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Bottom-up symbolic control:
attractor-based planning and behavior synthesis

Jie Fu and Herbert G. Tanner

Abstract—A class of hybrid systems with convergent con-
tinuous dynamics is abstracted to a special type of finite au-
tomata which operate on an infinite alphabet. The abstraction is
predicate-based, enabled by the convergence properties of the
continuous dynamics of the hybrid system, and encompasses
existing low-level controllers rather than replacing them during
synthesis. The abstract models are finite yet capable of storing
and manipulating continuous data expressing attributes of the
concrete hybrid model. The latter is shown to weakly simulate
its discrete abstraction, and thus behaviors planned using the
abstraction are always implementable on the concrete system.
A case study illustrates how this methodology can be put into
practice, orchestrating a temporal sequence of continuous con-
trollers that allows the hybrid system to achieve a performance
objective.

Index Terms—Hybrid systems, abstraction, symbolic control.

I. INTRODUCTION

This paper presents a method for synthesizing control plans
that combines existing low-level control designs in a way that
allows the system to perform tasks which its low-level designs
cannot complete on their own. In this approach, a machine
is viewed as a hybrid dynamical system capable of switching
between operating modes with well defined pre-conditions and
post-conditions. Pre-conditions determine when a certain mode
can be activated, and post-conditions describe the guaranteed
steady-state behavior. The synthesis problem can then be lifted
to a discrete domain through appropriate abstractions.

The proposed abstraction process hinges on the convergence
properties of the continuous dynamics. There are many in-
stances of systems with specialized continuous controllers that
are well suited for the particular application, as in the case of
interaction with human subjects [1], [2]. It may also be the case
that some validated and trusted low-level continuous control
loops might be off-limits to a higher-level controller; examples
can be found in process control [3] or automotive applications
[4]. Then a synthesis methodology that works with, rather than
in lieu of, existing control loops, can be useful. The focus of
this paper is therefore not on control design for the continuous
dynamics, but rather on abstraction and planning at the discrete
level, knowing that the plan can always be implemented at the
concrete level.

For this purpose, we propose discrete abstractions for a
specific class of hybrid systems. Concrete system and ab-
straction are linked through a weak simulation relation. The
size of the abstraction is not dependent on the discretization
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resolution on the continuous state space. Continuous states
are grouped together according to the convergence properties
of the trajectries that start from them. Convergence supports
a bottom-up design where existing low-level control loops
(control modes) are not replaced, but are parameterized and
then combined into a sequence that is ensured to achieve the
desired objective.

Undoubtably, there are performance trade-offs when the
continuous dynamics in each control mode are required to
be always convergent. On the other hand, convergence of the
continuous vector fields enables to transfer the planning prob-
lem to the discrete domain, where it may be more amenable
to analytical treatment and algorithm development.

Abstraction allows planning and control design for hybrid
systems with smaller analytical and computational cost. In
principle, plans can be designed using a finite-state abstraction
and then refined into controllers on the infinite-state system.
For this refinement to be possible, the concrete system and its
abstraction need to be related formally.

To this end, simulation or bisimulation relations [5] can be
used, inducing partitions of the continuous state space, where
each block contains states which behave in a “similar” manner.
Instead of tracking the behavior of the system trajectories
from each individual continuous state, one can then consider
the behavior from whole blocks. The dynamics of trajectories
originating from these blocks is captured by a discrete model
which serves as an abstraction of the original system.

Computing bisimulation relations for general classes of
hybrid systems is known to be difficult [6]. In general, for an
algorithm that computes such partitions to be decidable, one
needs to restrict either the discrete, or the continuous dynamics
of a hybrid system [7], [8]. In this paper we abstract a hybrid
system into one where all dynamics evolve at the discrete
level. We do so by restricting the continuous dynamics: we
confine analysis to a particular class of hybrid systems having
convergent continuous dynamics with parametrized domains
and positive limit sets. Convergence supports an abstraction
in which only the asymptotic behavior of the continuous
dynamics is preserved.

We can broadly categorize existing approaches to discrete
abstraction of hybrid systems into two classes: one that is
based on simulation, bisimulation [9], or approximate bisimu-
lation [10], [11]; and another that is primarily partition-based
[12]–[17]. Approaches can also be hybrid [18], using state-
quantization methods and approximate bisimulations. The one
utilized in this paper is a hybrid one, in the sense that it is
based on (a priori) partitioning the continuous state space, but
also establishes some relation between the states within each
partition block. Earlier versions of this abstraction construction
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can be traced to [19]; here, we abstract to a new type of
automata that preserve some continuous information from
the concrete hybrid system, and focus on how to use this
abstraction for planning. The type of partitioning used in this
paper is reminiscent of predicate abstraction [20].

