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Nonholonomic Navigation and Control of
Cooperating Mobile Manipulators

Herbert G. Tanner Savvas G. Loizou Kostas J. Kyriakopoulos

Abstract— This paper presents the first motion planning
methodology applicable to articulated, non-point nonholonomic
robots with guaranteed collision avoidance and convergence prop-
erties. It is based on a new class of nonsmooth Lyapunov func-
tions (DILFs) and a novel extension of the navigation function
method to account for non-point articulated robots. The Dipolar
Inverse Lyapunov Functions introduced are appropriate for non-
holonomic control and offer superior performance characteristics
compared to existing tools. The new potential field technique uses
diffeomorphic transformations and exploits the resulting point-
world topology. The combined approach is applied to the prob-
lem of handling deformable material by multiple nonholonomic
mobile manipulators in obstacle environment to yield a central-
ized coordinating control law. Simulation results verify asymptotic
convergence of the robots, obstacle avoidance, boundedness of ob-
ject deformations and singularity avoidance for the manipulators.

Index Terms—Nonholonomic motion planning, cooperative mo-
bile manipulators, potential fields, Inverse Lyapunov Functions.

I. I NTRODUCTION

M OTION planning for nonholonomic robots has always
been a challenging problem which attracted significant

attention over the years [1], [2], [3], [4]. Of particular impor-
tance nowadays, given the recent advances in communication
and computation capabilities of robotic systems, is the issue
of coordinated motion of multiple nonholonomic robotic sys-
tems [5], [6], [7]. No general solutions have been proposed
for closed loop nonholonomic navigation, especially for multi-
robot systems, partly due to the complexity of the problem and
the fact that no continuous static control law can stabilize a non-
holonomic system to a point [8].

One class of nonholonomic motion planning strategies is
based on differential geometry [9], [10], [11], [12], [13]. Flat-
ness properties [14], [15] of nonhonolomic systems have been
exploited [16], [17]. Other forms of input parameterization can
lead to multi rate [18] and time varying control laws [19], [20],
[21], [22], [23], [24], [25]. A significant improvement of the
convergence rate of time varying controllers can be achieved by
use of homogeneous transformations [26]. On the other hand,
the use of discontinuous control laws allows exponential con-
vergence. Such control strategies can be based on appropriately
combining different controllers [27], or using nonsmooth trans-
formations of the state space [28], [29].
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Motion planning strategies developed for obstacle free envi-
ronments cannot be applied in the presence of obstacles. Typ-
ically, the problem is decomposed intopath planningandtra-
jectory generation-tracking. Most of the techniques developed
for path planning are classified as geometric path planners [3],
[30], [31] with several variations [32], [33], [34], [35]. Solu-
tion to the path planning problem is generally sought by graph
searching techniques. An alternative methodology is artificial
potential fields [36].

Potential fields are reported to yield very good results [3].
Significant effort has been devoted to elimination of local min-
ima [37], [38], [39], [40]. Harmonic potential functions [41]
do not exhibit local minima, but they cannot guarantee collision
avoidance [42], [43]. Among other techniques [42], particularly
interesting is the method ofnavigation functions[44] which is
based on a diffeomorphic transformation of the configuration
space to a topologically equivalent one, where a globally con-
verging potential function can be constructed. A fundamental
difference between geometric path planners and artificial po-
tential fields is that the latter automatically merge path finding
and trajectory generation in a closed loop fashion.

Neither of the two classes could directly account for nonholo-
nomic constraints, which could render the planned trajectory in-
feasible. Sussmann and Liu [45], [46] proved that any collision
free path can be approximated by a sequence of feasible non-
holonomic paths, that uniformly converges to the original path
(although slowly and oscillatory [47]). Another approach [48]
replaces the infeasible path with a sequence of Reeds-Shepp
[49] paths [50], [51]. If the nonholonomic controllers used
satisfy certain topological properties [51], [50] then collision
avoidance can still be guaranteed.

Merging path planning and trajectory generation in potential
field methods has motivated research towards a nonholonomic
potential field controller [52], [53]. De Luca and Oriolo pro-
jected the field vector to the direction of admissible motion [54],
however, the holonomic nature of potential field flows did not
allow the establishment of full state stabilization. To address
this problem the authors have introduced thedipolar potential
field [55]. This approach can be combined with the navigation
functions methodology to facilitate the design of globally sta-
bilizing discontinuous nonholonomic controllers [55], [56].

This paper builds on the combination of dipolar potential
fields and navigation function methodology to present a new
class of nonsmooth potential functions calledDipolar Inverse
Lyapunov Functions. These functions give rise to nonholo-
nomic controllers with guaranteed obstacle avoidance and con-
vergence properties. Besides being able to handle nonholo-
nomic constraints, such navigation schemes also offer superior
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performance compared to existing methodologies. The contri-
butions of this paper are summarized as follows:

1) A new methodology for constructing navigation func-
tions for multi-body, multiple, articulated robots.

2) A new class of navigation functions which are appropri-
ate for nonholonomic motion planning, provide superior
performance and require less effort at tuning.

3) Development of a cooperative control scheme for mul-
tiple nonholonomic robots operating under various task
specifications in an environment with obstacles.

Section II introduces the motivating problem and sets the di-
rections of subsequent analysis. Our first contribution is pre-
sented in Section III where we describe a the new methodology
for constructing navigation functions for multi-body robotic
systems. Section IV defines Dipolar Inverse Lyapunov Func-
tions (DILFs) and establishes their stability-related properties.
Section V presents the nonholonomic controller which, based
on the methodology of DILFs, solves the motivating problem.
Finally, Section VII concludes with a summary of the results.

