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Nonholonomic Navigation and Control of
Cooperating Mobile Manipulators

Herbert G. Tanner Savvas G. Loizou Kostas J. Kyriakopoulos

Abstract— This paper presents the first motion planning Motion planning strategies developed for obstacle free envi-
methodology applicable to articulated, non-point nonholonomic ronments cannot be applied in the presence of obstacles. Typ-
robots with guaranteed collision avoidance and convergence prop- ically, the problem is decomposed ingath planningandtra-
erties. It is based on a new class of nonsmooth Lyapunov func- . ' . . .
tions (DILFs) and a novel extension of the navigation function Jectory genergtlon-tracklngl_\/_lost of the techr_llques developed
method to account for non-point articulated robots. The Dipolar ~ for path planning are classified as geometric path planners [3],
Inverse Lyapunov Functions introduced are appropriate for non- [30], [31] with several variations [32], [33], [34], [35]. Solu-
holonomic control and offer superior performance characteristics  tion to the path planning problem is generally sought by graph

compared to existing tools. The new potential field technique uses searching techniques. An alternative methodology is artificial
diffeomorphic transformations and exploits the resulting point- L
potential fields [36].

world topology. The combined approach is applied to the prob- R .
lem of handling deformable material by multiple nonholonomic ~ Potential fields are reported to yield very good results [3].
mobile manipulators in obstacle environment to yield a central- Significant effort has been devoted to elimination of local min-

ized coordinating control law. Simulation_results verify asymptotic jma [37], [38], [39], [40]. Harmonic potential functions [41]
convergence of the robots, obstacle avoidance, boundedness of obyq, ot exhibit local minima, but they cannot guarantee collision
ject deformations and singularity avoidance for the manipulators. avoidance [42], [43]. Among other techniques [42], particularly
interesting is the method ofavigation function$44] which is
based on a diffeomorphic transformation of the configuration
space to a topologically equivalent one, where a globally con-
verging potential function can be constructed. A fundamental
difference between geometric path planners and artificial po-
tential fields is that the latter automatically merge path finding

OTION planning for nonholonomic robots has alway&nd trajectory generation in a closed loop fashion.

been a challenging problem which attracted significant Neither of the two classes could directly account for nonholo-
attention over the years [1], [2], [3], [4]. Of particular imporsiomic constraints, which could render the planned trajectory in-
tance nowadays, given the recent advances in communicafieasible. Sussmann and Liu [45], [46] proved that any collision
and computation capabilities of robotic systems, is the issfiee path can be approximated by a sequence of feasible non-
of coordinated motion of multiple nonholonomic robotic sysholonomic paths, that uniformly converges to the original path
tems [5], [6], [7]. No general solutions have been proposdglthough slowly and oscillatory [47]). Another approach [48]
for closed loop nonholonomic navigation, especially for multieplaces the infeasible path with a sequence of Reeds-Shepp
robot systems, partly due to the complexity of the problem af®] paths [50], [51]. If the nonholonomic controllers used
the fact that no continuous static control law can stabilize a nagatisfy certain topological properties [51], [50] then collision
holonomic system to a point [8]. avoidance can still be guaranteed.

One class of nonholonomic motion planning strategies is Merging path planning and trajectory generation in potential
based on differential geometry [9], [10], [11], [12], [13]. Flatfield methods has motivated research towards a nonholonomic
ness properties [14], [15] of nonhonolomic systems have be@tential field controller [52], [53]. De Luca and Oriolo pro-
exploited [16], [17]. Other forms of input parameterization ca¢cted the field vector to the direction of admissible motion [54],
lead to multi rate [18] and time varying control laws [19], [20]however, the holonomic nature of potential field flows did not
[21], [22], [23], [24], [25]. A significant improvement of the allow the establishment of full state stabilization. To address
convergence rate of time varying controllers can be achieveds problem the authors have introduced dhgolar potential
use of homogeneous transformations [26]. On the other hafiglld [55]. This approach can be combined with the navigation
the use of discontinuous control laws allows exponential coftnctions methodology to facilitate the design of globally sta-
vergence. Such control strategies can be based on appropridt#iging discontinuous nonholonomic controllers [55], [56].
combining different controllers [27], or using nonsmooth trans- This paper builds on the combination of dipolar potential
formations of the state space [28], [29]. fields and navigation function methodology to present a new

class of nonsmooth potential functions cal@gbolar Inverse

Herbert Tanner is with the University of Pennsylvania, Departmedtyapunov Functions These functions give rise to nonholo-

of Electrical and Systems Engineering, Philadelphia PA, USA (e-majjomic controllers with guaranteed obstacle avoidance and con-
tanner@grasp.cis.upenn.edu)

Sawvas Loizou and Kostas Kyriakopoulos are with the National Technic4fT9€Nce properties. BeSIqu _belng able to handle nonho!o-
University of Athens, Greece (e-maflsloizou,kkyrig @mail.ntua.gr) nomic constraints, such navigation schemes also offer superior

Index Terms—Nonholonomic motion planning, cooperative mo-
bile manipulators, potential fields, Inverse Lyapunov Functions.