In this paper, the states of the finite system are labeled
with Boolean vectors, which express the valuation of logical
propositions at the particular block of continuous states, con-
trol parameters, and exogenous (environment) variables. The
set of these logical propositions is used to express the pre-
conditions and post-conditions of the continuous controllers
of the hybrid system.

Control is exercised through the selection of the controller
parameters, which inform the controllers as to where to
steer the continuous system trajectories. The abstraction does
not have continuous dynamics; rather, it models possible
sequences of continuous controllers in the input sequences
that it accepts. The input alphabet of the abstraction consists
of the (discrete) indices of these controllers, along with a set
of (continuous) variables that parameterize them. Our abstract
model is a variant of a machine known as a register automaton
[21], [22], which is a finite state machine equipped with a
finite number of registers, which are essentially storage units.
The input to this machine is not simply a string of discrete
symbols, but rather a data word, a sequence of pairs consisted
of a discrete symbol together with a continuous data value.
Although it manipulates continuous data, the model is still
discrete since there is no dynamics on this data.

Alternative discrete computational models cannot manip-
ulate continuous data. As a result, optimal control schemes
either have to operate on the continuous domain [23], or
depend on the resolution of the discretization imposed on the
continuous state space [18], [24]. In this paper, the discrete
abstractions do not require a discretization of the continu-
ous domains: continuous states are grouped in blocks, and
controller parameter space is left intact. In principle, feasible
solutions to the planning problem can be obtained using these
models, and even optimal ones if the underlying continuous
dynamics and cost functions are simple enough [25].

In Section II, notation and terminology is introduced. Sec-
tion III presents the new abstraction and establishes a (weak)
simulation relation between hybrid and discrete model. Section
IV outlines a new control synthesis framework, using this
abstraction and a novel variation of dynamic programming
(DP)—a straightforward application of DP will not work. The
simulation relation guarantees that the plans devised using
the abstraction are implementable on the concrete system.
Section V presents a numerical case study, with a mobile
manipulator tasked with grasping and delivering an object
through a sequence of maneuvers implemented through given
control laws. Section VI concludes the paper with a summary
of the results and thoughts for future extensions.

II. THE MODELS

Let Σ be a finite set of symbols, and D ⊆ Rk. Pairs
of the form wi = (σi, di) ∈ Σ × D are called atoms, and
concatenations of atoms form finite sequences w = w1 · · ·wn

over Σ × D called data words. A data word v is a prefix of
another data word w if there exists a sequence x ∈ (Σ×D)∗

such that w = vx. The length of a word w is denoted |w|,
and dom(w) is the index set {1, . . . , |w|} of the positions of
the atoms wi = (σi, di) in w. For i ∈ dom(w), the data
projection valw(i) = di gives the data value associated with
the symbol σi. Similarly, the string projection strw(i) = σi
gives the symbol associated with a data value in atom wi. The
following machine operates on strings w ∈ (Σ×D)∗.

Definition 1 (Register Automaton cf. [21], [26]1): A
nondeterministic two-way register automaton is a tuple
R = 〈Q, q0, F,Σ, D, k, τ,∆〉, in which

Q a finite set of states;
q0 ∈ Q the initial state;
F ⊆ Q the set of final states;
Σ a finite alphabet;
D a set of data values;
k ∈ N the number of registers;
τ : {1, . . . , k} → D ∪ {∅} the register assignment;a

∆ a finite set of read,b or writec

transitions.
a When τ(i) = ∅, this means that register i is empty. The

initial register assignment is denoted τ0. Given (σ, d) ∈
Σ×D, a register can perform a test in the form of a first-
order logical formula ϕ, constructed using the grammar
ϕ ::= d ≤ τ(i) | d < τ(i) | ¬ϕ | ϕ ∧ ϕ. The set of all
such formulae is denoted Test(τ).

b Read transitions are of the form (i, q, ϕr)
σ→ (q′, δ), where

q and q′ belong in Q, i ranges in {1, . . . , k}, σ in Σ, ϕr
in Test(τ), and δ ∈ {right,stay,left}, respectively.

c Write transitions are of the form (q, ϕw) σ→ (q′, i, δ),
where ϕw ∈ Test(τ), q and q′ are in Q, and all other
elements range in the same sets as in read transitions.

