An algebraic characterization of strictly
piecewise languages*®

Jie Fu, Jeffrey Heinz, and Herbert G. Tanner

University of Delaware
jiefu,heinz,btanner@udel.edu

Abstract. This paper provides an algebraic characterization of the Strictly
Piecewise class of languages studied by Rogers et al. 2010. These lan-
guage are a natural subclass of the Piecewise Testable languages (Simon
1975) and are relevant to natural language. The algebraic characteriza-
tion highlights a similarity between the Strictly Piecewise and Strictly
Local languages, and also leads to a procedure which can decide whether

a regular language L is Strictly Piecewise in polynomial time in the size
of the syntactic monoid for L.

1 Introduction

Rogers et al. [12] study the Strictly Piecewise (SP), which are a proper subclass
of the Piecewise Testable (PT) languages of Simon [13]. The Strictly Piecewise
languages are interesting for two reasons. First, there are several senses in which
the SP class is natural. For example, SP is exactly the class of those languages
closed under subsequence [12]. Also, they bear the same relation to Piecewise
Testable languages that the Strictly Local (SL) bear to Locally Testable (LT)
languages [10,12]. Second, this class expresses some of the kinds of long-distance
dependencies found in natural language [6,12].

While Rogers et al. provide several characterizations of SP languages, they do
not provide an algebraic one. Also, the procedure they give for deciding whether
a regular language L belongs to SP is exponential in the size of the smallest
deterministic acceptor for L. This paper addresses these issues. It provides an
algebraic characterization for the SP class. This result not only reveals an impor-
tant similarity between the SP and SL languages, but also leads to a procedure
which decides whether L belongs to SP in time quadratic in the size of syntactic
monoid for L. However, it remains an open question whether a polynomial time
decision procedure exists in the size of the smallest deterministic acceptor.

The rest of this paper is organized as follows. Section 2 reviews foundational
concepts and notation. Section 3 defines the Piecewise Testable (PT), Strictly
Piecewise (SP), and Stricly Local (SL) classes. Section 4 presents our algebraic
characterization of the SP class and Section 5 describes the polynomial-time
decision procedure. Finally, Section 6 concludes.

* This research is supported by grant #1035577 from the National Science Foundation.



2 Preliminaries

A semigroup is a set with an associative operation. A monoid is a semigroup
with an identity element (written 1). If S is a semigroup, S* denotes the monoid
equal to S'if 1 € S and to S U {1} otherwise. A zero is an element 0 such that,
for every s € S, s0 = 0s = 0. The free semigroup (monoid) of a set S is the set
of all finite sequences of one (zero) or more elements from S.

If = is an element of set S and 7 a partition of S, the block of m containing
x is [x]x. The partition of S induced by an equivalence relation p is S/p. A
right (left) congruence is a partition such that if [z], = [y] then [xz], = [yz]r
([zx]x = [2Y]x)- A congruence is both a left and a right congruence.

Following Clifford [2], a left (right) ideal of a semigroup S is a non-empty
subset T of S such that ST C T (TS C T). The left (right) ideal of S generated
by Tis TUST = ST (TUTS = TSY). The principal left (right) ideal of S
generated by t € T is PL(t) = S't (PR(t) = tS1).

Let X denote a finite set, called the alphabet. Sets X+ and X* denote the
free semigroup and free monoid of X, respectively. We refer to the elements of
X+ and X* as strings and words interchangeably. The unique string of length
zero is denoted A. The set ¥ =F denotes the set of all words of length at most k.

The length of a string w is denoted |u|, and |w|, denotes the number of
occurences of o in w. A string v is a factor of w iff there exist strings z,y € X*
such that w = avy. A string v is a prefiz (suffiz) of w iff there exist € X* such
that w = vz (w = zv). A string v is a subsequence of string w iff v = oy - -0,
and w € Yo X* - Y*0, 2", and we write v C w. Languages are subsets of X*.
The complement of a language Lis L ={w € X* :w ¢ L}.