II. PROBLEM STATEMENT

The results of this paper are motivated by the problem of co-
ordinating the motion of multiple cooperating robotic manip-
ulators in an environment with obstacles under additional task
constraints. Towards this end, considerk nonholonomic mobile
manipulators, each described kinematically as:

ẋr = vr cos θr (1a)

ẏr = vr sin θr (1b)

θ̇r = ωr (1c)

q̇ar
= uar , r = 1, . . . , k (1d)

where(xr, yr, θr) is the position and orientation of the plat-
form of mobile manipulatorr on the plane,vr andωr are the
translational and rotational velocities of the mobile platform,
qar

∈ R
nar the vector of arm joint variables anduar the joint

rate inputs. Mobile manipulatorr configuration is defined as:

qr ,
[
xr yr θr qT

ar

]T ∈ SE(2) × Snar , Qr

and the entire system configuration vector is defined as:

q ,
[
q1 . . . qk

] ∈ Q , Q1 × . . . × Qk

The mobile manipulators are supposed to rigidly grasp a de-
formable object (Figure 1). Grasp pointi is associated with an
elementsi of SE(3). An arbitrary grasp frame can serve as
the object’s floating frame of reference,{R} [57]. Without loss
of generality we can assumes1 ≡ sR. With respect tosR, all
other grasps can be described by the grasp vector:

s(q) ,
[
s2(q2), . . . , sk(qk)

] ∈ SE(3) × . . . × SE(3) (2)

Eachsi ∈ SE(3) is a rigid transformationgi [2].
A finite element decomposition of the deformable object [57]

will describe the object shape by means of a set of parameters
r, φ, qf . The first two, (r, φ), correspond to the position and
orientation of the object floating frame of reference, while the
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Fig. 1. Mobile manipulators handling a deformable object in an obstacle
environment.

third, qf , is the vector of (independent) nodal deformations.
The object dynamic equations are then obtained in the form:


mrr mrφ mrf

mT
rφ mφφ mφf

mT
rf mT

φf mff




 r̈

φ̈
q̈f


+


Cr

Cφ

Cf


+


0 0 0

0 0 0

0 0
∑

j Kj
ff




 r

φ
qf


 =


Qr

Qφ

Qf


 (3)

wheremij are elements of the inertia tensor,Ci are Corio-
lis and centrifugal vectors, andQi are external forces vectors.
The dependence ofmij , Ci andQi on the object configuration
(r, φ, qf ) and its derivative is dropped for brevity. In (3) the
vector of nodal deformationsqf depends on the grasp point
coordinates. Sincesi = (pi, Ri) ∈ SE(3), the rigid trans-
formation from the undeformed configuration of graspi to its
deformed can be written asg0

i1g1g
−1
i , whereg0

i1 denotes the
(constant) rigid body transformation from the object floating
frame of reference to the undeformed grasp. We can express
this rigid transformation in terms of the corresponding twist as:
g0

i1g1g
−1
i = eξ̂iθi . Extracting the exponential coordinatesξiθi

we have the contribution of graspi to the vector of nodal co-
ordinatesqf . Without loss of generality, we can assume that
we can partition this vector to the grasp-related component
qs

f = (ξ2θ2, . . . , ξkθi) and the object-related componentqo
f .

With only gravity forces exerted, the equilibrium configuration
q̄f for the nodal deformations of the object would be:

Kff q̄f = Qf (4)

and a first order approximation would provide a simplified de-
scription of the object kinematics aroundq̄f :

q̇o
f = −(Ko

ff)−1Ks
ff(ξ2 · · · ξk)T

with Ko
ff guaranteed nonsingular by the reference conditions

on the finite element model [57]. Due to material strength lim-
itations the object deformation should remain bounded:

‖qf‖∞ ≤ qF (5)
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The problem can now be stated as follows:
Given a group ofk planary moving nonholonomic mobile ma-
nipulators grasping a deformable object, find a feedback kine-
matic control law that steers the system in a cooperative man-
ner between two configurations in a known static environment
with obstacles such that the object deformation remains within
certain bounds.

Towards this goal, we present a novel approach to navigation
of nonholonomic systems that builds on a new kind of poten-
tial field functions called Dipolar Inverse Lyapunov Functions
(DILFs). To handle the volume and the articulated nature of the
robots we develop a new methodology for constructing navi-
gation functions and subsequently derive a discontinuous kine-
matic feedback control law that guarantees global asymptotic
stability for the closed loop system.

III. A P OTENTIAL FIELD FOR NON-POINT ROBOTS

Creating an artificial potential field requires a mathemati-
cal representation of the system and its environment. Exist-
ing potential field methods are based on the assumption that
the system can be represented by a point in the workspace.
For articulated mechanisms and multi robot systems, this is
rarely the case. The method presented in this section builds
on and extends the navigation function approach of Rimon and
Koditschek [44]. It is used to create navigation functions for
multi-body articulated robots through a series of diffeomorphic
transformations. The sphere-world topology of [44] is pushed
to point-world allowing the transformed robots to be treated as
points and eliminating the appearance of local minima.

Obstacle

Robot

Fig. 2. Robots and obstacles are represented as unions of ellipsoids.