Given a data word w, a configuration γ of R is a tuple
[j, q, τ ], where j is a position in the input data word, q is
a state, and τ the current register content. Configurations
γ = [1, q0, τ0] and γ = [j, q, τ ] with q ∈ F , are initial and
final, respectively. Given γ = [j, q, τ ] and input (σj , dj), the
transition (i, p, ϕr)

σj→ (p′, δ) applies to γ if, and only if, p = q

and ϕr is true, while (p, ϕw)
σj→
(
p′, i, δ

)
applies to γ if, and

only if, p = q and ϕw is true.
The semantics of this machine is as follows. At configura-

tion [j, q, τ ], the machine is in state q, the input read head
is at position j in the data word, and the contents of the
registers are expressed by τ . Upon reading wj = (σj , dj),
if ϕr is true and (i, q, ϕr)

σj→ (q′, δ) ∈ ∆, then R enters
state q′ and the read head moves in the direction of δ, i.e.,
j′ = j + 1, j′ = j, j′ = j − 1 for δ ∈ {right,stay,left}. The
configuration is now [j′, q′, τ ]. If ϕw is true and (q, ϕw)

σj→
(q′, i, δ) ∈ ∆, then R enters state q′, dj is copied to register
i, and the read head moves in the direction δ (in this order).
The configuration is now [j′, q′, τ ′], where the updated register

1In [21] the set of logical tests that the machine can perform does not
explicitly appear in the definition, because they are assumed to be only
equality tests. In [26], however, the definition of register automata explicitly
includes a set of register tests in the form of logical propositions.
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assignment τ ′ is such that for κ = 1, . . . , i−1, i+1, . . . , k, it is
τ ′(κ) = τ(κ) and τ ′(i) = dj . The automaton is deterministic
if at each configuration for a given data atom there is at most
one transition that applies. If there are no left-transitions it is
called one-way. An example is given in Appendix A.

Our special class of hybrid systems is a hybrid agent:
Definition 2 (Hybrid Agent): The hybrid agent is a tuple

H = 〈Z,Σ, ι,P, πi,AP, f, PRE, POST, s, T 〉 with

Z = X × L a set of continuous and
Boolean states;a

Σ a finite set of control modes;b

ι : Σ→ {1, . . . , k} indices for the elements of Σ;
P ⊆ Rm a vector of control parameters;
πi : Rm → Rmi a set of canonical projections;c

AP a set of atomic propositions
over Z × P; d

fσ : X × L× P → TX a finite set of parameterized
vector fields;e

PRE: Σ→ C the pre-condition of σ ∈ Σ
and C is defined next;f

POST: Σ→ C the post-condition of σ ∈ Σ;g

s :Z×P→ 2P is the parameter reset map;h

T :Z×P×Σ→Z×P×Σ is the transition map.i

a Here, X ⊂ Rn is a compact set, and L ⊆ {0,1}r, with
n, r ∈ N. A state z ∈ Z is called a composite state.

b The symbols in Σ label the different closed-loop continu-
ous dynamics.

c For i = 1, . . . , k, we write p = (π1(p)ᵀ, . . . , πk(p)ᵀ)ᵀ.
d AP is a set of atomic propositions, denoted α. A literal β

is defined to be either α or ¬α, for some α ∈ AP . Set C is
a set of logical sentences, each of which is a conjunction of
literals, i.e., C = {c = β1 ∧ β2 . . .∧ βn | (∃α ∈ AP)[βi =
α ∨ βi = ¬α]} and for any c ∈ C, a proposition in AP
appears at most once [27].

e For each σ ∈ Σ, fσ is parametrized by p ∈ P and
` ∈ L. The set X is positively invariant [28] under fσ .
Due to the compactness and invariance of X , each fσ has
a compact, attractive limit set parametrized by p ∈ P ,
denoted L+(p, σ) [28].

f PRE(σ) maps mode σ to a logical sentence over Z × P
that needs to be satisfied whenever the machine switches
to mode σ from any other mode.

g POST(σ) maps mode σ to a logical sentence over Z × P
that is satisfied when the trajectories of fσ reach an ε-
neighborhood of its limit set.

h The reset map assigns (z, p) ∈ Z × P to a subset of P
which contains parameter values p′ for which there is a
mode σ, with pre-condition PRE(σ) satisfied by (z, p′).

i The transition map sends (z, p, σ) to (z, p′, σ′) if (z, p)
satisfies POST(σ) and (z, p′) satisfies PRE(σ′) with p′ ∈
s(z, p).