A semiautomaton is a tuple A = {Q, X, T}, where @ is a non-empty finite
set of states and X' is the alphabet. The transition function is a partial function
T:Q x X — Q. The domain of the transition function is expanded to @ x X*
recursively as follows. For all ¢ € Q, T(¢,A) = ¢ and for all w € X* and 0 € X,
T(q,wa) = T(T(q,w),a). It follows that T'(q,zy) = T(T(g,x),y). By definition

semi-automata are deterministic.

A finite-state automaton (FSA) is a tuple A = {Q,qo,Qy, X, T}, where
{Q,X,T} is a semi-automaton, gy € @ is the initial state, and Qy C Q is a
set of final states. The language recognized by A is {w € X* : T(qo, w) € Qr}.

A language L is reqular iff there exists a FSA recognizing it. For every regular
language L there is a unique (up to isomorphism) automaton with the fewest
number of states recognizing L called the canonical FSA for L.

A state ¢ of an automaton is a sink state iff, for all 0 € X, if T'(¢, o) is defined
then T'(g,0) = ¢q. One can always make the transition function total by adding
a nonfinal sink state and directing all the missing transitions for each state to
this sink. When the sink state is added to a canonical acceptor, it is the only
state which is both a sink and nonfinal. The resulting automaton is complete.



For any automaton A and state ¢ € @, let p, be that relation such that, for
all elements z and y of X*, zpyy iff T'(¢,z) = T(g,y). More generally, let

f J— ( ql e qn >
o T(qlvx) T(qnv‘r) '
For all z,y € X%, let xpy iff f; = f,. The equivalence relation p over X* induces
a congruence over X* [15]. The index of p is finite because @ is finite.

Let Fy = {f.: 2 € X*} denote the finite monoid of mappings and I(A) =
X*/p. Then F4 is isomorphic to I(A) under the correspondence of f, of Fa
with [z] of I(A), where [z] is the p-congruence coset containing = of X*. In this
paper, when writing f, and [z], we choose z to be a shortest-length element in
the congruence class without any ambiguity.

For FSA A, where A is the associated semiautomaton of A, F4 is called
the transformation semigroup and I(A) is the characteristic semigroup of A.
Elements f, of F4 can also be written in matrix form u,, where the rows and
columns indicate states in Q@ = {q1,...,¢n} and pyfi,j] = 1 iff T(g;, ) = g;.

The set of matrices is another semigroup, the transition semigroup. The name
is derived from the fact that each element in this semigroup is a transition matrix
associated to a walk z in A. We write Uy = {u, : ¢ € X*}. Clearly Uy is
isomorphic to I(A) under the correspondance of 1, of Ua with [x] of I(A).

Definition 1 (Pin 1997). The syntactic semigroup of a regular language L is
the transformation semigroup given by its complete canonical semiautomaton.

In the syntactic semigroup of an automaton A, the set of generators of Fj is
Gen(Fy) = {fs : 0 € X}. The syntactic monoid of a regular language L is the
syntactic semigroup with identity, Gen(F}) = {f, : 0 € X U A}

Pin [11] discusses the equivalence between automata and semigroups. Note
that since the transition semigroup U of A is represented as a semigroup of
boolean matrices of order |Q| x |Q], a word w is recognized by A iff 1i,(qo, q5) =1
for some final state gy € Q. It follows that a finite automaton recognizes a
regular language L iff its transition semigroup recognizes L.

A “monoid graph” is a useful method employed by contemporary algebraic
theorists to visualize monoids. The nodes of the graph are elements in the
monoid, though an initial node labeled “)\” is included by convention. The labels
on edges are the elements in the set of generators of the monoid. Given a monoid
M,z > yiff zs = y, where 2,y € M, and s € Gen(M). The monoid graph of
F4 is denoted as MG(F4). We mark elements « in the monoid graph as final
iff f, € Fa and there exists a final state ¢ in the canonical acceptor such that
T(qo,z) = g [11]. Examples of monoid graphs are in Figures 1,2, and 3.