I. INTRODUCTION


Herbert Tanner
To appear in: IEEE Transactions on Robotics and Automation, 2003


performance compared to existing methodologies. The cont
butions of this paper are summarized as follows:

1) A new methodology for constructing navigation func
tions for multi-body, multiple, articulated robots.

2) A new class of navigation functions which are appropr
ate for nonholonomic motion planning, provide superic
performance and require less effort at tuning.

3) Development of a cooperative control scheme for mu
tiple nonholonomic robots operating under various tas
specifications in an environment with obstacles.

Section Il introduces the motivating problem and sets the ¢
rections of subsequent analysis. Our first contribution is pr
sented in Section Il where we describe a the new methodola
for constructing navigation functions for multi-body robotic
systems. Section IV defines Dipolar Inverse Lyapunov Func-
tions (DILFs) and establishes their stability-related propertigSg. 1.  Mobile manipulators handling a deformable object in an obstacle
Section V presents the nonholonomic controller which, bas&g/ironment.
on the methodology of DILFs, solves the motivating problem.

Finally, Section VII concludes with a summary of the results.third, ¢, is the vector of (independent) nodal deformations.
The object dynamic equations are then obtained in the form:

Il. PROBLEM STATEMENT

The results of this paper are motivated by the problem of co- |5 T7¢ Mri "
ordinating the motion of multiple cooperating robotic manip- m’"T¢ Me¢  Mos ¢ +
ulators in an environment with obstacles under additional task L™'rf Mes  M/r1 L9f
constraints. Towards this end, consiéderonholonomic mobile C, 0 0 0 r Q-
manipulators, each described kinematically as: Cyl+10 0 0 o =1(Qs| ()

Cy 00 Y.Ki | lq Qy
T, = v, cos b, (1a) A !

(1b) where m;; are elements of the inertia tensd@r; are Corio-
. lis and centrifugal vectors, angd; are external forces vectors.
Or = wr (1¢) The dependence ofi;;, C; andQ@; on the object configuration
4, =g, r=1...k (1d) (r,¢,q;) and its derivative is dropped for brevity. In (3) the
_ N _ _ vector of nodal deformationg; depends on the grasp point
where (z,, yr, 6;) is the position and orientation of the plat-coordinates. Since; = (p;,R;) € SE(3), the rigid trans-
form of mobile manipulator on the planey, andw, are the formation from the undeformed configuration of gragp its
translational and rotational vglgmﬂes_ of the mobile p_lqtfornueformed can be written @iaolmgfl, whereg?, denotes the
q,, € R"r the vector of arm joint variables ang,, the joint (constant) rigid body transformation from the object floating
rate inpUtS. Mobile manipulat@rconfiguration is defined as: frame of reference to the undeformed grasp. We can express
this rigid transformation in terms of the corresponding twist as:
9197 " = 5%, Extracting the exponential coordinatg®;
we have the contribution of graspo the vector of nodal co-
ordinatesg,. Without loss of generality, we can assume that
a2fa; .. @] €Q2Qix...xQ we can partition this vector to the grasp-related component
q; = (&502,...,&,0;) and the object-related componeyit.

The mobile manipulators are supposed to rigidly grasp a d&fith only gravity forces exerted, the equilibrium configuration
formable object (Figure 1). Grasp poinis associated with an g for the nodal deformations of the object would be:
elements; of SE(3). An arbitrary grasp frame can serve as B
the object’s floating frame of referendgR} [57]. Without loss Ksray = Qy (4)
of generality we can assume = sgr. With respect tesg, all
other grasps can be described by the grasp vector:

Ur = U, Sin O,

a2 [z yo 0 ql]" €SE@2) xS 2Q,

and the entire system configuration vector is defined as:

and a first order approximation would provide a simplified de-
scription of the object kinematics arougg:

S(q) 2 [SQ(QQ), . ,Sk(qk,ﬂ S SE(?)) X ... X SE(?)) (2) q; _ _(K;f)—lK;f(£2 . gk)T

Eachs, ¢ SE(3) is arigid transformatiop; [2]. _ with K¢, guaranteed nonsingular by the reference conditions
Afinite element decomposition of the deformable object [Sg the finite element model [57]. Due to material strength lim-

will describe the object shape by means of a set of parametgrgons the object deformation should remain bounded:
r,¢,q;. The first two, ¢, ¢), correspond to the position and

orientation of the object floating frame of reference, while the laslloe < qr (5)



The problem can now be stated as follows: wherea, b, ¢, xg, yo andzy are parameters and > % The

Given a group of: planary moving nonholonomic mobile ma-osition and orientation dR; is specified byy. The boundary
nipulators grasping a deformable object, find a feedback kinéf R; is described as the zero level set of a real valued function
matic control law that steers the system in a cooperative mal, (¢, =, y, z). Accordingly, 00; is given asbo, (z,y, z) =

ner between two configurations in a known static environmehtFunctionsz, (q, x, y, z) andbo, (z, y, z) are negative in the

with obstacles such that the object deformation remains withiterior of the respective ellipsoid, vanish on the surface and
certain bounds. increase monotonically away from it.