The configuration of H is a tuple [z, p, σ]. A transition from
σi to σi+1 (if any) is forced and can occur once the trajectory
of fσi (z, p) hits an ε-neighborhood of its limit set.2

2Written L+(p, σ) ⊕ Bε(0), where ⊕ denotes the Minkovski (set) sum
and Bε(x) is the open ball of radius ε centering at x.

This model describes a continuous dynamical system that
switches between different control laws based on some discrete
logic. The discrete logic is a formal system consisting of
the atomic propositions in AP together with the logical
connectives ¬ and ∧. The semantics of the set of logical
sentences C generated, expresses the convergence guarantees
available for each component vector field fσ in the form
PRE(σ) =⇒ POST(σ). (Formally, it is PRE(σ)♦POST(σ),
where ♦ is the temporal logic symbol for eventually; however
time here is abstracted away.) The switching conditions, on
the other hand, depend not only on the continuous variables,
but also on the discrete control modes: a transition may, or
may not be triggered, depending on which mode the hybrid
system is in. Control over H is exercised by selecting a
particular sequence of parametrized control modes. Resetting
in the parameters of the system, activates transitions to specific
modes, which in turn steer the continuous variables toward
predetermined limit sets.

Compared to the definition for a hybrid system given in
[29], H is special because it does not involve jumps in the
continuous states, its discrete transitions are forced, and the
continuous vector fields converge. The model for H, however,
also allows the system evolution to be influenced by, possibly
externally set, continuous and discrete variables (p and `).
In addition, initial and final states are not explicitly marked,
allowing the machine to accept a family of input languages
instead of a single one as that of [29].

Let us now describe more formally the limit sets of the con-
tinuous dynamics fσ , and highlight their link to the PRE and
POST conditions of each mode. To this end, let φσ(t;x0, `, p)
denote the flow of vector field fσ(x; `, p) passing from x0 at
time t = 0. The positive limit set in control mode σ, when
parametrized by p is expressed as

L+(p, σ) =
{
y | ∃{tn} : lim

n→∞
tn =∞,

φσ(tn;x0, `, p)→ y as n→∞, ∀x0 ∈ Ω(p, σ)
}
,

where Ω(p, σ) ⊆ X is the attraction region of control mode
σ parametrized by p. We assume that L+(p, σ), for a given σ
and for all p ∈ P , is path connected.3 If it is not, and there
are isolated components L+

i (p, σ) for i = 1, . . . , B(σ), one
can refine a control mode σ into σ1, . . .σB(σ), one for each
L+
i (p, σ). For simplicity we assume that for H of Definition 2,

Σ does not afford any further refinement. For each discrete
location σ, the formulae PRE(σ) and POST(σ) are related to
the limit sets and their attraction regions in that location as
follows:4

(z, p) ≡ (x, `, p) |= POST(σ) ⇐⇒
(x, `, p) ∈

{
(x, `, p) | x ∈ L+(p, σ)⊕ Bε(0), ` ∈ L

}
(z, p) ≡ (x, `, p) |= PRE(σ) ⇐⇒

(x, `, p) ∈
{

(x, `, p) | x ∈ Ω(p, σ), ` ∈ L
}
.

A state z, which together with some parameter p satisfy
PRE(σ), can evolve along φσ(t; z, p) to some other composite

3A set is path connected if any two points in the set can be connected with
a path (a continuous map from the unit interval to the set) [30].

4Symbol |= is read “satisfies,” and we write (z, p) |= c if the valuation of
logical sentence c ∈ C over variables (z, p) is true.
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state z′ for which (z′, p) satisfies POST(σ), and we write

z
σ[p]
↪→ z′. A sequence of the form (σ1, p1) · · · (σN , pN ) is an in-

put to H, specifying how control modes are to be concatenated
and parametrized in H. The input sequence is a data word. We
say that a data atom (σ1, p1) is admissible at the initial setting
(z0, p0) of H if p1 = p0 and (z0, p1) satisfies PRE(σ1), or if
p1 ∈ s(z0, p0) and (z0, p1) satisfies PRE(σ1). A data atom
(σ′, p′) is admissible in H at configuration [z, p, σ], if there
is a [z, p′, σ′] ∈ Z ×P ×Σ such that T ([z, p, σ]) = [z, p′, σ′].
A pair of data atoms (σj , pj)(σj+1, pj+1) is admissible at
configuration [z, p, σ] if (σj , pj) is admissible at [z, p, σ], and
there is a composite state z′ ∈ Z to which z evolves to under

σj parameterized by pj (i.e. z
σj [pj ]
↪→ z′), giving a configuration

[z′, pj , σj ] where the second input atom (σj+1, pj+1) is also
admissible. A data word w is admissible in H if every prefix
of w is admissible.