Definition 2. A unique nonfinal sink state in an automaton A is called zero.
An element f, is a zero element of the transformation semigroup iff

o q ...qn
(%)



We use the notation fy = 0 for the transformation semigroup, p, = 0 for the
transition semigroup, and x = 0 for the free semigroup X*. The corresponding
zero in the characteristic semigroup I(A) is denoted [0].

While every complete canonical automaton (except the one recognizing X*) has
a unique nonfinal sink state, not every transformation semigroup has a zero.

3 Piecewise Testable and Strictly Piecewise languages

The concept of a subsequence is central to the notion of piecewise testability.

Definition 3. The principle shuffle ideal of v is the language of all words for
which v is a subsequence. We write SI(v) ={w € X* | v C w}.

The Piecewise Testable languages is the smallest class of languages including
SI(w) for all w € X* and closed under Boolean operations [13]. Similarly, the
class of Piecewise k-Testable (PTy) languages is the smallest class of languages
including ST(w) for all w € X<F and closed under Boolean operations.

A well-known characterization of the PT languages is stated in terms of the
sets of subsequences within words. If P<i(w) = {v : v £ w and |v| < k} then the
following characterization (sometimes taken as the definition of PT [3]) holds.

Theorem 1. A language L is Piecewise Testable iff there exists k such that, for
all words wi,we € X*, if P<y(w1) = P<i(w2) then wy € L iff we € L.

When £ is known, L is said to be Piecewise k-Testable (L € PT},).

Simon proved one of the first examples of what later became known as Eilen-
berg’s correspondence theorem [11]. One of the relations that Green [4] defines
on semigroups is the J relation, which relates two elements of a semigroup S if
they generate the same two-sided principal ideal of S: aJb iff StaS! = S'bS*.
A semigroup S is J-trivial iff, for all a,b € S, if aJb then a = b. Simon proved
the following algebraic characterization of piecewise testable languages.

Theorem 2 (Simon 1975). A language is Piecewise Testable iff its syntactic
monoid s J -trivial.

As an example, consider the language of all words with exactly one a, L =
{w : Jw|, = 1}. The canonical acceptor for this language is shown in Figure 1.
There are three elements in the monoid F} = {a,1,0}, (for simplicity of nota-
tion, let x stand for f,). The J-triviality is established by calculating F}‘IZEF}h,
for all x € Fj : Fj aFy = {0,a}, F3 1F; = {0,a,1}, and F; 0F} = {0}.
The J-triviality is satisfied, which means this languange L is piecewise testable.

Rogers et al. [12] study a proper subclass of the Piecewise Testable languages,
the Strictly Piecewise class. This paper takes as definition of Strictly Piecewise
languages those languages which are closed under subsequence. (Unknown to
Rogers et al., languages closed under subsequence were studied forty years earlier
by Haines [5] (see also Higman [7]).)



Fig. 1. The canonical automaton and the monoid graph for L = {w : |w|, = 1}, which
is the language of all words with exactly one a.

Definition 4. A language is Piecewise Testable in the Strict Sense (L € SP)
iff, for allw e X*, if we L and v C w then v € L.

Rogers et al. [12] establish the following equivalences (see also [5]).
Theorem 3. The following are equivalent:
1. L € SP.

2. L =SI(X),X C X"
8. L €Nyeg Sl(w), for S finite.

4. there exists k such that if P<p(w) C P<k(L) then w € L.

It follows from the third characterization above that any SP language can
be characterized by a finite set S. Elements of this set are the forbidden sub-
sequences, and the language is all words which do not contain any of these
forbidden subsequences. The longest word in S is the length & in the 4th char-
acterization above, in which case we say L is Strictly k-Piecewise (L € SPy).!