Towards this goal, we present a novel approach to navigatio’Vhen many independently actuated rigid bodies move in
of nonholonomic systems that builds on a new kind of potef?e same'wor.ksp'ace, their representation become; problematic.
tial field functions called Dipolar Inverse Lyapunov Functiond € solution is given by observing that each moving body has
(DILFs). To handle the volume and the articulated nature of tH& OWn “interpretation” of the surrounding world. For each
robots we develop a new methodology for constructing naRody. any other body, moving or stationary, is an obstacle. Un-
gation functions and subsequently derive a discontinuous kirf&r that perspective, the original workspace is in fact the result

matic feedback control law that guarantees global asymptdcan émbedding of all such individual subjective views of the
stability for the closed loop system. world into a single three dimensional space. Hence, in order to

be able to design the motion of each rigid body, we first need to
untangle these views and treat them separately.
ll. A POTENTIAL FIELD FOR NON-POINT ROBOTS For each rigid body of the robotic system we define a spe-
Creating an artificial potential field requires a mathemaigial copy of the workspac®V? (Figure 3(b)). In eachV? a
cal representation of the system and its environment. EXxisequence of smooth transformations yields spaces where the
ing potential field methods are based on the assumption thalbot part and all obstacles are represented by points. First, the
the system can be represented by a point in the workspaeelume of each robot part is reduced to a point (Figure 3(c)).
For articulated mechanisms and multi robot systems, thisT&en, all obstacles “seen” by the robot part are also reduced to
rarely the case. The method presented in this section buifstsints (Figure 3(d)). In the resulting point worlds, navigation
on and extends the navigation function approach of Rimon afuthctions can be defined and their construction and tuning are
Koditschek [44]. It is used to create navigation functions faasier than in sphere worlds.
multi-body articulated robots through a series of diffeomorphic
transformations. The sphere-world topology of [44] is pushed Transformation to Point-World
to point-world allowing the transformed robots to be treated as

' S L For an arbitrary workspada/’?, let O?, i € Z? be the ellip-
points and eliminating the appearance of local minima. ¢

soids that in this particular workspace are treated as obstacles
andRi;?,j € JP the ellipsoids on the rigid body. If we need to
Obstacle control the orientation of explicitly, then we can form groups
REm C RY and define separa? for each group, such that
wemORE = RY™. Then, controlling the position of eagtl™

we impose a specific orientation. In a reference frame aligned
with the ellipsoid semiaxeﬂ?,? is given by the function:

2n 2n 2n
» @)™ o)t (7))
bRJ (l’, Y; Z) - a2n + p2n + c2n -1
In this frame, the transformatiod? (z, y, 2):
n n n T
(x — ) . (y —y;) s (2 — %) P e
Fig. 2. Robots and obstacles are represented as unions of ellipsoids. am 7 hr 7 cn 7 0

In the approach followed in this paper, the shape of tHBapsR’ to a unit sphere centeredfaj = (z;, y;, ;)" This
robotic systenR and the obstacle® in a three dimensional unit sphere is reduced to the polat € U7, R} through the
workspace)V C R? are considered as unions of generaUanSfOfma“OfT%J (ht):
ized n-ellipsoids: R = UjeJ.Rj andO = UieZ Oi,'with
J = {1,...,Ng} being the index set of the ellipsoids cov- R b 2
ering the robots volume arili = {1,..., No} the index set of T, (ho) = | 1 (ho — hj) + hy,
the ellipsoids covering the obstacles’ volume (Figure 2). In a By
ref_erence frame gllgned with an ellipsoid’s semiaxes, the elllﬁ]— an appropriate coordinate system, we can assume that the
soid can be described as a zero level set of a real valued functiiireq configuration for evety, is the origin. Define the an-

of the formb(z, y, z) = 0: alytic switches [44]:
B 2n _ 2n o 2n V4
(x x0> n <y byo) N (Z Zo) 1=, o 2 [yl Hq’,;ﬁj bR, _ 6)
a ¢ 7yl Hi;éj b, + /\ij



where) is a parameter. The transformatibff : hf — hi: neighboring ellipsoids. At any case, the existence of the limits

N ensures that the transformatidi is diffeomorphic.
HY(hP) = hY = hD(1 — 4 P TP 7
(o) o= D oh)+ >, oh T (1) Transformatiorf? deforms the shape ab” in Wr (Fig-

jeTP jegP :
a o ure 3(c)). The next transformation reduces the defor@gtb
reduces rigid body to the pointh,, (Figure 3(c)). points. Define the analytic switches,
o BT, 0%, ®
O (IRYII TT .z b5, + AD,”

and the mappings,

B\ ?
To, (hY) = (bp O_;_l) (kY = ho,) + ho,,
O;

whereho, is common for every set of intersectidg,. Then
the transformatioft, : by — h?:

HE(hY) 2 hE =hE(1 =Y 0B )+ > obh Th ., (9)
1€ZIP i€)p

reducesO? into points and translatels, (Figure 3(d)). Suc-

(b) cessive application of (7) and (9) yield workspadts where
the robot part and its obstacles are represented by points. A
measure of proximity of robot paptto the obstacles could be:

s [ Py A P _
Jo»b\stacle f robot dp(h3) = _I;IPHhQ ho.
. robot 1 \ '
o ’ ' A possible choice for a navigation function is [44]:
o [L[IR5]1? (10)
- 1
[TL,[[RE[2F +T1, dp(RE)] %
(d) wherek, a tuning constant parameter.
(©) B. Bounded Object Deformation

Fig. 3. (a): Original workspace; (b) Workspace copies for each rigid body; (c) The object is modeled like the manipulator structure, assign-
Rigid body reduced to point; (d) Deformed obstacles reduced to points. ing a group of eIIipsoidngi to each of the node@f in the
J i

deformable object. The position of each eIIips@lﬁ" that rep-

Remark 1. Bearing in mind that we will need to differentiateresents part of the object’s volume is determined by the grasp
the potential function ak, we have to ensure that the inverseectors through (4).

tranSformation(Hf)il exists and is smooth. The inverse map- Equation (5) prescribes upper bounds for node deforma-

ping of eaC“T%j is given as: tions. These upper bounds can be rewritten as spatial toler-
i ances for eIIipsoidgzjfi. These tolerances define admissible
W IT%, — hpl? + 1 ° T ) regions forR/* which when pushed through{’ can be under-
o T — hy||? Ry P approximated by balls centered at the undeformed configura-

tion ’_'Lfi (Figure 111-B). This way, condition (5) can be trans-
and regardless of the fact that the inverse imagehgf |ated into a more conservative constraint of the form:
cannot be directly calculated, there is a limit that depends

on the direction of approach td,. To see that, express (hr,)® = ||hy, — hy,
T%j — h,, in polar coordinates and verify thatim, o hf, =

[cos 6 cos ¢, sin B cos ¢, sin ¢|T, wherer, 6, ¢ are the polar co- Constraint (11) can be expressed as an ObStaC@fUr
ordinates. The switches are not defined on the intersection of

R% but the limit exists in this case too. In fact, with some ad- by & 1_[[(hFi)2 — ks, — by,
ditional computational cost one can isolate e by em- i

bedding it to its own workspace and ignoring its immediately

2>0 (11)

%] (12)




335::3%;53;235; Loas A. Dipolar Potential Functions

der-anoroximated A dipolar potential function is a nonsmooth function, de-
aamissible region - signed so that the potential field at the origin is aligned to the
direction of the desired orientation for the vehicle (Figure IV-

7% N transformed

' admissible A). Nonlinear scaling can produce a vector field that allows
envelope the development of a globally stabilizing state feedback control
transformed law.
object
ellipsoid
elipsoid oinitial inati
ipsoi / position destination
@ ) :

Fig. 4. (a): An object ellipsoid inside its tolerance envelope; (b) the trans-
formed ellipsoid in its spherical admissible region.
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<
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C. Singularity Avoidance

Singularity avoidance can be achieved by representing sin-
gularities as artificial obstacles. This has been one of the pri-
mary functions of artificial potential fields ever since their firstig- - A dipolar potential field around an obstacle.
appearance in literature [36]. Singularity regions are sets of

measure zero within the configuration space but their shapecontrol laws derived from dipolar potential functions do not
and location depends on the mechanical structure and canno4Bsid the need for the vehicle to rotate in place under a cer-
generically described for an arbitrary mechanism. In well dg;in combinations of initial conditions, including, y,6) =
signed manipulators, internal singularity regions are genera[bc 0, ). They can guarantee however that uraleinitial con-
confined and in many cases they can be decoupled to clasggigns, the vehicle will approach the destination asymptotically
that depend on a subset of the configuration variables [58]. dRq in the process it will follow a path that automatically stabi-
such cases it is always possible to enclose the singularity fi8as its orientation. Rotation in place will only be necessary at
gions inside ellipsoid®); representing artificial obstacles af-,itial time if required by the initial conditions.
fecting the motion of the robot end-effector. Dipolar potential functions can be directly constructed from
Singularities can be characterized as solutions of the eqégnventiona| navigation functions [44] by treating the hyper-
tion: det (J7J) = 0, whereJ denotes the Jacobian of the robotgjane the normal vector of which is parallel to the desired ori-
One can consider either the composite Jacobian of the platfoigatation, as an artificial obstacle. For the case of a single robot,
arm system or solely the manipulator Jacobian. Ellipsis thjs “artificial obstacle” should separate the configuration space
are reduced into points,, by 75 and singularity avoidance istg exactly two connected regions. In the multi-robot case the

ensured by introducing the artificial obstacles: configuration space has to be partitioned idkoconnected re-
N , ) gions, each containing the origin. L&t denote the point
w2 T[InS - hs, (13)  where the platform of mobile manipulatois transformed into
i and define the separating surfdte
for all rigid bodiesp in the robotic system. T2 {hS |((1,0,0)7, A7) = 0},

where (-} denotes inner product arfe}” is the image ofh..,
underHs5". Since the analytic switches (6) and (8) vanish at

