two components.

Kosuge et al. [4] used finite elements. Loading conditions included only bend-
ing of a sheet metal and examined the problem of controlling the static deformation
of the plate when handled by a dual manipulation system. The static assumption
simplifies considerably the dynamics of the object.

Wu et al. [5] pointed out that a flexible object is actually a distributed parameter
system and approximated it by considering a lumped parameter model. They also
assumed, quite reasonably, that the object is not very soft which means that it un-
dergoes only small deflections during its interaction with the robot. A case of a
flexible metal plate is considered. To construct the lumped parameter system they
exploited the geometry of the system of the robot grasping the metal plate. It is not
clear, however, how this can be extended to the case of other objects with arbitrary
shape.

Yukawa et al. [6] investigated a vibrating flexible object and modeled it using
model reduction theory. The aim was to realize position control while suppressing
the vibration of the object. Vibration is assumed to take place in a two dimensional
space. The modeling approach for the object begins with the distributed parameter
model and ends up with a finite dimensional model.

In our approach to modeling deformable objects we decided to use finite ele-
ments based on the elastodynamic equations, motivated mainly by an engineering
attitude towards the problem in hand. This step has a decisive impact on the nature
of the problem we would then have to face. A question arises concerning the struc-
tural properties of the model thus obtained; how does that behave from the control
point of view; what are the limitations and what can one hope to achieve.

Talking about achievement, we would better determine what needs to be done
first. In our study of the multiple mobile manipulator system we placed emphasis on
the deformable object, since this defines at a great degree the whole system's speci-
fications and requirements. Everything has to be done with an eye on the object:
should it be glass it must not break, should it be paper, cloth or leather it must not
tear apart, should it be wood it must not fracture, should it be a metal plate it must
not bend too much, and so on. We therefore needed to plan the motion of the object



so that it can be safely been transferred from one point to another, without placing
excessive load on the robots which could tip over or reach a singular position in
their effort to accomplish their mission. That is why we had to see what the model
we chose for the object could do.

First, we identified an underactuated system [7]. Finite element procedures re-
sult to a model which has a few points, or nodes, where load is directly exerted and
a number of intermediate points which are more or less influenced by that load.
Seen from the control perspective, the nodes where load is applied are directly
actuated while the rest are statically and dynamically coupled to them. Therefore,
there is a number of degrees of freedom which are actuated and others which are
not. This is roughly the idea of an underactuated system: underactuated systems
have fewer control inputs than degrees of freedom.

Viewing the manipulated object as an underactuated system we can considerably
broaden the notion of a “deformable object” to the case of systems which are not
continuous: chains, structures with passive joints, flexible links, rolling contacts,
etc. This allows a generalization of our approach to object handling and puts a great
variety of systems in a unified framework of study.

In the analysis of underactuated systems, it will soon become clear that a part of
their dynamics, (which others prefer to call the zero dynamics), can be thought of as
a set of dynamic constraints. In this context we refer to these equations as intrinsic
constraints, since they stem directly from the nature of the system and are present
regardless of the assumptions one may make for the manipulated object. Apart from
these, practice can enforce other limitations such as the avoidance of fracture or
excessive loading which can result to plastic (non-elastic) deformation. These ex-
ternal limitations can relate to material strength limitations, conditions for obstacle
avoidance during the motion of the object, and so forth. Normally, the external
constraints can be expressed in the form of a set of inequalities.

1.1 The Underactuated System

Strictly speaking, a deformable object has an infinite number of degrees of free-
dom. This is because every point in the body can be considered as an individual
degree of freedom. The deeper one goes in a microscopic scale, the bigger the
number grows. Although mathematicians would feel quite comfortable with the
notion of infinity in the problem, this would probably distress most engineers who
are assigned to the task of proposing a realistic solution.