In the approach followed in this paper, the shape of the
robotic systemR and the obstaclesO in a three dimensional
workspaceW ⊂ R

3 are considered as unions of general-
ized n-ellipsoids:R =

⋃
j∈J Rj andO =

⋃
i∈I Oi, with

J = {1, . . . , NR} being the index set of the ellipsoids cov-
ering the robots volume andI = {1, . . . , NO} the index set of
the ellipsoids covering the obstacles’ volume (Figure 2). In a
reference frame aligned with an ellipsoid’s semiaxes, the ellip-
soid can be described as a zero level set of a real valued function
of the formb(x, y, z) = 0:

(
x − x0

a

)2n

+
(

y − y0

b

)2n

+
(

z − z0

c

)2n

− 1 = 0,

wherea, b, c, x0, y0 andz0 are parameters andn ≥ 1
2 . The

position and orientation ofRj is specified byq. The boundary
of Rj is described as the zero level set of a real valued function
bRj (q, x, y, z). Accordingly,∂Oi is given asbOi(x, y, z) =
0. FunctionsbRj (q, x, y, z) andbOi(x, y, z) are negative in the
interior of the respective ellipsoid, vanish on the surface and
increase monotonically away from it.

When many independently actuated rigid bodies move in
the same workspace, their representation becomes problematic.
The solution is given by observing that each moving body has
its own “interpretation” of the surrounding world. For each
body, any other body, moving or stationary, is an obstacle. Un-
der that perspective, the original workspace is in fact the result
of an embedding of all such individual subjective views of the
world into a single three dimensional space. Hence, in order to
be able to design the motion of each rigid body, we first need to
untangle these views and treat them separately.

For each rigid bodyp of the robotic system we define a spe-
cial copy of the workspaceWp (Figure 3(b)). In eachWp a
sequence of smooth transformations yields spaces where the
robot part and all obstacles are represented by points. First, the
volume of each robot part is reduced to a point (Figure 3(c)).
Then, all obstacles “seen” by the robot part are also reduced to
points (Figure 3(d)). In the resulting point worlds, navigation
functions can be defined and their construction and tuning are
easier than in sphere worlds.

A. Transformation to Point-World

For an arbitrary workspaceWp, letOp
i , i ∈ Ip be the ellip-

soids that in this particular workspace are treated as obstacles
andRp

j , j ∈ J p the ellipsoids on the rigid bodyp. If we need to
control the orientation ofp explicitly, then we can form groups
Rpm

j ⊆ Rp
j and define separateWpm for each group, such that

Wpm ∩Rp
j = Rpm

j . Then, controlling the position of eachRpm

j

we impose a specific orientation. In a reference frame aligned
with the ellipsoid semiaxes,Rp

j is given by the function:

bp
Rj

(x, y, z) =
(x − xj)2n

a2n
+

(y − yj)2n

b2n
+

(z − zj)2n

c2n
− 1

In this frame, the transformationHp
0(x, y, z):

[
(x − xj)n

an
+ xj ,

(y − yj)n

bn
+ yj ,

(z − zj)n

cn
+ zj

]T

, hp
0

mapsRp
j to a unit sphere centered athj = (xj , yj, zj)T . This

unit sphere is reduced to the pointhp ∈ ⋃J p Rp
j through the

transformationT p
Rj

(hp
0):

T p
Rj

(hp
0) ,

(
bp
Rj

bp
Rj

+ 1

) 1
2

(hp
0 − hj) + hp,

In an appropriate coordinate system, we can assume that the
desired configuration for everyhp is the origin. Define the an-
alytic switches [44]:

σp
Rj

,
‖hp‖

∏
i6=j bp

Ri

‖hp‖
∏

i6=j bp
Ri

+ λbp
Rj

, (6)
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whereλ is a parameter. The transformationHp
1 : hp

0 7→ hp
1:

Hp
1(h

p
0) , hp

1 = hp
0(1 −

∑
j∈J p

σp
Rj

) +
∑

j∈J p

σp
Rj

T p
Rj

(7)

reduces rigid bodyp to the pointhp (Figure 3(c)).
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Fig. 3. (a): Original workspace; (b) Workspace copies for each rigid body; (c)
Rigid body reduced to point; (d) Deformed obstacles reduced to points.

Remark 1. Bearing in mind that we will need to differentiate
the potential function athp we have to ensure that the inverse
transformation(Hp

1)
−1 exists and is smooth. The inverse map-

ping of eachT p
Rj

is given as:

hp
0 =

(‖T p
Rj

− hp‖2 + 1

‖T p
Rj

− hp‖2

) 1
2

(T p
Rj

− hp)

and regardless of the fact that the inverse image ofhp

cannot be directly calculated, there is a limit that depends
on the direction of approach tohp. To see that, express
T p

Rj
− hp in polar coordinates and verify that:limr→0 hp

0 =
[cos θ cosφ, sin θ cosφ, sin φ]T , wherer, θ, φ are the polar co-
ordinates. The switches are not defined on the intersection of
Rp

j but the limit exists in this case too. In fact, with some ad-
ditional computational cost one can isolate eachRp

j by em-
bedding it to its own workspace and ignoring its immediately

neighboring ellipsoids. At any case, the existence of the limits
ensures that the transformationHp

1 is diffeomorphic.

TransformationHp
1 deforms the shape ofOp

i in Wp (Fig-
ure 3(c)). The next transformation reduces the deformedOp

i to
points. Define the analytic switches,

σp
Oi

,
‖hp

1‖
∏

j 6=i bp
Oj

‖hp
1‖
∏

j 6=i bp
Oj

+ λbp
Oi

, (8)

and the mappings,

T p
Oi

(hp
1) =

(
bp
Oi

bp
Oi

+ 1

) 1
2

(hp
1 − hOi) + hOi ,

wherehOi is common for every set of intersectingOi. Then
the transformationHp

2 : hp
1 7→ hp

2:

Hp
2(h

p
1) , hp

2 = hp
1(1 −

∑
i∈Ip

σp
Oi

) +
∑
i∈〉p

σp
Oi

T p
Oi

, (9)

reducesOp
i into points and translateshp (Figure 3(d)). Suc-

cessive application of (7) and (9) yield workspacesWp where
the robot part and its obstacles are represented by points. A
measure of proximity of robot partp to the obstacles could be:

dp(h
p
2) ,

∏
i∈Ip

‖hp
2 − hOi‖

A possible choice for a navigation function is [44]:

ϕ =

∏
p‖hp

2‖2

[
∏

p‖hp
2‖2kv +

∏
p dp(h

p
2)]

1
kv

(10)

wherekv a tuning constant parameter.