The planning problem addressed in this paper is a reach-
ability problem: for a given SPEC ∈ C, the goal is to
design a control policy that drives the system from its initial
configuration to a configuration where SPEC is satisfied.

Problem 1: Given a hybrid agent H at an initial config-
uration satisfying a formula INIT ∈ C, find an admissible
sequence (σ1, p1) · · · (σN , pN ) so that the configuration of H
after N transitions, for some N ∈ N, satisfies SPEC ∈ C.

III. DISCRETE ABSTRACTIONS

Each hybrid agent H can be associated to a special one-
register automaton. Since we do not mark initial and final
states in H, the discrete system is a semiautomaton.5 We say
that this one-register semiautomaton is induced by H. The
relation between the state-parameter pairs of H, and the states
of the register semiautomaton is expressed by a map.

Definition 3 (Valuation map): The valuation map VM :
Z × P → Q ⊆ {1,0}|AP| is a function that maps a state-
parameter pair (z, p), to a binary vector q ∈ Q of length
|AP|. The entry at position i in q, denoted q[i], is 1 or 0
depending on whether αi in AP evaluated at (z, p) is true
or false, respectively. For q ∈ Q, we denote this valuation
αi(z, p) = q[i],

With reference to H and VM (·), a set valued map λ : P ×
Q×Q× Σ→ 2P is defined as

λ(τ ; q, q′, σ′) 7→
{
p′ | (∀z : VM (z, τ) = q)[

p′ ∈ s(z, τ) ∧ (z, p′) |= PRE(σ′) ∧ VM (z, p′) = q′
]}
. (1)

Note that λ may not be defined for every q, σ and q′.
The register semiautomaton R(H) which serves as an

abstraction of H is now defined as follows.6

Definition 4 (Induced register semiautomaton): The
deterministic finite one-way register semiautomaton
induced by hybrid agent H (with reference to Definition
2), is a tuple R (H) = 〈Q,Σ,P, 1, τ,∆〉, with

5A semiautomaton is like a typical finite state machine but without initial
and final states. All its states can serve as both initial and final. Thus, it
accepts a set of (regular) languages, but once one assigns specific initial and
final states, then it becomes an automaton and only accepts one language.

6This machine has only one register, so to lighten notation we drop the
argument from the current assignment of the register.

Q a finite set of states;a

Σ the alphabet (same as that of H);
P the data set (same as that of H);
1 an m-dimensional array register;
τ :1 7→P∪{∅} the register assignment;b

∆ a finite set of read,c and writed transitions.
a The set of states is defined as

Q =
{
q ∈ {0,1}|AP| : ∃ (z, p) ∈ Z ×P : VM (z, p) = q

}
.

b Given input data atom (σ, p) ∈ Σ × P , the set Test(τ)
consists of formulae defined by the grammar ϕ ::= p =
τ | πj(p) = πj(τ) | p ∈ λ(τ ; q, q′, σ) | ¬ϕ | ϕ ∧ ϕ, where
q, q′ ∈ Q and j ∈ {1, . . . , |Σ|}.

c A read transition (q, ϕr)
σj→ (q′, right) where ϕr is τ = pj ,

is defined if for all z such that VM (z, τ) = q, the pair (z, τ)
satisfies PRE(σj) and there exists a continuous evolution

z
σj [pj ]
↪→ z′ such that VM (z′, pj) = q′.

d A write transition (q, ϕw)
σj→
(
q′, stay

)
where ϕw is p ∈

λ(τ ; q, q′, σj) ∧ ¬
[
πι(σj)(pj) = πι(σj)(τ)

]
, is defined if

there exists a parameter p in P such as the set
{
p′ ∈ P |

p′ ∈ λ(p; q, q′, σj) ∧ πι(σj)(p′) 6= πι(σj)(p)
}

is not empty.

With the machine at configuration [j, q, τ ], and upon
receiving input wj = (σj , pj), if pj = τ , the read transition
(q, ϕr)

σj→ (q′, right) applies as long as it is in ∆. In
this case, the machine moves to state q′, and the input
read head advances one position. If, on the other hand,
πι(σj)(pj) 6= πι(σj)(τ), while data value pj belongs to the
set λ(τ ; q, q′, σj) for some q′ ∈ Q, then the write transition
(q, ϕw)

σj→ (q′, stay) applies as long as it is in ∆. Then the
machine reaches q′ without moving the input read head, and
overwrites the content of its register with pj .