Engineers would therefore try to decrease this number to a finite one and make a
tradeoff between computational complexity and accuracy of solution. In the process
of this simplification in order to deal with the problem using existing well known
and approved tools, a natural approach is to “discretize” the object: consider it as a
system of identical interconnected material elements that each contributes by a
small portion to the system's overall behavior. This is actually the idea underlying
the finite elements approach.

The extend of discretization depends on many factors. One is the individual
characteristics of the material: objects that are fairly rigid do not require much dis-



cretization; flexible objects need many elements to sufficiently describe their shape.
Another factor is loading conditions: for the same object, if a large load is to be
applied the discretization grid should be denser since each element would be called
to undertake a larger displacement. If the measure of this displacement is excessive,
then the assumptions on which the approximation is based could cease to hold and
the results may not be valid any more. For a given material and approximately
known loading conditions, a pretty good discretization grid can be constructed.

The finite element method yields a dynamic model in which some degrees of
freedom are driven directly as a result of external load and the rest comply with the
displacement of the former. The degrees of freedom that are directly controlled
correspond to the nodes of the grid at the location where the manipulators grasp the
object. All other nodes are displaced in accordance to the loading conditions im-
posed by the driven nodes. The whole system can be therefore classified as under-
actuated [8] since the number of degrees of freedom being directly controlled is less
than the total number of degrees of freedom in the system.

The class of underactuated mechanical systems is very broad. It includes sys-
tems with passive joints, flexible link constructions, chain mechanisms, mobile
robots, and many others. These systems are peculiar in the sense that their Lagran-
gian dynamics may contain undesirable properties such as non-minimum phase zero
dynamics, nonholonomic constraints, etc. Viewing the manipulated object as an
underactuated system allows for the investigation of new manipulation tasks, in-
cluding systems of rigid bodies or combinations of rigid and deformable objects.
The object being handled can now be a truss, a frame, a plate, a chain or an arbi-
trary shaped three dimensional body and the material considered can be practically
anything that humans themselves can manipulate.

In Lagrangian dynamics the equations of motion for a mechanical system with n
degrees of freedom can be derived as
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where q are the generalized coordinates chosen for the system: 
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It is well known that these equations can take the matrix equation form:
B(q)uK(q)q)qC(q,qM(q) =++ ���� (1)

where M is the inertia matrix, which is symmetric and positive definite, C is a ma-
trix related to Coriolis and centrifugal forces, K  is the vector formed by the elastic
and gravitational terms and u is the input to the system. For the case of underactu-

ated systems, 
mℜ∈u , with m < n.

The different dimension between the space of control inputs and the space of
generalized coordinates motivates the partition of the latter into an actuated and an
unactuated subspace. Without loss of generality we can rearrange the terms in the q
vector as follows:
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where mn−ℜ⊂∈ 11 Qq corresponds to the unactuated coordinates and
mℜ⊂∈ 22 Qq  to the actuated or controlled coordinates. In the light of the

above partition, equation (1) can be written [8]

0qkqq,cqmqm =+++ )()( 11212111 �����

uqbqkqqcqmqm )()(),( 22222121 =+++ �����

(2a)
(2b)

where the matrix mm×ℜ∈)b(q  is assumed nonsingular.

Equation (2a) is a set of n-m second order uncontrolled differential equations
which can be considered as dynamic constraints. Some prefer to interpret these
equations as the zero dynamics, however this is not formally correct since no output
has been specified for this system. In this context we will name these equations
“intrinsic constraints” to distinguish them from any external imposed constraints
that can relate to material strength limitations or obstacle avoidance requirements.

A natural question to ask is what kind of constraints these are. Can these differ-
ential equations be integrated once? If so, then one has a set of expressions relating
the generalized velocities with the generalized coordinates, i. e. there will be no
acceleration terms present. Do these resulting equations permit a second final inte-
gration? Should such integration be permitted, the result would be a set of algebraic
equations relating the generalized coordinates.