B. Bounded Object Deformation

The object is modeled like the manipulator structure, assign-
ing a group of ellipsoidsRfi

j to each of the nodesqfi
in the

deformable object. The position of each ellipsoidRfi

j that rep-
resents part of the object’s volume is determined by the grasp
vectors through (4).

Equation (5) prescribes upper bounds for node deforma-
tions. These upper bounds can be rewritten as spatial toler-
ances for ellipsoidsRfi

j . These tolerances define admissible

regions forRfi

j which when pushed throughHfi

1 can be under-
approximated by balls centered at the undeformed configura-
tion h̄fi (Figure III-B). This way, condition (5) can be trans-
lated into a more conservative constraint of the form:

(hFi)
2 − ‖hfi − h̄fi‖2 ≥ 0 (11)

Constraint (11) can be expressed as an obstacle forRfi

j :

bf ,
∏

i

[(hFi)
2 − ‖hfi − h̄fi‖2] (12)
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Fig. 4. (a): An object ellipsoid inside its tolerance envelope; (b) the trans-
formed ellipsoid in its spherical admissible region.

C. Singularity Avoidance

Singularity avoidance can be achieved by representing sin-
gularities as artificial obstacles. This has been one of the pri-
mary functions of artificial potential fields ever since their first
appearance in literature [36]. Singularity regions are sets of
measure zero within the configuration space but their shape
and location depends on the mechanical structure and cannot be
generically described for an arbitrary mechanism. In well de-
signed manipulators, internal singularity regions are generally
confined and in many cases they can be decoupled to classes
that depend on a subset of the configuration variables [58]. In
such cases it is always possible to enclose the singularity re-
gions inside ellipsoidsOs

i representing artificial obstacles af-
fecting the motion of the robot end-effector.

Singularities can be characterized as solutions of the equa-
tion: det

(
JT J
)

= 0, whereJ denotes the Jacobian of the robot.
One can consider either the composite Jacobian of the platform-
arm system or solely the manipulator Jacobian. EllipsoidsOs

i

are reduced into pointshsi by Hp
2 and singularity avoidance is

ensured by introducing the artificial obstacles:

bp
s ,

∏
i

‖hp
2 − hsi‖2 (13)

for all rigid bodiesp in the robotic system.

IV. D IPOLAR INVERSE LYAPUNOV FUNCTIONS

Conventional artificial potential fields that have appeared in
literature can provide solutions for the problem of navigation of
a holonomic point-robot in an obstacle environment [3], [44].
However, none of these methods can take into account the non-
holonomic constraints that may be imposed on the robot. As a
result, desired motion directions dictated by the potential fields
may be infeasible. Application of a feedback controller based
on such conventional artificial potential fields could result in
the robot being immobilized in configurations that do not con-
stitute local minima for the potential function. In the remaining
section we will present a new kind of potential fields that are ap-
propriate for nonholonomic navigation. This kind of potential
fields give rise to a new class of nonsmooth Lyapunov functions
(ILFs) which can be combined with nonholonomic controllers
to yield global asymptotic stability to a destination configura-
tion with collision avoidance.

A. Dipolar Potential Functions

A dipolar potential function is a nonsmooth function, de-
signed so that the potential field at the origin is aligned to the
direction of the desired orientation for the vehicle (Figure IV-
A). Nonlinear scaling can produce a vector field that allows
the development of a globally stabilizing state feedback control
law.

obstacle

destinationinitial
position

Fig. 5. A dipolar potential field around an obstacle.

Control laws derived from dipolar potential functions do not
avoid the need for the vehicle to rotate in place under a cer-
tain combinations of initial conditions, including(x, y, θ) =
(0, 0, φ). They can guarantee however that underall initial con-
ditions, the vehicle will approach the destination asymptotically
and in the process it will follow a path that automatically stabi-
lizes its orientation. Rotation in place will only be necessary at
initial time if required by the initial conditions.

Dipolar potential functions can be directly constructed from
conventional navigation functions [44] by treating the hyper-
plane the normal vector of which is parallel to the desired ori-
entation, as an artificial obstacle. For the case of a single robot,
this “artificial obstacle” should separate the configuration space
to exactly two connected regions. In the multi-robot case the
configuration space has to be partitioned into2k connected re-
gions, each containing the origin. Lethcr denote the point
where the platform of mobile manipulatorr is transformed into
and define the separating surfaceΓ:

Γ , {hcr
2 | 〈(1, 0, 0)T , hcr

2 〉 = 0},
where〈·〉 denotes inner product andhcr

2 is the image ofhcr

underHcr
2 . Since the analytic switches (6) and (8) vanish at

the origin,Hcr
1 andHcr

2 become the identity there. By continu-

ity, ∂Γ
∂x

∣∣∣
0

= (1, 0, 0) and henceΓ is normal to the direction of

desired platform orientation. Defining the artificial obstacle as:

γr , |〈(1, 0, 0)T , hcr
2 〉|, r = 1, . . . , k

then in view of (10), (12), (13), a dipolar potential function can
be formed as:

ϕd =

∏
p‖hp

2‖2

[
∏

p‖hp
2‖2kv + bf

∏
p dp(h

p
2)b

p
s(hp

2)
∏k

r=1 γr]
1

kv

(14)

B. Inverse Lyapunov Functions

Navigation functions serve as Lyapunov function candidates.
The ability to construct navigation functions is important be-
cause it provides straightforward stability results. However,
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navigation functions require tuning for elimination of local
minima. Tuning generally affects convergence rate and can be
difficult, especially in multi-dimensional spaces where one can
not have visual representation of the navigation function.