By forbidding subsequences, SP languages resemble the Stricly Local lan-
guages which forbid factors [10]. Any SL language L can be defined as the
intersection of the complements of sets defined to be those words which con-
tain a forbidden factor. Formally, let the container of w € xX*x be C(w) =
{u € X* :wis a factor of x ux} then a language L € SL iff there exists a fi-
nite set of forbidden factors S C xX*x such that L = (,.q C(w).? Fig-
ure 2 shows the canonical acceptor and the monoid graph for the SL language
L = Y*aaX* = C(aa), i.e. all words except those containing the factor aa.

To illustrate SP languages, consider the language L = SI(bb) N SI(ca), which
is the language of all words except those containing either the subsequences bb
or ca; i.e., bb and ca are the forbidden subsequences. Thus this SP language can
be characterized by the set {bb, ca} of forbidden subsequences (or equivalently
by the set X<2/{bb, ca} of permissible subsequences [12]). Hence this language
belongs to SPs. Figure 3 shows ths canonical automata and the monoid graph
for L. The 0 element is not shown there, but note that all missing edges go to 0.

! 'While every SP language is convex [14], it is not the case that all convex languages
are SP since, for example, there are nonempty subword-convex languages that do
not contain A but the only SP language not containing A is the empty one.

2 The symbols x and x invoke left and right word boundaries and are necessary
because SL languages make distinctions at word edges [10].



Fig. 2. The canonical acceptor and the monoid for the language L = C(aa), which is
all words except those containing the factor aa.

Fig. 3. The canonical automata and the monoid graph of the syntactic monoid of

L = SI(bb) N SI(ca), i.e. the language where the subsequences bb and ca are forbidden.

As with the other piecewise testable languages like the one in Figure 1,
it is not difficult to verify that the syntactic monoid of this language is J-
trivial. However, this language, like every other SP language, has two additional
properties. Furthermore, no non-SP language has both of these properties.

4 Algebraic Characterization of SP

There are two important concepts that need to be introduced.

Definition 5. Let L be a regular language recognized by FSA, and consider its
characteristic semigroup. Language L is wholly nonzero if and only if L = [0].

In other words, a language is wholly nonzero if and only if every word not in
the language is in the zero block of the characteristic semigroup. In terms of the
transformation semigroup, this means that every word x not in the language is
zero; i.e., fp = 0.

Theorem 4. A language L is wholly nonzero if and only if L is closed under
prefiz and closed under suffiz.

Proof. Clearly, [O]_Q L. Now suppose L is closed under prefix and suffix, and
consider any x € L. For contradiction, suppose f, # 0. Then in the canonical
acceptor A for L there are states ¢,¢’ in A such that x transforms ¢ to ¢’. Since



A is canonical, there exist strings w,y such that w transforms gy to ¢ and y
transforms ¢’ to a final state. Thus wxy € L. Since L is closed under prefix wz
belongs to L and since L is closed under suffix, z belongs to L, which contradicts
the assumption. Therefore f, = 0, which completes one direction of the proof.

Now suppose L = [0] and consider any w € L and any prefix (suffix) v of
w, which means there exists  such that w = vz (w = av). If v € L then by
assumption f, = 0. It follows that fi, = fuoz = 0fs =0 (fu = fzo = f20 = 0),
which contradicts that w € L.

Observe that L = X* and the empty language are wholly nonzero vacuously.
The following two corollaries are almost immediate.

Corollary 1. The Strictly Piecewise languages are wholly nonzero.

Proof. The Strictly Piecewise are closed under subsequence by definition and
are therefore closed under prefix and suffix.

Corollary 2. The Strictly Local languages are wholly nonzero.

Proof. Consider any Strictly Local language L and any w € L. Since w € L,
there are no forbidden factors in w and therefore there are none in any prefix or
suffix of w. Hence every prefix and suffix of w belongs to L as well.