In this final case, things are rather simple: The algebraic equations thus obtained
define an n-m hypersurface on which the system must live. This is the case of
holonomic constraints. For an object being manipulated, this means that the robots
have no control whatsoever over n-m degrees of freedom of the system. These de-
grees are completely specified by the remaining m. Therefore, they cease to be
degrees of freedom: they are just some fully dependent variables that can be equally
ignored in the dynamic model. This could indicate a rigid behavior exhibited by a
part of the object. In fact, such a situation is improbable, since even “rigid” material
exhibits some sort of elastic behavior, at least in theory. It may arise however if
during the initial modeling procedure some physical constraints have been over-
looked, and the model comes later on to bring them into evidence. This implies that
there is a way to improve the model and reduce the complexity of the problem.

If the equations can be integrated only once, one ends up with a set of first order
nonholonomic constraints. There are only generalized coordinates and their first
order time derivatives present. Now things are more complicated: these relations
imply that there are limitations in the space of velocities that do not influence di-
rectly the space of positions. The influence of these velocity limitations is quite
subtle. They impose significant limitations in control. In simple terms they imply
that one may be able to steer the system from one place to another but the path it
must follow is not necessarily the shorter in some respect. A simple example is
parking a car: there is a steering sequence you have to follow – one cannot simply
turn the car in any desirable direction. If this is the case, then for the task of plan-
ning trajectories for the object one has to resort to special and heavy mathematical
tools.



The last case is when the equations cannot be integrated at all. This implies the
presence of second order nonholonomic constraints. The deeper impact of such
constraints has not been very well understood yet. Such systems could be hard to
control, as in the case of first order nonholonomic constraints, but sometimes the
systems can even be controlled with linear time-invariant controllers [8]. This is
typical for systems that have an elastic/gravity (potential) term. The underlying
characteristics of second order nonholonomic constraints will be clarified as re-
search continues.

It is therefore important to investigate the type of the constraints imposed on the
system, since these could determine to a certain degree the controllability properties
of the system, or imply ways in which the model can be improved.

2. Collocated Linearization

Certain forms of system description enhance analysis. A notable one is the nor-
mal form, which will be used in subsequent analysis. This form reveals a structure
that is particularly useful in identifying the type of constraints imposed on the sys-
tem. Many of the previous results concerning nonholonomic constraints have used
this type of description.

The normal form is obtained by a standard technique of feedback linearization.
The system (2a-2b) can always be partially feedback linearized with respect to the
actuated degrees of freedom. This is an important property of such systems [8]. The
process of partial feedback linearization for this class of systems is also known as
collocated linearization.

It can easily be understood that the matrix m11 in equation (2a) is square and
nonsingular. The latter is guaranteed by the positive definiteness of the inertia ma-

trix M . If (2a) is solved for 1q�� , we obtain
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Using now the linearizing feedback

[ ](q)k)q(qcv(q)mb(q)u ++= −
�,1 (3)

where v is the new control vector, the system (2a – 2b) can take the form

vq =2��
(4a)
(4b)
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2.2 State Space Description

The state space equations of the underactuated system can be easily obtained by
equations (4) by setting:

24132211 ,,, qxqxqxqx �� ==ℜ∈=ℜ∈= − mmn

This way, equations (4) can take the form:

31 xx =�

42 xx =�
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(5a)

(5b)

(5c)

(5d)

with configuration vector [ ] nT ℜ⊂∈= Mxxx 1 2 . The above equations have

an unactuated linear part (5a – 5b) and an actuated nonlinear part (5c – 5d). They
will be the starting point for the analysis of the constraint equations and the stabili-
zation properties that will follow. We chose to rename the configuration variables
because the partition of the original configuration space and the rearrangement of
variables can easily cause confusion.

3. Constraint Classification

3.3 Preliminaries

In the sequel we use some mathematical concepts from the field of differential
geometry. For the reader who is not familiar we these terms we will attempt a short
and informal introduction. Those familiar with the terms may skip this section. The
definitions given informally below are by no means complete nor acceptable
mathematically and they serve only to allow a non-specialist to follow intuitively
our approach. The interested reader can refer to [9].