Alternative classes of Lyapunov function candidates can be
constructed. One such class isInverse Lyapunov Functions
(ILF) (Figure 6). An ILF can be derived from a dipolar nav-
igation function, so that it is positive semi-definite, vanishing
on the boundary of the admissible space and tending to infinity
at the desired configuration:

Definition 1. Let D ⊂ R
n be a domain containing the origin

and consider a real smooth valued functionV (x) : D \ {0} →
R

+ having the following properties:
(i) V (x) ≥ 0, ∀x ∈ D,
(ii) limx→0 V (x) = +∞,
(iii) V̇ (x) > 0, ∀x ∈ D \ {0}

FunctionV is called Inverse Lyapunov Function (ILF).

obstacle destination
Inverse Lyapunov

Function

Fig. 6. A dipolar Inverse Lyapunov Function build around an obstacle.

Inverse Lyapunov functions are equivalent to typical Lya-
punov functions in the sense that the existence of a representa-
tive of the one class implies the existence of a counterpart in the
other. Their existence implies asymptotic stability for smooth
or nonsmooth systems.

Theorem 1. A (possibly non smooth) Lyapunov functionV (x)
exists iff an Inverse Lyapunov FunctionW (x) exists.

Proof. See Appendix, Section A.

Theorem 2. Consider the continuous systeṁx = f(x) with
f(0) = 0 andD a neighborhood of the origin. IfV : D \
{0} → R

+ is a regular Inverse Lyapunov Function thenx(t)
approaches the origin asymptotically.

Proof. See Appendix, Section B.

Theorem 3. Consider the systeṁx = f(x) where f is
Lebesgue measurable and essentially locally bounded. Let
x ≡ 0 be an equilibrium point andD a neighborhood of0 and
V : D \ {0} → R

+ ∪ {+∞} a locally Lipschitz and regular
function for which it holds:

(i) V (x) ≥ 0, ∀x ∈ D,
(ii) limx→0 V (x) = +∞

Then ifV̇ (x(t)) ≥ 0, ∀x ∈ D \ {0}, x ≡ 0 is uniformly stable.
If in addition V̇ (x(t)) > 0, ∀x ∈ D \ {0}, thenx ≡ 0 is
asymptotically stable.

Proof. The proof is similar to that of Theorem 2, with the dif-
ference that some relations hold almost everywhere.

A class of ILFs qualify for navigation functions:

Proposition 1. Consider the potential function:Vi(x) =
β(x)

1
k

γ(x) , whereβ(x) is the nonnegative obstacle function van-
ishing in the boundary of the free space,γ(x) is the metric in
the free space andk a positive parameter. Fork large enough,
Vi(x) is a navigation function.

Proof. See Appendix, Section C.

Proposition 1 and Theorems 2-3 can be used to establish
asymptotic convergence and obstacle avoidance properties of
a given feedback controller which is based on an ILF. Before
being used, the gradient of an ILF has to be scaled in order to
satisfy∇V (x) → 0 asx → 0. This is done by multiplication
with aKL function of‖x‖: f (x) = ‖x‖k∇Vi for a sufficiently
largek > 0. This factor can be the denominator appearing in
∂V
∂x . The reason why an ILF is preferable to its classical coun-
terpart is outlined in the following claims:

Claim 1. Inverse Lyapunov Functions can achieve faster con-
vergence rates than their classical counterparts.

Proof. See Appendix, Section D.

Claim 2. There is less derivational complexity in the analytical
expression of the potential field generated by Inverse Lyapunov
Functions.

Proof. It can be seen from the proof of Claim 1.

Claim 3. Inverse navigation functions are more easily tunable.

Proof. See Appendix, Section E.

V. CLOSED LOOPKINEMATIC CONTROLLER

In view of (14) a dipolar ILF can be constructed as:

V ,
[bf

∏
p dp(h

p
2)b

p
s(h

p
2)]

1
kv

∏k
r=1 γr∑

p‖hp
2‖2

(15)

from which the following potential field can be generated:

f s =

(∑
p

‖hp
2‖2

)2

∇V (16)

that can be pulled back into the configuration space of the
robotic system by differentiatingV with respect toq:

f =
[
fT

1 · · · fT
r fT

k

]T ,
(∑

p

‖hp
2‖2

)2
∂V

∂q
(17)

wheref r =
[
fxr fyr fθr fT

ar

]T
, r = 1, . . . , k. We

will need the following lemma:

Lemma 1 ([27]). LetM1,M2 two open and connected subsets
of R

n, such thatM1 ∪M2 = R
n \ {0}. Letf i : Mi → R

n,
i = 1, 2 two vector fields and assume there exists a separating
surfaceΓ with 0 ∈ Γ andΓ\{0} ⊂ M1∩M2. LetC1, C2 two
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connected subsets ofR
n \ Γ such thatCi ⊂ Mi and assume

thatf i onΓ is pointing towards the interior ofCi for i = 1, 2.
Finally, assume thatf1, f2 are asymptotically stable onM1,
M2. Then, the vector fieldf : R

n → R
n defined as:

f (x) =




f1(x) if x ∈ (Γ \ {0}) ∪ C1

f2(x) if x ∈ C2

0 if x = 0

is globally asymptotically stable.