A data atom (σ, p) is admissible at configuration [j, q, τ ]
if there is transition in ∆ that applies to [j, q, τ ] when (σ, p)
appears at the input. A pair of data atoms (σ1, p1)(σ2, p2)
is admissible if there is a transition in ∆ that applies to
some configuration [j, q, τ ] on input (σ1, p1), taking R(H)
to configuration [j + 1, q′, τ ′], where some other transition in
∆ applies on input (σ2, p2). A data word w is admissible if
every prefix of w is admissible.

For the special class of hybrid systems considered here,
the registers of such a model turn out to be adequate for
capturing the continuous behavior, up to the resolution allowed
by the given set of atomic propositions. The only change
we introduce to the standard register automaton model is the
capacity to perform inequality tests on the data; however, given
that the most basic logical operation is set inclusion, and in
order for a machine to be able to do any equality test, it has
to do so by means of a conjunction of inequalities. Thus,
the extension we propose does not fundamentally require any
additional computational power on the part of the machine.
Compared to the register automaton of Definition 1, the
construction of Definition 4 differs. First, there are no initial
and final states—it is a semiautomaton—and second, there
is a single register that stores an array rather than a single
variable. Register tests, though, are performed element-wise
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on the register.
We treat the write transitions in R(H) as silent, given that

they do not advance the read head of the machine. Read
transitions, on the other hand, are observable. A concatenation
of any number of silent transitions with a single observable
transition triggered by input atom wj , taking the machine from
state q to state q′ is denoted q

wj
 q′, and we refer to this

transition sequence as a composite transition. Since only one
observable transition is taken in a composite transition, the
read head advances only one step. A composite transition is
called maximal if the machine cannot make another transition
without reading a new data atom.

Proposition 1: Let w = w1 · · ·wn be an admissible input
sequence for R(H). Then any maximal composite transition
from state q to state q′ contains either a single read transition,
or a write transition followed by a read transition.

Proof: Let R(H) be at configuration [j, q, τ ]. Suppose
R(H) takes a composite transition, q

wj
 q′, where wj =

(σj , pj). If pj = τ then the machine jumps from q to q′

and advances the read head by one position. In this case, the
configuration changes from [j, q, τ ] to [j+ 1, q′, τ ]. If pj 6= τ ,
no read transition applies, which means that a write transition
must have taken place. Once this write transition is completed,
τ has the value of pj . The machine still reads wj = (σj , pj)
on the input tape, since the read head has not advanced. But
now, upon reading wj again, the machine finds τ = pj . A
read transition is triggered and the read head advances one
position forward. Configuration [j, q, τ ] changes first to some
intermediate [j, qt, τ ′] after the write transition, and then to
the final [j + 1, q′, τ ′] after the read transition. In any case,
a composite transition either includes a single read transition
or a write transition followed by a read transition—the latter
referred to as a write-read transition pair.

Proposition 1 implies that a write transition cannot occur
without either immediately triggering a read transition or
halting the machine. Before we establish the relation between
H and R(H), we need to introduce some terminology.

Definition 5: A labeled transition system is a tuple T =
〈Q,Σ,→〉 with components
Q a set of states;
Σ a set of labels;
→⊆ Q× Σ×Q a transition relation.
The transition (q1, σ, q2) ∈→ is commonly denoted q1

σ→ q2.

In T, we distinguish a subset of labels Σε ⊆ Σ, and we
call a transition labeled with a label from that subset, silent;
otherwise observable. We write q ; q′ to denote that q′ is
reachable from q with an arbitrary number of silent transitions,
and q

σ
; q′ if q′ is reachable from q a composite transition

containing one observable transition labeled σ.
Definition 6 (Weak (observable) simulation [31]):

Consider two (labeled) transition systems over the same
input alphabet Σ: T1 = (Q1,Σ,→1) and T2 = (Q2,Σ,→2).
Let Σε ⊂ Σ be a set of labels for silent transitions. An
ordered binary relation R ⊆ Q1 ×Q2 is a weak (observable)
simulation if: (i) R is total, i.e., for any q1 ∈ Q1 there exists
a state q2 ∈ Q2 such that (q1, q2) ∈ R, and (ii) for every
ordered pair (q1, q2) ∈ R, if there exists a state q′1 ∈ Q1

which the machine can reach with a composite transition
from q1, i.e., q1

σ
;1 q

′
1, then there also exists q′2 ∈ Q2 that

can be reached with a composite transition from q2, i.e.,
q2

σ
;2 q

′
2, and (q′1, q

′
2) ∈ R. Then T2 weakly simulates T1

and we write T2 & T1.
In other words, T2 weakly simulates T1 if any input ad-

missible in T1 is also admissible in T2. In that sense, a hybrid
agent that weakly simulates its induced register semiautomaton
can implement every input sequence admissible in the register
semiautomaton. Indeed, this is always the case:

Theorem 1: Hybrid agent H weakly simulates its induced
register semiautomaton R(H) in the sense that the ordered
total binary relation R defined as (q, z) ∈ R ⇔ ∃ p ∈
P, VM (z, p) = q, satisfies

(q, z) ∈ R and q
wj
 q′ with wj = (σj , pj) =⇒

∃ z′ ∈ Z : z
σj [pj ]
↪→ z′ with

(
q′, z′

)
∈ R . (2)

Proof: First note that relation R is total by construction,
since any state q ∈ Q is by definition the image under the
valuation map VM of some (z, p) ∈ Z × P . To establish that
R is a weak simulation, let the register semiautomaton R(H)
be at configuration [j, q, τ ], with a state q for which we can find
a state z ∈ Z in H to related it with: (q, z) ∈ R. Suppose now
that R(H) takes a (composite) transition wj ; then according
to Proposition 1, this composite transition consists of either
a single read transition, [j, q, τ ]

wj→
[
j + 1, q′, τ

]
, or a write-

read pair: [j, q, τ ]
wj→
[
j, qt, τ ′

] wj→
[
j + 1, q′, τ ′

]
. The mere

existence of a transition originating from q on input (σj , pj)
ensures that for any z that satisfies VM (z, τ) = q, it holds
that either (z, τ) satisfies PRE(σj), with τ = pj (if we have
a single read transition), or that the ι(σj) components of
the control parameter and register do not match, meaning
πι(σj)(τ) 6= πι(σj)(pj), and there is some qt ∈ Q, such
that VM (z, pj) = qt and pj ∈ λ(τ ; q, qt, σj) (if we have a
write-read transition pair). In the latter case, by the definition
of λ, we know that (z, pj) must satisfy PRE(σj). If wj
triggers a single read transition (the case τ = pj), then there
must exist a continuous evolution in H in control mode σj

parameterized by pj , taking z to z′ (namely, z
σj [pj ]
↪→ z′) at

which VM (z′, pj) = q′; it follows that (q′, z′) ∈ R. If, instead,
wj triggers a write-read transition pair, then after updating its
register by setting τ = pj , R(H) still reads (σj , pj) as the
input. Since (z, pj) satisfies PRE(σj) and now τ = pj , R(H)
has to take a read transition to reach q′. The argument of the
previous case applies and completes the proof.

Theorem 1 suggests that while all admissible input se-
quences in R(H) will be also admissible in H, it is also the
case that a control policy that takes H from its present state
into another that satisfies SPEC might not have a matching run
in R(H). To ensure a matching run we need to strengthen
the link between the two models. Theorem 2 gives sufficient
conditions for a weak bisimulation to be established between
H and R(H). Note, however, that simulation is sufficient for
planning purposes.

Theorem 2: Given the hybrid agent H and its induced
register semiautomaton R(H), the binary relation R defined
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as (q, z) ∈ R ⇐⇒ ∃p ∈ P, VM (z, p) = q is a weak
bisimulation relation under the following conditions:

a) given p ∈ P , for any two z1, z2 ∈ Z , if VM (z1, p) =
VM (z2, p) = q, then whenever (z1, p) satisfies PRE(σ)
we have (z2, p) also satisfying PRE(σ). In addition, the
parametrized control mode σ[p] that takes z1 to z′1, takes z2

to some z′2 for which VM (z′1, p) = VM (z′2, p).
b) given p ∈ P , for any two z1, z2 ∈ Z , for which

VM (z1, p) = VM (z2, p) = q, if p′ ∈ s(z1, p) and VM (z1, p
′) =

q′, then p′ ∈ s(z2, p) and VM (z2, p
′) = q′.

c) given z ∈ Z , and any p1, p2 ∈ P , if (z, p1) satisfies
PRE(σ) and (z, p2) does not satisfy PRE(σ), then the ι(σ)
components of p1 and p2 do not match: πι(σ)(p1) 6= πι(σ)(p2).