_ Conventional artificial potential fields that have appeared {Re origin, 75" andHS" become the identity there. By continu-
literature can provide solutions for the problem of navigation of 51 . L
i ) . X ty, | = (1,0,0) and hencé&" is normal to the direction of
a holonomic point-robot in an obstacle environment [3], [441. 9z | ) _ o o
However, none of these methods can take into account the néigsired platform orientation. Defining the artificial obstacle as:
holonomic'constrai_nts that may bg imposed on the robpt. Asa e 2 1,0,07 RS, r=1,...k
result, desired motion directions dictated by the potential fields
may be infeasible. Application of a feedback controller basdlen in view of (10), (12), (13), a dipolar potential function can

on such conventional artificial potential fields could result ihe formed as:

IV. DIPOLAR INVERSELYAPUNOV FUNCTIONS

the robot being immobilized in configurations that do not con- T1. IR
stitute local minima for the potential function. In the remainingy, = - v 2,, Ep—" — (14)
section we will present a new kind of potential fields that are ap- [IL, A5 117% + by [T, dp(R5)bS(RS) [T 2y ve] e

propriate for nonholonomic navigation. This kind of potential

fields give rise to a new class of nonsmooth Lyapunov functioRs Inverse Lyapunov Functions

(ILFs) which can be combined with nonholonomic controllers Navigation functions serve as Lyapunov function candidates.
to yield global asymptotic stability to a destination configuraFhe ability to construct navigation functions is important be-

tion with collision avoidance. cause it provides straightforward stability results. However,



navigation functions require tuning for elimination of locaProof. The proof is similar to that of Theorem 2, with the dif-
minima. Tuning generally affects convergence rate and canfbeence that some relations hold almost everywhere. O
difficult, especially in multi-dimensional spaces where one can
not have visual representation of the navigation function.
Alternative classes of Lyapunov function candidates can Bgoposition 1. Consider the potential function:V;(z) =
construqted. One such classlm/ers_e Lyapunov Functions@v where 3(z) is the nonnegative obstacle function van-
(ILF) (Figure 6). An ILF can be derived from a dipolar navisjrgfr%g in the boundary of the free spacgx) is the metric in
igation function, so that it is positive semi-definite, vanishin
on the boundary of the admissible space and tending to infinpp
at the desired configuration:

A class of ILFs qualify for navigation functions:

e free space ank a positive parameter. Fok large enough,
'V%’(a:) is a navigation function.

Definition 1. LetD C R™ be a domain containing the origin Proof. See Appendix, Section C. D

and consider a real smooth valued functidii) : D\ {0} — Proposition 1 and Theorems 2-3 can be used to establish

R having the following properties: asymptotic convergence and obstacle avoidance properties of
(i) V(z) >0,Vz €D, a given feedback controller which is based on an ILF. Before
(i) limg,_oV(z) = +o0, being used, the gradient of an ILF has to be scaled in order to
(iy V(z) > 0,vz e D)\ {0} satisfyVV(xz) — 0 asz — 0. This is done by multiplication

FunctionV is called Inverse Lyapunov Function (ILF). with a/CL function of |[z[|: f(z) = [l=(|*VV; for a sufficiently

largek > 0. This factor can be the denominator appearing in
%—‘;. The reason why an ILF is preferable to its classical coun-

terpart is outlined in the following claims:
obstacle destination

St Claim 1. Inverse Lyapunov Functions can achieve faster con-
vergence rates than their classical counterparts.

Inverse Lyapunov

Proof. See Appendix, Section D. O

Claim 2. There is less derivational complexity in the analytical
expression of the potential field generated by Inverse Lyapunov
Functions.

Proof. It can be seen from the proof of Claim 1. O

Fig. 6. A dipolar Inverse Lyapunov Function build around an obstacle. Claim 3. Inverse navigation functions are more easily tunable.

Proof. See Appendix, Section E. O
Inverse Lyapunov functions are equivalent to typical Lya-
punov functions in the sense that the existence of a representa-  , CLOSED L0ooPKINEMATIC CONTROLLER
tive of the one class implies the existence of a counterpartinthe . .
other. Their existence implies asymptotic stability for smooth In view of (14) a dipolar ILF can be constructed as:

or nonsmooth systems. 1

e o BTl B T e
Theorem 1. A (possibly non smooth) Lyapunov functidi) V= SAEHE (15)
exists iff an Inverse Lyapunov Functitii(x) exists. P2

Proof. See Appendix, Section A. m from which the following potential field can be generated:

Theorem 2. Consider the continuous systein= f(xz) with - ?
f(0) = 0 and D a neighborhood of the origin. IV : D\ Fo={D_Im51% ) vv (16)
{0} — RT is a regular Inverse Lyapunov Function the(t) P

approaches the origin asymptotically. that can be pulled back into the configuration space of the