Lemma 1 can be extended for more than two vector fields:

Lemma 2. LetMi, i = 1, . . . , k, k open and connected subsets
of R

n such that∪iMi = R
n \ {0}. Letf i : Mi → R

n, i =
1, . . . , k bek vector fields and assume there exists a separating
surfaceΓ with 0 ∈ Γ andΓ \ {0} a proper subset of∩iMi.
Let Ci, k connected subsets ofR

n \ Γ such thatCi ⊂ Mi. In
addition, assume thatf i onΓ is pointing towards the interior of
Ci. If everyf i is asymptotically stable onMi, then the vector
fieldf : R

n → R
n:

f(x) =




f j(x) if x ∈ (Γ \ {0}) ∪ Cj , j = 1, . . . , k − 1
fk(x) x ∈ Ck

0 x = 0

is globally asymptotically stable.

Proof. See Appendix section F.

The partition of the state space described in Lemma 2 is in-
duced by functionγr in (15). If in each regionMj the vector
field is asymptotically stable, then by Lemma 2 the system is
globally asymptotically stable:

Proposition 2. Considerk systems of the form(1) and assume
the existence of a dipolar ILF generated potential field,(17).
Then the following control law guarantees obstacle avoidance
and global asymptotic convergence for the combined system:

vr = kvsign (fxr cos θr + fyr sin θr) ‖f‖ (18a)

ωr =

{
ko(θdr − θr), wr ≥ 0,

vr(fxr cos θr + fyr sin θr)(fθr)−1, wr < 0
(18b)

uar = Kafar
(18c)

wherekv, ko positive constants,Ka a positive definite constant
matrix, and

θdr , atan2(−sign(xr)fyr ,−sign(xr)fxr)

wr , vr(fxr cos θr + fyr sin θr) + kofθr(θdr − θr)

Proof. See Appendix, Section G.

The above controller ensures global convergence to the des-
tination by alinging the robot motion with the gradient of the
dipolar potential field. This alignment ensures that the robot ve-
locities will only vanish at the destination and rotating in place
may only happen at the beginning of the motion.

VI. SIMULATIONS

The methodology is applied to a system of two mobile ma-
nipulators, each consisted of a nonholonomic mobile platform
with three DOF and a fully actuated six DOF manipulator (Fig-
ure 1) and a deformable beam rigidly grasped by the robots.
The task for the robots is to carry a deformable beam while
keeping its deformation bounded and avoiding obstacles. The
object is modeled using two 3D rectangular beam finite ele-
ments [57], in which the nodal displacements correspond to
three infinitesimal translations and three infinitesimal rotations.
The upper bound for the deformation vector norm is set to
qF = 4, which is quite generous to allow for increased ma-
neuverability for the robots and to demonstrate how object de-
formation can be exploited in a motion planning task. IfqF ,
had been set at zero, then the beam would have been treated as
rigid and convergence to destination might have been impossi-
ble. Such a system possesses a total of18 DOF. In theory, the
methodology can be applied to multi-robot systems with dif-
ferent number of robots and DOF; however, the centralized ar-
chitecture and the complexity of the the potential function may
limit the scalability of this controller synthesis method.

Initial and desired configurations are given in Table I.

INITIAL CONFIGURATIONS

x1 y1 θ1 q1
1 q2

1 q3
1 q4

1 q5
1 q6

1

-11 3 −π
2

π
2 −π

2
2π
3 0 −π

6 0

x2 y2 θ2 q1
2 q2

2 q3
2 q4

2 q5
2 q6

2

-8 3 −π
2 −π

3 −π
2

2π
3 0 −π

4 0

DESIREDCONFIGURATIONS

x1 y1 θ1 q1
1 q2

1 q3
1 q4

1 q5
1 q6

1

0 -2 0 π
3 −π

2
2π
3 0 −π

6 0

x2 y2 θ2 q1
2 q2

2 q3
2 q4

2 q5
2 q6

2

0 2 0 −π
2 −π

2
2π
3 0 −π

6 0

TABLE I
INITIAL AND DESIRED CONFIGURATIONS.

The position error trajectories are given in Figures 18-19.
The asymptotic nature of convergence is particularly evident in
the evolution of arm joint angles, since the manipulators have
to maneuver to avoid obstacles while maintaining contact with
the object. Beam deformations are shown in Figure 17. Large
rotational deformations are exhibited during the motion in an
effort to exploit elasticity for faster convergence. However, in
all cases, deformations remain within the specified limits. The
robots’ motion is captured in successive snapshots given in Fig-
ures 7-16. The workspace is structured as an indoor environ-
ment and the task for the robots is to transfer the object through
a door opening and hold it over a rectangular shaped obstacle.
The robots are initially positioned next to each other (Figure 7)
and start moving towards the door opening (Figures 8-9) where
the robots negotiate their motion through the door via the cen-
tralized controller (Figures 10-13). Once inside they maneuver
towards the destination configuration (Figures 14-16).
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Fig. 7. Time = 0.0 sec.

Fig. 8. Time = 0.1 sec.

Fig. 9. Time = 4.0 sec.

Fig. 10. Time = 6.0 sec.

Fig. 11. Time = 7.0 sec.

Fig. 12. Time = 8.0 sec.

Fig. 13. Time = 12.0 sec.

Fig. 14. Time = 16.0 sec.

Fig. 15. Time = 24.0 sec.

Fig. 16. Time = 50.0 sec.
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Time t [sec]

qf [m]

Linear deformations

Angular deformations

qf [rad]

Time t [sec]

Fig. 17. Deformations at the center of mass of the beam.