A manifold is a locally Euclidean space. Locally means that one cannot use the
same constructions (not even the same coordinate system) to move from a point to
any other point. A sphere is a manifold which is only locally Euclidean. We con-
sider the earth's surface as a plane because in our scale it seems so, and practically it



is a excellent approximation. Everyone however has a clear picture of the spherical
shape of Earth and does not expect to join the north and the south pole with a
straight line without that line crossing the surface. The planar approximation can
only hold locally.

A tangent vector is a vector tangent to the manifold's surface attached to a point
on the manifold. The tangent vector is always referred to in connection to the point
at which it is attached. All tangent vectors at a point form the tangent space at that
point. A vector field is a mapping that assigns to each point on the manifold, a tan-
gent vector on that manifold. The velocity of a particle moving on the manifold is a
vector field. Vector fields are closely related to differentiation. That is why we use

the symbols x∂∂  to denote the base vectors in the tangent space. The right hand

side of the state equations of the system can define a set of vector fields )(xg i :

pp vv )()( 11 xgxgx ++= ��

Having one or more vector fields on a manifold you can assign at each point one
or more tangent vectors. These tangent vector may span a tangent subspace at this
point. The collection of all tangent subspaces generated by the tangent vectors of
the vector fields forms a distribution.

 Several operations can be defined on vector fields. One of them is the Lie
bracket which resembles an outer product operation. The product of the Lie bracket
operation between two vector fields is another vector field. Under the Lie bracket
operations the vector fields can form an algebra, namely the Lie algebra. With
every distribution spanned by some vector fields an algebra is associated. Studying
the mathematical properties of this algebra one can draw significant conclusions
concerning the controllability properties of a system the vector fields of which gen-
erate the associated distribution.

3.4 Definitions and Constraint Identification

Nonholonomic constraints can be identified with the use of some tools from dif-
ferential geometry. Consider equation (5). We state the following definition,
adopted from [10]

Definition 1 [10]: Consider the system (5) and define the following vector
fields:
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and let { }jspan ττ=∆ ,0 be the distribution generated by them. Consider the

accessibility algebra C
~

 of the distribution ∆ , i. e. the smallest subalgebra that



contains the vector fields },{ 0 jττ . Let C
~

 be the accessibility distribution gener-

ated by the accessibility algebra. If ℜ×∈∀+= MxxC ),(12),(
~

dim tnt , then

the system (5) is called completely second order nonholonomic.
When the condition for the dimension of the accessibility algebra is satisfied for

the underactuated system (5), then it possesses second order nonholonomic con-
straints. This implies that the constraint equations (2b) cannot be integrated to pro-
duce a distribution for the system. One should carefully distinguish between the
integration with respect to time and the integration we are discussing. The latter

refers to Frobenius integration, i. e. finding smooth functions iλ  that solve a partial

differential equation [ ][ ] 0
xx

≡ττ
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then it means that the dynamic equations restrict the system to develop on an n+m
dimensional distribution. If on the other hand, the constraints are second order non-
holonomic, the dimension of the state space remains 2n. Whether these constraints
influence decisively the controllability properties of the system is another issue
which will be discussed later.

Suppose now that the constraints are not second order nonholonomic and are
integrated once. The resulting equations will now relate the generalized coordinates
with their first time derivatives. The resulting equations can then be expressed in the
form:

nmnA0qqA ×−ℜ∈= )(,)( � (6)

The annihilators of the rows of matrix A(q) form another matrix,
nm×ℜ∈S(q) , for which

0qSqA ≡)()(
The existence of S(q) implies a relationship of the form [11]

mT ℜ∈= ��qSq ,)(� (7)

The columns of (q)ST  are vector fields which define a distribution. Consider

the accessibility algebra that is generated by those vector fields (the smaller subal-
gebra that contains those vector fields). If the accessibility algebra has a dimension
equal to n, then the system is completely first order nonholonomic by Frobenius
theorem. This means that the system is restricted to evolve on a tangent bundle of
dimension n+m which can be readily shown with the standard analysis that will
follow. Nonholonomic constraints allow the system to reach any desired position,
however they locally limit the directions on which the system can move. The limi-
tation does not apply to configuration variables but rather to velocities: at a specific
configuration the system may not be able to develop velocity at certain directions.
The number n+m can be thought of as the new dimension of the state space.