That both the Strictly Local and Strictly Piecewise are wholly nonzero is a
nontrivial property they have in common. To illustrate, recall the SL language
L = C(aa) (Figure 2). Every string not in this SL language transforms any state
in its monoid graph to 0. These are all the strings with the 2-factor aa. Similarly,
consider again the language L = SI(bb) N SI(ca) (Figure 3). Every string not in
this SP language transforms any state in its monoid graph to 0. These are exactly
those strings with either subsequence bb or ca.

The second property is an algebraic characterization of what Rogers et al.
describe in automata-theoretic terms as “missing edges propagate down.” This
means that if some state ¢ in the canonical accepter does not have a transition
labeled with symbol ¢ then no state reachable from ¢ has an outgoing transition
labeled with o. To capture this, we need the following concept relating to zeroes.

Definition 6. Let M be a monoid. The set of right annihilators of an element
x €M, is RA(x) ={a € M : za = 0}.

In other words, the elements of RA(x) annihilate x from the right. The set of
left annihilators can be defined similarly, but it does not play a role here.

We now define the following property which captures the notion of “missing
edges propagating down.”

Definition 7. A language L is right annihilating iff for any element f, in the
syntactic monoid Fa(L), and for all f,, in the principle right ideal generated by
fz, it is the case that RAp, 1y(fz) € RAp,(1)(fw)-

The main theorem of this paper can now be stated and proved.



Theorem 5. A language L is SP iff L is wholly nonzero and right annihilating.

Proof. By Corollary 1, any SP language is wholly nonzero.

Next consider any L € SP and any element f, and any f; € RAp, (1y(fz)-
It follows that f,f: = 0; hence, fy+ = 0. Since L € SP, there must be some
v C wt such that v is forbidden; i.e SI(v) C L. For any f, in the principal
right ideal of f,, it is the case that there exists f, such that f, = f;fs. Thus
fwft = fafaft = fzat- Since v C zt it follows that v C xat and therefore
Jwft = feat = 0 and so f; € RAp,(1)(fw). The generality of f, and f; ensures
that Yw € PR(ZC),RAFA(L)(fw) - RAFA(L)(fw)'

Now for the other direction. The empty language vacuously satisfies the above
conditions and belongs to SP so consider any nonempty regular language L,
which is wholly nonzero and right annihilating. We show that L belongs to SP.

By contradiction, suppose L is wholly nonzero and right annihilating, but
not in SP. By definition of SP, L is not closed under subsequence. So there is
some w and v such that w € L and v C w but v € L. Since v C w, there exists
ug, U1, - , Uy such that for v = o109 ...0,, W = UgoLULOUS - - - OpUs,.

Since v ¢ L and since L is wholly nonzero, v € [0]. It will be useful to
refer to the suffixes of v as follows: v; = 0; -0, for 1 < i < n. For example,
v=wv1 =010, and vo = 09 -+ -0y, and v, = o,.

Now w9 is a right annihilator of ugo; since ugo1vs = ugv = up0 = 0. Also,
since L is right annihilating, RA(ugo) is a subset of RA(ugoiuy), and so vg
right annihilates ugoyu; as well.

Next consider that vs is a right annihilator of ugojui09 since ugoyuioovs =
ugou1ve and above we showed that ve right annihilates ugoiu. Again, since L
is right annihilating, RA(ugoiuz02) is a subset of RA(ugoiuioaus), and so vs
right annihilates ugoiuio2us as well.

Carrying this argument through to its conclusion, we see that v, = o, is a
right annihilator of ugoiuioous -« - Up—_10n—1. Therefore o, is a right annihilator
of ugoiu109Us -+ - Up—20,—1U, as well. Hence ugoiuioaus -+ - Up—20p—1Unoyn = 0.

But this means that w = ugoiuioaus « - Up—20 7 —1UnopU, = Ou, = 0. Since
L is wholly nonzero, it follows that w ¢ L, which contradicts the reductio as-
sumption. Therefore there is no v,w such that w € L, v C w, and v &€ L. It
follows that regular languages that are wholly nonzero and right annihilating
are closed under subsequence and are therefore SP.