Platform position and orientation

[m]

[m]
[rad]

[rad]

Time t [sec]

Arm joint angles

Time t [sec]

Fig. 18. Platform position (up) and joint angles (down) of robot 1.

VII. C ONCLUSIONS

This paper presents the first, to the authors’ knowledge,
methodology for nonholonomic motion planning of articulated,
non-point robots in obstacle environments with guaranteed col-
lision avoidance and convergence properties. The methodology
is applied to the case of handling of deformable material by
multiple nonholonomic mobile manipulators and yields asymp-
totic convergence of the robots, obstacle avoidance and non-
holonomic navigation in cluttered environments, motion coor-
dination for the multi-robot system, boundedness of object de-
formations and singularity avoidance for the manipulator mech-
anisms. These objectives are met simultaneously using a new
class of nonsmooth artificial potential functions, namely dipo-
lar Inverse Lyapunov Functions (ILF). This new class of po-
tential functions is appropriate for nonholonomic mobile robot
motion planning, and allows easier tuning, offers computational
savings and yields faster convergence rates. The mathematical
representation of the workspace allows modeling the system’s

Platform position and orientation

Arm joint angles

Time t [sec]

Time t [sec]

[rad]

[m]
[m]

[rad]

Fig. 19. Platform position (up) and joint angles (down) of robot 2.

volume and its non stationary shape, allowing the treatment of
a large class of robots and obstacles. The system is kinemati-
cally controlled by a globally asymptotically stable centralized
discontinuous state feedback controller, based on the artificial
potential field. Stability is analyzed in the framework of nons-
mooth Lyapunov theory which, for this purpose, is enriched by
useful extensions of recently developed tools. Overall perfor-
mance is verified through numerical simulations.
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APPENDIX

A. Proof of Theorem 1

Let V (x) be a Lyapunov function for the systeṁx = f(x),
that is:

(i) V (x) > 0, ∀x ∈ D ⊂ R
n,

(ii) V (x) = 0, for x = 0,
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(iii) V̇ (x) < 0, ∀x ∈ D \ {0}.
Then we can define the function:W (x) , 1

V (x) . It is clear that
W satisfies the first two requirements of Definition 1. For the
third a direct calculation yields:

Ẇ (x) =
−1

V 2(x)
· V̇ (x) > 0, ∀x ∈ D \ {0}

Therefore,W (x) is an Inverse Lyapunov Function.
Conversely, ifW (x) is an Inverse Lyapunov Function sat-

isfying the requirements (i)–(iii) of Definition 1, then we can
define the function:

V (x) ,
{

1
W (x) , x 6= 0,

0, x = 0

By definition,V (x) is continuous at the origin but it may not
be smooth. We can say thatV (x) is smooth almost everywhere
since the origin is a set of measure zero. It is still a valid Lya-
punov function since stability requires only continuity at the
origin.

B. Proof of Theorem 2

The proof borrows from its classical counterpart in [59]: Let
ε > 0. Then there is anr ∈ (0, ε] such thatBr , {x ∈
R

n | ‖x‖ ≤ r} ⊂ D Let α , max‖x‖=r V (x), choose a
β ∈ (α, +∞) and define:Ωβ , {x ∈ Br | V (x) ≥ β} Such a
set always exists sincelimx→0 V (x) = +∞, that implies that
for everyβ there will be aδ for which ‖x‖ < δ ⇒ V (x) > β.
The setΩβ lies insideBr. This can easily be shown by contra-
diction. Additionally, every trajectory starting inΩβ remains in
Ωβ for all t: V̇ (x) ≥ 0 ⇒ V (x(t)) ≥ V (x(0)) ≥ β, ∀t ≥ 0
and thereforex(t) ∈ Ωβ, ∀t > 0, if x(0) ∈ Ωβ . SinceV (x) →
+∞, if x → 0 then for allβ > 0, there will exist aδ > 0 such
that‖x‖ < δ ⇒ V (x) > β. Therefore,Bδ ⊂ Ωβ ⊂ Br and
x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br, which
establishes the stability ofx = 0.

To show thatx = 0 is asymptotically stable, consider a se-
quencex(tn), with tn → ∞. SinceV̇ (x) > 0, ∀x ∈ D \ {0},
thenV (x(t)) is strictly increasing.V (x) not being bounded
from above, soV (x(tn)) → +∞, tn → ∞, which holds for
every sequencex(tn). Therefore,V (x(t)) → ∞ astn → ∞.
This means that for everyβ > 0, there will be aT > 0 such
thatV (x(t)) > β,∀t > T . SinceV (x(t)) > β, there will be
x(t) ∈ Ωβ ⊂ Br. Thus,‖x‖ ≤ r < ε. This holds for every
ε > 0.

Summarizing: for everyε > 0, there is aT > 0 for which
∀t > T, ‖x(t)‖ < ε. As a result, the origin is asymptotically
stable.

C. Proof of Proposition 1

The gradient ofVi is :

∇
(

β
1
k

γ

)
=

k−1β
1
k−1∇β · γ − β

1
k ∇γ

γ2

At a critical point it would be:

∇Vi = 0 ⇒ k−1β
1
k−1∇β · γ − β

1
k ∇γ = 0 (19)

Examining the Hessian:

∇2Vi =

(
γ
β2 (∇β)2 + k γ

β (∇2β − 1
β (∇β)2) − k2∇2γ

)
β

1
k

γ2k2

The nature of the critical points is thus determined by the matrix
F = γβ−2(∇β)2 + kγβ−1(∇2β − β−1(∇β)2) − k2∇2γ. If
F > 0, then the critical points are local minima and since the
system is attracted to the maximum of the ILF, the points would
be repulsive. In fact,F > 0, is a special case of the linear
matrix inequality (LMI):

γβ−2(∇β)2 + x1γβ−1(∇2β − β−1(∇β)2) − x2∇2γ > 0

For any positive semidefiniteG 6= 0, Tr( γ
β2 G(∇β)2) ≥ 0 and

Tr(G∇2γ) 6= 0, and so the LMI has a nonempty solution set.
Note thatk → 0 implies F > 0 and therefore0 belongs in
the solution set. Thus, a sufficiently smallk can ensure that all
critical points are repulsive.