After differentiation, equation (7) becomes

�qS�(q)Sq )(���� += T

This can be substituted in (1) to yield
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and multiplying by S(q) from the right
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where the dependence on q has been dropped.
Equation (8) is now m dimensional and give the reduced dynamic model of the

system (1). After some algebraic manipulation and rearranging of terms, equation
(8) can be written as

u��G(q,D(q)� +=�

and form the new reduced order model of the system
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which after rearranging the terms can be brought to the state space form (5).
Suppose now that equations (6) can still be integrated. The result of this inte-

gration is a set of n-m holonomic equations, prescribing n-m degrees of freedom in
terms of the remaining m:

0qqg =),( 21

The implicit function theorem provides the necessary conditions under which
the above equation can be solved for q1 to yield:

)21 h(qq =
The above relation can be used to eliminate q1 from equation (2b) so as to ob-

tain a reduced order model.
mℜ⊂∈=++ 222222222 ,ˆˆˆˆ Qq)u(qB)(qKq)q,(qCq)(qM ����

Another case is when the dynamic constraints that form equation (2a) are a col-
lection of second order nonholonomic, first order nonholonomic and even
holonomic. In this occasion, the procedure outlined for each case should be fol-
lowed for the part that falls within each category. This could be quite troublesome
but it is the only way to clear out the scene and obtain a consistent, minimum order
model.

4. Controllability Issues

When k dynamic constraints are holonomic, then the system motion is restricted
to an n-k dimensional manifold. It cannot reach any position outside this manifold.
Points that do not belong to that manifold are simply unreachable.

In the case of completely first order nonholonomic constraints, the configuration
space is not confined. The system is known to be accessible. Due, however, to the
drift term D(q) in equation (9), accessibility for the system does not imply control-



lability. This does not mean that the system is not controllable; it simply means that
there is no definite clue that it is. For nonholonomic systems with drift, there is no
available general necessary and sufficient result for establishing complete control-
lability [12]. One has to resort to other forms of controllability, such as strong ac-
cessibility and small-time-local controllability. For the latter, there exist only suffi-
cient conditions, but once it has been established one can use the manifold of equi-
librium points of the drift vector field to reach an arbitrary small neighborhood of
the desired configuration. A difficult point is that first order nonholonomic systems
are not stabilizable via continuous time-invariant state feedback. In summary, this is
a situation that one should wish to avoid.

If however the system (5) is proved to be second-order nonholonomic, it has
been proved [10] that it is automatically strongly accessible. Moreover, there is
even a chance for smooth feedback stabilization, provided that a sufficient condi-
tion for non-existence of a smooth stabilizing control law is not satisfied:

Theorem 1 [10]: Assume that Mx0x ∈∀= ,0),(iR , for i=1, …, n-m.

Let 1≥− mn  and let ),( 0xe  denote an equilibrium solution. Then the second

order nonholonomic system (5) is not asymptotically stabilizable to ),( 0xe , using

time-invariant continuous (static or dynamic) state feedback law.

If on the other hand 0)0,(|, ≠∈∃∀ xMx iRi , then the system could per-

haps be stabilizable by continuous control law.