Proof. See Appendix, Section B. ] robotic system by differentiating with respect tag:
Theorem 3. Consider the systemi = f(x) where f is . 2 oV
Lebesgue measurable and essentially locally bounded. Letf = [flT ..o fr ff] = <Z|h’2’||2> B a7
x = 0 be an equilibrium point an@® a neighborhood of and P g

V : D\ {0} — RT U{+o0} a locally Lipschitz and regular

function for which it holds: wheref, = [fo. fo. fo. faTJT, r=1,....,k. We
(i) V(z)>0,Yz €D, will need the following lemma:
(i) limg o V(z) = +oo Lemma 1 ([27]). Let M, M? two open and connected subsets

Then iﬂ'/(a:(t)). >0,z € D\ {0}, = 0 is uniformly stable. of R, such thatM! U M2 = R™ \ {0}. Let f : Mi — R™,

If in addition V' (z(¢)) > 0,Vz € D\ {0}, thenz = 0is ; = 1,2 two vector fields and assume there exists a separating
asymptotically stable. surfacel’ with 0 € ' andT"\ {0} ¢ M' N M?2. LetC!, C? two



connected subsets & \ T' such thatC® ¢ M? and assume VI. SIMULATIONS

that f* on [ is pointing towards the interior of* fori = 1,2.  The methodology is applied to a system of two mobile ma-
Finally, assume thaf*, f* are asymptotically stable oM®, nipulators, each consisted of a nonholonomic mobile platform
M?. Then, the vector fielf : R" — R" defined as: with three DOF and a fully actuated six DOF manipulator (Fig-
. _ ure 1) and a deformable beam rigidly grasped by the robots.
fi(x) ifze(\{o}uc! The task for the robots is to carry a deformable beam while
flx)=< f2(x) ifzxeC? keeping its deformation bounded and avoiding obstacles. The
0 ifz=0 object is modeled using two 3D rectangular beam finite ele-
ments [57], in which the nodal displacements correspond to
is globally asymptotically stable. three infinitesimal translations and three infinitesimal rotations.

i The upper bound for the deformation vector norm is set to
Lemma 1 can be extended for more than two vectorflelds:qF — 4, which is quite generous to allow for increased ma-
Lemma?2. LetM?, i =1,...,k, k openand connected subsetgieuverability for the robots and to demonstrate how object de-
of R” such that; M? = R™\ {0}. Letf’ : M? — R",i = formation can be exploited in a motion planning task.q,
1,...,k bek vector fields and assume there exists a separatiigd been set at zero, then the beam would have been treated as
surfacel’ with 0 € T andT \ {0} a proper subset ofi; M?. rigid and convergence to destination might have been impossi-
LetC?, k connected subsets Bf* \ I such thatC’ ¢ M‘. In ble. Such a system possesses a totdBDOF. In theory, the

addition, assume that’ onT is pointing towards the interior of methodology can be applied to multi-robot systems with dif-
C'. If every f' is asymptotically stable omM?, then the vector ferent number of robots and DOF; however, the centralized ar-

field f : R™ — R™; chitecture and the complexity of the the potential function may
limit the scalability of this controller synthesis method.
fj(w) ifee((\{OHuci, j=1,... k-1 Initial and desired configurations are given in Table I.
flx)=< ffx) xecCt

0 =0 [ INITIAL CONFIGURATIONS |

P 1 2 3 ! 5 6

is globally asymptotically stable. vy | b e | @ | WG| A @

T35 s[-s[F[o[—5[0

Proof. See Appendix section F. O ] ] & dlelal &8

. - o B8] 3] F[-5[-3[F[0]-F[O

The partition of the state space described in Lemma 2 is in- > c

duced by functiony, in (15). If in each regionM? the vector ” ES'REDI ONF'QGURQT'O“iS — H

field is asymptotically stable, then by Lemma 2 the systemis || %1 | Y1 2! 4 4 ;11 4 @@

globally asymptotically stable: 0] -2 0] 3135151 0]-3510

" - v || 6| o] ¢l éE|le| 6|48

Proposition 2. Considerk systems of the forifi) and assume 0T > 5 2 20— (2) 2 (2)

the existence of a dipolar ILF generated potential figty). 21 213 6

Then the following control law guarantees obstacle avoidance
and global asymptotic convergence for the combined system: TABLE |

INITIAL AND DESIRED CONFIGURATIONS.