D. Proof of Claim 1

For clarity of presentation, consider the case of no obstacles:
β ≡ 1. A classical navigation function can be expressed as:

ϕ =
‖x‖2

(‖x‖2k + 1)
1
k

The potential field produced is:

∇ϕ =
2‖x‖[∇‖x‖(‖x‖2k + 1)

1
k − ‖x‖2k+1(‖x‖2k + 1)

1−k
k ]

(‖x‖2k + 1)
2
k

whereas for an Inverse Lyapunov Function,ϕi = 1
‖x‖2 :

f(x) = ‖x‖4∇ϕi = −2‖x‖∇‖x‖

recovering an exponential rate of convergence for‖x‖. Thus,
under the same environment conditions,‖x‖ is decreasing
faster along the flows of the ILF potential field.

E. Proof of Claim 3
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Fig. 20. Shape of a classical navigation function for parameterk taking values
1, 5, 10 (left to right).
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Fig. 21. Shape of an ILF for parameterk being1, 5, 10 (left to right).

Consider the case of a two dimensional workspace with
two disk shaped obstacles of radiusr = 0.5[m] centered at
(x, y) = (0.5[m], 0.5[m]) and(x, y) = (0[m], 1.5[m]) respec-
tively. This configuration creates a narrow corridor between
these two obstacles. Using the same representation of the ob-
stacle functions, and the same parameter values for both cases
the aim is to construct a navigation function that can steer a
system within this corridor. Figure 20 depicts the shape and the
equipotential curves of a typical navigation function with pa-
rameterk ranging from1 to 10. Figure 21 shows the behavior
of the inverse counterpart. The ILF responds faster to tuning
and is capable of generating converging paths through the cor-
ridor for smaller values of the tuning parameter.

F. Proof of Lemma 2

For k = 2 we have lemma 1. Letk = 3. Then forf1, f2

with Γ0 \ {0} = M1 ∩M2 and

f (1,2) =




f1, x ∈ (Γ0 \ {0}) ∪ C1

f2, x ∈ C2,

0, x = 0.

we have thatf (1,2) is asymptotically stable onM1∪M2∪{0}.
OnΓ0, f1 andf2 point towardsC1 andC2 respectively. There-
fore, f0 on Γ0 is pointing towardsC1 ∪ C2. Applying lemma 1
for f (1,2) andf3, it follows that the vector fieldf (1,2,3):


f1, x ∈ ((M1 ∩M3) ∪ (M1 ∩M2) \ {0}) ∪ C1

f2, x ∈ ((M2 ∩M3) \ {0}) ∪ C2

f3, x ∈ C3,

0, x = 0.

is globally asymptotically stable. Assume that lemma 2 holds
for k = n. Then similarly the fieldf :


f1, x ∈ ((M1 ∩M3) ∪ · · · ∪ (M1 ∩Mn) \ {0}) ∪ C1

...

fn, x ∈ ((Mn ∩Mn+1) \ {0}) ∪ Cn

fn, x ∈ Cn,

0, x = 0.

is globally asymptotically stable. By induction follows that
lemma 2 holds for everyk.

G. Proof of Proposition 2

The functionssign(·) andatan2(·, ·) are defined as:

sign(x) ,
{

1, x ≥ 0
−1, x < 0

, atan2(y, x) , arg(x, y),

Consider the partition of the configuration spaceQ = C1⊕· · ·⊕
C2k ⊕ Γ induced by the navigation functionV (q) = V j(q) for
q ∈ Cj, j = 1, . . . , 2k. Then the time derivativėV j(q) of
V (q) in Cj is:

k∑
r=1

kv|fxr cos θr + fyr sin θr|‖f‖ + ωrfθr + ∂V j

∂qar

Ka

(
∂V j

∂qar

)T

(∑
p‖hp

2‖2
)2

If wr ≥ 0, thenωr = ko(θdr − θr) and

vr(
∂V j

∂xr
cos θr +

∂V j

∂yr
sin θr) + ωr

∂V j

∂θr
=

wr(q)(∑
p‖hp

2‖2
)2 ≥ 0

If wr < 0, thenωr = −vr(fxr cos θr + fyr sin θr)(fθr)−1

which givesvr(∂V j

∂xr
cos θr + ∂V j

∂yr
sin θr) + ωr

∂V j

∂θr
= 0 Given

Ka is positive definite,
∑k

r=1

(
∂V j

∂qar

)
Ka

(
∂V j

∂qar

)T

≥ 0, and

V̇ j(q) is positive semidefinite. Now letS , {q ∈ Cj ∪
Γ | V̇ j(q) = 0}. If there exists an invariant setΩ ∈ S then
in Ω, vr = ωr = 0, ∀r. From (18) it follows thatvr van-
ishes only at the origin. By LaSalle’s principle for1

V j(q) on

Cj ∪ Γ, asymptotic stability for the system is established on
Mj , Cj ∪ Γ \ {0}. By lemma 2, the system is globally
asymptotically stable.