We illustrate this property in the context of the decision procedure we present

below for deciding whether a regular language is SP.

5 Algorithms for SP languages

Theorem 3 provides a polynomial-time decision procedure for deciding whether
any regular language L is SP, and if it is, it finds the finite set of the shortest
forbidden subsequences necessary to define L.



5.1 Deciding SP

The input to the algorithms below is taken to be the monoid graph of the
syntactic monoid for a regular language L, with the initial state being the node
labeled “A” and the final states being marked. Since this graph is determinstic,
it is possible to obtain the canonical acceptor in time O(nlogn) [9]. Given a
minimal DFA A, the syntactic monoid F4 can be obtained through the set
of generators {f,},Vo € X. The reader is referred to [1] for the construction
method of syntactic monoid Fj4.

Theorem 3 provides the basis for the decision procedure, which we call DSP.
DSP simply checks whether the syntactic monoid satisfies the wholly nonzero
and the right annihilation conditions.

The wholly nonzero condition can be checked in two steps, essentially by
checking closure under prefixes and suffixes. To check closure under prefixes, one
simply need check whether every state in the canonical accepter A is final. If they
are not, then the syntactic monoid of A is not wholly nonzero. To check closure
under suffixes, both the complete canonical acceptor and the transformation
semigroup F4 are examined. Let 0 be the non-final sink state in the complete
automaton. If there exists one nonzero element f, in F4 and one noninitial state
¢ in the canonical acceptor such that T(q,z) # 0 but T(qo,z) = 0, then the
wholly nonzero condition is violated. If no such f, or ¢ exist, however, we can
conclude the language is wholly nonzero.

Whether the right annihilating condition is satisfied can be determined from
the Cayley table for F'4. The columns and rows of a Cayley table are labeled with
the elements in the syntactic monoid Fy4, and the cell is the product(z -y) of the
row-th(z) and column-th(y) elements [2]. Then for each f, € F4, the principal
right ideal generated by x (PR(x)) can be found by the union of all distinct
elements in the zth row of the table and the right annhilators of x (RA(z)) are
given by those elements y such that the 2 row and y** column is 0.

Then for each z € PR(x), it is sufficient to check whether RA(x) C RA(z).
If for any = € F4 and any z € PR(z), it is the case that RA(x) € RA(z) then
the algorithm exits and returns “false”. Otherwise it returns “true”.

We illustrate these procedures with three examples. Consider first the SP
language L = SI(bb) N SI(ca) in Figure 3. The elements of its transformation
semigroup F4 (L) = {fz,z € X*} are:

1234 1234 1234
ﬁ1:<0034) fb:(2003) fc:<1221)
1234 1234 1234
hb‘<0003) ﬁc_(2002) ,ﬁc—<oo21)
1234 1234
f“C‘(oooz) O_(oooo)'

_ Since F4 is isomorphic to the characteristic semigroup I(A), it follows that
I(A) = {][0], [al, [b], [¢], [ab], [bc], [ac], [abc]}. The transition semigroup U(A) are
the set of the adjacency matrices given by each string x in f;, fz € Fa.



A a b c¢ ab bc ac abc

A A a b ¢ ab bc ac abc
a a a ab ac ababc ac abc
b b ab 0 bc 0 0 abc 0
c ¢ 0 bc ¢ 0 bc 0 O
ab ab ab 0 abc 0 0 abc 0
bc bc 0O 0 bc¢ O 0 0 O
ac ac 0 abc ac 0 abc 0 O
abc abc 0 0 abc 0O 0 0 O

Table 1. Cayley table for syntactic monoid for L = SI(bb) N SI(ca).