vr = kysign (fg, cos 0. + f, sind,) || f|| (18a)
— > .. . . . . .
Wy = {k"(edr 0r); _ o wr 20, (18b) The position error trajectories are given in Figures 18-19.
Vr(fa, cosbr + fy, sin,)(fo,) ", wr <0 The asymptotic nature of convergence is particularly evident in
uy, = Kofo (18c) the evolution of arm joint angles, since the manipulators have

to maneuver to avoid obstacles while maintaining contact with
wherek,, k, positive constants(, a positive definite constantthe object. Beam deformations are shown in Figure 17. Large

matrix, and rotational deformations are exhibited during the motion in an
effort to exploit elasticity for faster convergence. However, in
04, = atan2(—sign(z,)f,., —sign(x,) fx,) all cases, deformations remain within the specified limits. The
Wy 2 0, (fo, co8Oy + f,, sin6,) + kofo (0a, — 0,) robots’ motion is captured in successive snapshc_)ts given |n_F|g—
ures 7-16. The workspace is structured as an indoor environ-
Proof. See Appendix, Section G. p mentand the task for the robots is to transfer the object through

a door opening and hold it over a rectangular shaped obstacle.
The above controller ensures global convergence to the d&Be robots are initially positioned next to each other (Figure 7)
tination by alinging the robot motion with the gradient of thé&nd start moving towards the door opening (Figures 8-9) where
dipolar potential field. This alignment ensures that the robot vée robots negotiate their motion through the door via the cen-
locities will only vanish at the destination and rotating in placialized controller (Figures 10-13). Once inside they maneuver
may on|y happen at the beginning of the motion. towards the destination Configuration (Figures 14-16)
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Fig. 17. Deformations at the center of mass of the beam.
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Fig. 18. Platform position (up) and joint angles (down) of robot 1.
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Fig. 19. Platform position (up) and joint angles (down) of robot 2.

volume and its non stationary shape, allowing the treatment of
a large class of robots and obstacles. The system is kinemati-
cally controlled by a globally asymptotically stable centralized
discontinuous state feedback controller, based on the artificial
potential field. Stability is analyzed in the framework of nons-
mooth Lyapunov theory which, for this purpose, is enriched by
useful extensions of recently developed tools. Overall perfor-
mance is verified through numerical simulations.
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APPENDIX

0. Khatib, Commande dynamique dans I'espaceragionnel des robots A. Proof of Theorem 1

manipulateurs en msence d'obstacles Ph.D. thesisEcole nationale

Supgrieure de I'ASronatique et de 'Espace (ENSAE), Toulouse, France, L€t V() be a Lyapunov function for the systein= f(z),

1980.
B.H. Krogh, “A generalized potential field approach to obstacle avoidance
control,” in Proc. of SME Conference on Robotics ReseaBsgthlehem,
PA, 1984.

that is:
(i) V(z) >0, VzeDcCR",
(i) V(z)=0, forz=0,
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(iy V(z) <0, VzeD)\{0}. Examining the Hessian:
Then we can define the functiof” (x) £ ;. Itis clear that )
W satisfies the first two requirements of Definition 1. For thev2 (%(Vﬁ)2 +k3(V?6 - 5(VB)?) - kQVQV) Bx

third a direct calculation yields: i = k2
W(z) = V;—l V(z) >0, YzreD)\{0} The nature of the critical points is thus determined by the matrix
(-"E) F = ’yﬁ_Q(Vﬁ)Q T kvﬁ—l(V% _ ﬁ_l(Vﬁ)Q) _ k2v2,y_ If
Therefore ¥ (z) is an Inverse Lyapunov Function. F > 0, then the critical points are local minima and since the

Conversely, ifi¥(z) is an Inverse Lyapunov Function sat-System is attracted to the maximum of the ILF, the points would
isfying the requirements (i)—(iii) of Definition 1, then we carbe repulsive. In fact}” > 0, is a special case of the linear
define the function: matrix inequality (LMI):

V(z) 2 {ﬁ’ z #0, VBA(VB)? + 21vB (V2B = B7H(VH)?) — 22VPy > 0

0, =0 " e
‘ For any positive semidefinitg # 0, Tr(ﬁ—éG(Vﬁ)Q) > 0and

By definition, V'(x) is continuous at the origin but it may notTr(G'V?2y) # 0, and so the LMI has a nonempty solution set.
be smooth. We can say thé(z) is smooth almost everywhereNote thatk — 0 implies F > 0 and therefore belongs in
since the origin is a set of measure zero. It is still a valid Lyahe solution set. Thus, a sufficiently smaltan ensure that all
punov function since stability requires only continuity at theritical points are repulsive.
origin.

D. Proof of Claim 1

For clarity of presentation, consider the case of no obstacles:
e/g = 1. A classical navigation function can be expressed as:

B. Proof of Theorem 2

The proof borrows from its classical counterpart in [59]: L
e > 0. Then there is am € (0,¢] such thatB, = {x €
R" | [|z]| < r} C D Leta £ max|,—, V(z), choose a ||
B € (o, +00) and defineQs £ {x € B, | V(z) > 3} Such a R
set always exists sindémn, .o V(z) = +o0, that implies that
for every there will be & for which ||z|| < § = V(z) > 8. The potential field produced is:

The sefQ)4 lies insideB,.. This can easily be shown by contra- .
diction. Additionally, every trajectory starting iz remains in ~20|[[[V]=) (2] + D% — ||lz||2EH (||l]|2F + 1)+ ]
Qs forall t: V(z) > 0= V(z(t)) > V(x(0)) > 3,t >0 7T (J|l||2F + 1) %

and therefore:(t) € Qg, Vvt > 0, if (0) € Qg. SinceV(z) —

+o0, if z — 0 then for all3 > 0, there will exist a5 > 0 such whereas for an Inverse Lyapunov Functign,=
that||z|| < 6 = V(z) > . Therefore,Bs C Qs C B, and

z(0) € Bs = z(0) € Qg = z(t) € Qg = x(t) € B,, which f(@) = ||=)|*Ve; = =2||z||V|z||
establishes the stability af = 0.