4.5 The Finite Element Model

Lets return now to the finite element model we have developed for the object.
The finite element analysis results to a dynamic model which is linear [13]:

uBqKqCqM =++ ��� (10)

Moreover, the characteristic matrices M , C, K and B are independent of the
node coordinates. The finite element method provides a meaningful way of line-
arizing the original dynamic equations of the deformable object. Under specific
conditions for selecting the interpolation functions within the element, the linear
model can be proved to be equivalent to the initial nonlinear differential equation,
so that none of the information contained in the original equations is lost in the
process and all modes are represented by the approximated model.

The state equations derived from (10) have the form

vq2 =��
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The state equations can be formed as
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We give the following Lemma:
Lemma 1 : For the system (11) it holds:
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2. and 3. It can be shown by induction: We first verify for r = 1. It is
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which multiplied by jτ  yields:
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which proves our result for r = 1.
Suggest now that it holds for r = k. Then for r = k+1,
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which completes the proof. �

We are now ready to present our main result:
Proposition 1: Define the sequence of matrices:
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has rank 2n+1 then the system (11) is second order nonholonomic.
Proof: The proof follows from the Definition 1 and the previous Lemma. The

series defined above is directly associated with the accessibility distribution. Indeed

the vector fields j
r

jj ad τττττ τ
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00 0
],,[,,  define one Phillip Hall basis for the

accessibility distribution. It is easily shown that vector fields ],[,, 00 jj ττττ  are

linearly independent. This is obvious for jττ ,0  by their definition. On the other

hand,
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As it can be seen by inspection, the 2m+1 vector fields ],[,, 00 jj ττττ  are

linearly independent and generate a 2m+1 dimensional distribution. Including more

vector fields j
rad ττ

1

0

+  in the set, the dimension of the distribution grows. This

sequence of distributions ],[ 111 −− += iii GGGG  is a filtration. Each iG  is

spanned by vector fields of the previous one plus some vector fields formed by
taking i-1 Lie brackets. If for some r, the rank of the extended matrix is 2n+1 is
means that it contains 2n+1 linearly independent columns. The columns of the ma-
trix, however, are exactly the vector fields that one would calculate for the P. Hall



Figure 1: A deformable object under axial load
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basis of the accessibility algebra. Choosing 2n+1 linearly independent columns one
has 2n+1 independent vector fields that span the accessibility algebra of the system
(11). By Definition 1, (11) is second order nonholonomic. �

Generally, as it will be shown in the examples, systems derived by finite ele-
ments are usually second order nonholonomic. The process of determining the ex-
istence of second order nonholonomic constraints in systems with possibly hundred
degrees of freedom through the conventional way of seeking for a Phillip Hall basis
becomes awfully cumbersome. On the other hand, the algorithm just described
provides an immediate way of investigation since one can easily automate the above
procedure.

Being second order nonholonomic, the finite element model (11) is strongly ac-
cessible. One can easily verify however, that it does not satisfy the sufficient condi-
tion for small time local controllability, presented in [14]. However, this does not
rule out the possibility that the system may be small time locally controllable. In
fact, since the finite element model is linear, a simple matrix calculation can show
whether that system is controllable. In that case the stabilizing feedback law is not
only continuous but also linear! This comes in accordance to Theorem 1, since the

condition for nonexistence of a smooth feedback law, x00xR ∀= ,),( e , is not

satisfied.

5. Example - Rod Under Axial Load

Consider a beam under axial load (Figure 1). The beam is divided into two finite
elements. The system has three degrees of freedom, two of which are directly con-
trolled. The element characteristic matrices are:
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where ! is the density of the material, A is the cross section, "  is the length of
the element and E the elasticity modulus. The equations for the two elements are



assembled and after rearranging the terms to distinguish the actuated part from the
unactuated, the complete equations have the following form:
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Applying the linearizing feedback (3) the above equations become

Rvvq

vq

vq

T +=

=
=

][ 212

23

11

J��

��

��

where





−−





++

+
 ++

+
−=

+
−=

3
2

2
1

1

1
2

2

2

1

1

3
22

1
11

22211
2211

2211
2211

66
)(

3)(

3

][
)(2

1

q
EA

q
EA

q
AA

E

q
A

q
A

qAA
AA

R

AA
AA

""""

�
"

�
"

�""
""

""
""

µµµ
ρ

J

As it can be verified, the linear system is controllable which means that it can be
driven with continuous linear feedback law. Indeed, condition

q00qR ∀= ,),( e  does not hold.