The monoid graph for this language is in Figure 3. Recall that although the 0
element is not shown, it is understood that all missing edges go to 0. The Cayley
table is given in Table 1. With a little abuse of notation, in the following context,
x is used to denote the element f, in syntactic monoid F4. The wholly non-zero
condition can be checked by examining the syntactic monoid. It is noticed that
in this canonical accepter all states are finals and there is no such f, € F4 and
q € @ such that T'(q,z) # 0 but T(qo,z) = 0.

The next step is to determine whether the right annihilation condition is
satisfied with the help of Cayley table. For example in the Cayley table, the
ab-row is all the elements that are in the right ideal generated by ab, abF} =
{ab, abc,0}. The elements in those columns corresponding to Os form the set
RA(ab) = {b,ab,bc,abc}. The right annihilating condition requires that Yw €
xFa, RA(x) C RA(w). From the table it is easy to verify that RA(abc) =
{a, b, ab,bc,ac,abc}, which is a superset of RA(ab). Since RA(0) = Fjy, it like-
wise follows that RA(ab) € RA(0). The right annihilation condition for other
elements can be verified in the same manner and it can be shown this syntactic
monoid is right-annhilating.

Now consider the language L = {w : |w|, = 1} (Figure 1). L is not SP
because it does not satisfy the wholly nonzero condition. The element b is not
in the language but it is not zero in its syntactic semigroup.

For the language L = C(aa) in Figure 2, though it satisfies the wholly nonzero
condition, the right annihilating condition is violated. Observe that aa = 0
and ab € PR(a). If L were right annihilating then RA(a) C RA(ab). However,
aba = a # 0 and thus the right annihilating condition is not met. Therefore,
L = C(aa) is not SP.

5.2 Finding the shortest forbidden subsequences

The following procedure FIND-SSQ takes the syntactic monoid of a SP language
as input and finds the finite set of shortest forbidden subsequences which de-
scribe the SP language. In order to link the syntactic monoid and the length of
forbidden subsequences, the monoid graph is employed. In MG(F4), the set of
the shortest paths that lead to 0 of F4 form the set P(Fa).



FIND-SsQ begins with the syntactic monoid for some L € SP and k£ = 1.

1. Calculate the set of sets of k-subsequences:

Pu(P(Fa)) = {{Pu(p)} :p € P(Fa)} .

2. Find all singleton sets in P, (P(F4)) and construct the set F'Sy, which is the
set of hypothesized forbidden subsequences of length k. This set is formed by
taking the union of the singleton sets in Py (P(F4)). If there is no singleton
set found, update k by one and return to step 1.

3. Verify whether each set P € Py (P(F A)) has a nonempty intersection with
F'Si. If every set P does then F'Si is a set of forbidden sequences which
can define L and L is Strictly k-Piecewise. Otherwise, update k by one and
return to step 1.

Theorem 6. FIND-SSQ terminates at the shortest k for L € SP.

Proof. Suppose this k is not the shortest one for the SP language L, and there
exists k' > k such that L € SPy,. This means that there exists at least one path
p' € P(Fa), with [p'| > k, such that Py(p’) C Pyx(L) and Py (p') N P (L) = 0,
for some k' > k. The fact that Py(p’) C Py(L) implies that Vv € Py (p’), v € L,
which is guaranteed by the syntactic monoid of L being wholly nonzero.

However, if the algorithm does not terminate at k ensures that there exists
at least one element h € Py(p’) with h € FSj. Since FSj is the set of all
paths of length k that lead to 0, h ¢ L. This contradicts the previous statement
that Yo € Pi(p’), v € L. Therefore, no such p’ exists and thus the algorithm
terminates at the shortest k for the strictly piecewise language L.

We illustrate this algorithm with the automaton in Figure 3, assuming it has
already been verified with DSP that it describes an SP language. We refer to
the monoid in Figure 3 with F4. The set of the shortest paths which lead to 0 is
P(Fa) = {bb, ca, bab, beb, bea, abb, aca, cba, cbb, bacb, baca, abeb, abea, acbb, acba}.