To show thatz = 0 is asymptotically stable, consider a serecovering an exponential rate of convergencejffof. Thus,
quencez(t,), with t,, — oco. SinceV (z) > 0,¥z € D\ {0}, under the same environment conditions;|| is decreasing
then V (z(t)) is strictly increasing.V (z) not being bounded faster along the flows of the ILF potential field.
from above, sd&/ (z(t,)) — 4o0,t, — oo, which holds for
every sequence(t,). ThereforeV (z(t)) — oo ast, — co. E. Proof of Claim 3
This means that for ever§ > 0, there will be aI" > 0 such
thatV(x(t)) > 6,vt > T. SinceV (z(t)) > (3, there will be
z(t) € Q3 C B,. Thus,|z|| < r < e. This holds for every
e > 0.

Summarizing: for every > 0, there is ' > 0 for which  °-
Ve > T, ||z(t)|| < e. As a result, the origin is asymptotically
stable.

C. Proof of Proposition 1 v \
The gradient o/} is : .
B\ _ kBB y - BEVy )

v <_ - Wazaa 2

v 72

1
Izl

3.

At a critical point it would be: Fig. 20. Shape of a classical navigation function for paramietaking values
1,5, 10 (left to right).

VV,=0=k '8 'VB-y—BiVy=0  (19)
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G. Proof of Proposition 2
The functionssign(-) andatan2(-, -) are defined as:

1, >0
sign(a:)é{_l sy Mten2(e) S arg(ry)

Consider the partition of the configuration spage- C'@- - -@
C** & T induced by the navigation functidr(q) = V7 (q) for
q €Ci, j=1,...,2k. Then the time derivativ&/(q) of

V(g)inC7is:
g )
k_ky|fz, cosO, + sin 6 +w 4 oV’ K (6‘” )
Fig. 21. Shape of an ILF for parametebeing1, 5, 10 (left to right). Z v |frr r+ fy ’"| H 'fH rfo. dq,, % \9q,,

2

= (3, Im812)
Consider the case of a two dimensional workspace with
two disk shaped obstacles of radius= 0.5[m] centered at If w, > 0, thenw, = k, (04, — ¢;.) and
(x,y) = (0.5]m],0.5[m]) and(z,y) = (0[m], 1.5[m]) respec- , , ,
tively. This configuration creates a narrow corridor betweel;l(ﬂ cos 0, + ovi §in6,) + w, oy wle 0
these two obstacles. Using the same representation of the ob-0z; Oy 90, (Z ||hp||2)2 -
stacle functions, and the same parameter values for both cases P2
p;aew’“ < 0, thenw, = —vr(fxr cost, + fi. sir.1¢97«)(fgr)_1

the aim is to construct a navigation function that can steer

system within this corridor. Figure 20 depicts the shape and the" ) oy v ey .
equipotential curves of a typical navigation function with pal/nich givesuv, (5= cos 6, + 5= sin6,) + w. o, = 0 Given
ramete_rk: ranging from1 to 10. Figure 21 shows the behaV|orKa is positive definite,zl,f_l (gw ) K, (gvi ) > 0, and
of the inverse counterpart. The ILF responds faster to tunl%gj . » 7 ey dar ;
and is capable of generating converging paths through the cbi-(4) 1S positive semidefinite. Now le§ = {q € C’ U

ridor for smaller values of the tuning parameter. I'| V/(g) = 0}. If there exists an invariant sét € S then
in Q, v, = w, = 0,Yr. From (18) it follows thatv,. van-
F. Proof of Lemma 2 ishes only at the origin. By LaSalle’s principle f% on

Fork = 2 we have lemma 1. Let = 3. Then forf!, f2 C’ U T, asymptotic stability for the system is established on

with Ty \ {0} = M N M2 and MJ £ CIUT \ {0}. By lemma 2, the system is globally
asymptotically stable.
.f17 we(FO\{O})Ucl
=0 wec?
0, z==0.

we have thayf (1:?) is asymptotically stable ant* UM2U{0}.
onTy, f! andf? point toward<’* andC? respectively. There-
fore,fy onT is pointing toward<! U C2. Applying lemma 1
for £ and 3, it follows that the vector fielgf*2%):

fl, ze (M n M3 UM n M)\ {o}uct
f2 we (M2n M)\ {o})uc?

3, xel?,
0, x=0.

is globally asymptotically stable. Assume that lemma 2 holds
for k = n. Then similarly the fieldf:

fl, e (M AnMHU---UuM N M)\ {o})uct

', ze (MM \{opucn
., xel™,
0, xz = 0.

is globally asymptotically stable. By induction follows that
lemma 2 holds for every.