Set 241321221 ,,][, xxx �� ==== xxqqqx T

Using Proposition 1 we can prove that the system is second order non-
holonomic. Notice how the columns in the sequence of matrices defined in Propo-
sition 1 give exactly the vector fields which were to be calculated for the P. Hall
basis.

Lets calculate first the vector fields that are formed with up to one level of
bracketing:
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Since vector fields 1
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,],,[,, ττττττ ττ adadjj are independent, the sys-

tem is second order nonholonomic. Now, notice how these vector fields appear
explicitly in the extended matrix of Proposition 1:
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In this case the partial derivatives of R are calculated only once, at the beginning
of the procedure, whereas the direct calculation of the Lie brackets of the vector
fields requires the calculation of the Jacobians of the vector fields involved.



6. Material Constraints

The degrees of freedom of the manipulated object may be subject to constraints.
These constraints can arise from material strength limitations and/or obstacle avoid-
ance requirements. While the latter apply directly on the object degrees of freedom,
the former are usually expressed in the form

11 ≤
where 1  is the stress tensor of the structure and 1  is the maximum admissible
stress specified for the particular material and object. With some algebraic ma-
nipulation the above relation can be translated in terms of the finite element model
node displacements. If one recalls the well known expressions that relate the defor-
mation 0 , the displacement U, and the stress 1 ,

0E1UD0 ⋅=⋅= ,
along with the element interpolation functions

qNU ⋅=
the material constraints can be expressed in terms of the degrees of freedom. These
constraints can be included in (10) with the use of Kuhn-Tucker multipliers:
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In this case, the multipliers cannot be eliminated, because they correspond to
inequality conditions which do not reduce the dimension of the state space. The
constraint terms in the above equations can be included, though, in the elastic and
gravity forces terms as follows:
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When the stress conditions are satisfied, �  vanishes and the equations describe

the motion of the unconstraint system.
It should not be attempted however to determine the existence of nonholonomic

constraints using the above equations. One the one hand, when constraints are re-
spected, the equations coincide with (10). If the constraints are violated, it may be
too late to examine controllability. On the other hand, material constraints do not
correspond to the natural behavior of the system but are rather externally imposed
conditions which are stated in order to confine deformations and avoid, perhaps,
fracture. They are primarily used for optimization purposes. At any case, the results
of the preceding sections may no longer hold if the inclusion of the material con-
straints destroys the linear structure of the elastic term.



7. Conclusion

A deformable object under manipulation can be modeled using finite element.
This way, the distributed parameter model of the original system is converted to a
finite dimensional underactuated mechanical system. In this light, the class of ob-
jects under study can be extended to include systems with combination of rigid and
deformable objects, unactuated joints, flexible links and joints, rolling contacts etc.

This modeling method reveals a set of dynamic constraints. Depending on their
type, several conclusions about the behavior of the model under control strategies
can be drawn. For each type, the deformable object model is treated accordingly.
Apart from these dynamic constraints, however, there could be additional ones that
can relate to material strength limitations and/or obstacle avoidance requirements. A
way to incorporate these constraints into the object model is described.

The study of deformable objects in the framework of underactuated mechanical
systems indicated the existence of second order nonholonomic constraints. For the
identification of this type of constraints there exist some heavy mathematical tools
from nonlinear control. The model derived from the finite element methodology
however, is linear and one should not be obliged to use such complex techniques.
For this purpose, an alternative methodology has been developed, which does not
require special mathematical skills and knowledge, and is also more computation-
ally efficient than the original method. This method is illustrative with a simple
example.
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