1. For k = 1, all sets in P—j(P(Fa4)) are not singleton. Therefore, increase
k by 1.

2. For k =2, P_y(P(Fa)) = {{bb},{ca}, {ba, ab,bb}, {bc, cb, bb}, {bc, ba, ca},
{ab,bb}, {ac,aa,ca}, {cb, ca,ba},{cb,bb}, {ba, be, ac, bb, ab, cb}, {ab, be, ac, cb,
bb}, {ab, ac, aa,be, ca,ba}, {ad, ac, bb, cb}, {ac, ab, ca, ba}}. The singleton sets
are {bb},{ca} and thus FSy = {bb,ca}. It is easy to verify that for all
P € P_5(P(Fa4)), P has a nonempty intersection with F'S;. The algorithm
terminates and outputs {bb,ca}}, which are the forbidden subsequences
which describe this language.

In sum, this procedure tells us that this language is SP for £ = 2. Together
DSP and FIND-$SQ provide a means to check whether a regular language is SP,
and if it is to find the finite set of the shortest forbidden subsequences.

What is the time complexity for DSP and FIND-ssQ? Letting n be the size
of the syntactic monoid, the wholly nonzero condition can be checked with time



O(n) and right annihilating condition runs in time O(n?). Thus DSP runs in
O(n?). FIND-8sQ runs at time O(p . card(E)), where p is the total number of
paths that leads to 0. Holzer studies the size of the syntactic monoid as a natural
measure of descriptive complexity for regular languages [8].

6 Conclusion

Strictly Piecewise languages are wholly nonzero and right annihilating. The
wholly nonzero property is shared by the Strictly Local languages and provides
a definition for the “Strict” aspect, independent of the relation to the Testable
classes. Also, the algebraic characterization for SP provides a polynomial-time
decision procedure for a regular language in the size of its syntactic monoid. This
paper also leaves open some interesting questions. In particular, we would like
to know whether every wholly nonzero, [J-trivial language is right annihilating.

References

1. Anderson, J.A.: Automata Theory with Modern Applications. Cambridge Univer-
sity Press (2006)

2. Clifford, A.: The Algebraic Theory of Semigroups. American Mathematical Society,
Providence (1967)

3. Garcia, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from
positive data. Grammars 7, 125-140 (2004)

4. Green, J.A.: On the structure of semigroups. The Annals of Mathematics 54(1),
pp. 163-172 (1951)

5. Haines, L.H.: On free moniods partially ordered by embedding. Journal of Combi-
natorial Theory 6, 94-98 (1969)

6. Heinz, J.: Learning long-distance phonotactics. Linguistic Inquiry 41(4), 623-661
(2010)

7. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-
don Mathematical Society 3(2), 326-336 (1952)

8. Holzer, M., Konig, B.: Regular languages, sizes of syntactic monoids, graph colour-
ing, state complexity results, and how these topics are related to each other. EATCS
Bulletin 83, 139-155 (June 2004)

9. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
Tech. rep., Stanford, CA, USA (1971)

10. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)

11. Pin, J.E., et A. Salomaa (éd.), G.R.: Syntactic semigroups, vol. 1. Springer Verlag
(1997)

12. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel,
S.: On languages piecewise testable in the strict sense. In: Ebert, C., Jager, G.,
Michaelis, J. (eds.) The Mathematics of Language. Lecture Notes in Artifical In-
telligence, vol. 6149, pp. 255-265. Springer (2010)

13. Simon, I.: Piecewise testable events. In: Automata Theory and Formal Languages,
pp. 214-222 (1975)

14. Thierrin, G.: Convex languages. In: ICALP’72. pp. 481-492 (1972)

15. Watanabe, T., Nakamura, A.: On the transformation semigroups of finite au-
tomata. Journal of Computer and System Sciences 26(1), 107-138 (1983)