Proof: Since we know from Theorem 1 that H weakly
simulates R(H), we only need to show the implication (2)
in the opposite direction: if the conditions above are satisfied,

then given (q, z) ∈ R ⊆ Q × Z , z
σ[p]
↪→ z′ =⇒ ∃ q′ ∈ Q :

q
(σ,p)
 q′ ∧ (q′, z′) ∈ R. To this end, select any po ∈ P such

that q = VM (z, po), and examine the two possibilities:

Case 1, where po = p: The evolution z
σ[p]
↪→ z′, implies

that the pair (z, p) satisfies PRE(σ). Given condition a), we
know that any other z1 such that VM (z1, p) = q (and is
therefore related to q), will also make a pair (z1, p) that
satisfies PRE(σ). This means that any such z1 will evolve
to some z′1 in mode σ parameterized by p. We can collect

all these limit points z′1 to a set Z ′(p) , {z′ | z
σ[p]
↪→

z′, for some z : VM (z, p) = q}. Condition a) also ensures
that any z′1, z

′
2 ∈ Z ′(p), VM (z′1, p) = VM (z′2, p) = q′ for

some state q′ ∈ Q. Based on Definition 4, there exists a
read transition in R(H) taking q to q′ upon input (σ, p). All
z′ ∈ Z ′(p) give VM (z′, p) = q′ and thus (q′, z′) ∈ R.

Case 2, where po 6= p: without loss of generality assume
that (z, po) does not satisfy PRE(σ); otherwise, we can have

z
σ[po]
↪→ z′, which reduces this case to Case 1. Condition c) then

requires that πι(σ)(po) 6= πι(σ)(p). Since we are given that

z
σ[p]
↪→ z′, we can conclude that (z, p) satisfies PRE(σ). The

definition of the reset map then suggests that p ∈ s(z, po). Let
VM (z, p) = qt. Condition b) ensures that for any state z1 that
makes a pair (z1, p

o) such that VM (z1, p
o) = VM (z, po) = q,

it is p ∈ s(z1, p
o) and VM (z1, p) = VM (z, p) = qt. Let

the set of all such states z1 be Z1. Since (z, p) satisfies
PRE(σ) and z ∈ Z1, using condition a) we have that for
all z1 ∈ Z1, the pair (z1, p) satisfies PRE(σ). Recall that
λ(po; q, qt, σ) = {p ∈ P | (∀z : VM (z, po) = q)[p ∈
s(z, po) ∧ (z, p) |= PRE(σ) ∧ VM (z, p) = qt]}, and note that
this set is nonempty since it always contains p. Therefore,
a write transition (q, ϕw) σ→ (qt, stay) applies on input atom
(σ, p) with formula ϕw expressed as p ∈ λ(po; q, qt, σ) ∧
πι(σ)(po) 6= πι(σ)(p). This write transition takes q to qt and
updates the the register with p. Now we have Case 1.

Register automata do not have a standard graphical repre-
sentation, so it is not clear how reachability analysis using
graph search methods can be performed. A state may be
reached either by a read, or a write transition; however, the
nature of the incoming transition matters when it comes to

reasoning as to what happens next. Configurations, on the
other hand, cannot be enumerated due to the inclusion of
the continuous data in τ . For these reasons, we suggest an
embedding of R(H) into a labeled transition system, hereby
referred to as the transformation semiautomaton, which brings
out some information about register updates and the nature
of transitions. The embedding is used here for computational
convenience; there may be ways of working directly on R(H).

Definition 7: The transformation semiautomaton of
R(H) is a tuple TR(H) = 〈Q̄, Σ̄, ∆̄〉 consisting of:
Q̄ ⊆ Q× {p, p′} a finite set of states;a

Σ̄ = Σ ∪ Λ ∪ {θ} a set of transition labels;b

∆̄ a set of transitions of four types.c–f

a Q̄ contains couples where the first element is a state of
R(H) and the second element is a symbol, either p or
p′. Whenever a state in R(H) is reached with a write
transition, its corresponding state in TR(H) is marked
with a p′.

b Subset Λ contains labels indexing all different possible
write transitions in R(H), each write transition assigned
to a unique λ in Λ. The singleton {θ} contains an auxiliary
label marking trivial write transitions (write self-loops) in
R(H) which do not modify the register content.

c One type is (q, p)
λi
99K (q′, p′), defined if q′ is accessible

from q in R(H) via a write transition (q, ϕw) σ→ (q′, stay).
d Another type is (q, p)

θ
99K (q, p′), defined if q is accessible

from any q′ ∈ Q via a write transition.
e A third type is (q, p) σ→ (q′, p), defined if there exists a

read transition (q, ϕr)
σ→ (q′, right) and q is not accessible

via a write transition from any other state in R(H).
f The last type is (q, p′) σ→ (q′, p), defined if there exists a

read transition (q, ϕr)
σ→ (q′, right) and q is accessible via

at least one write transition from some state in R(H).
We define the injective function Λ : Λ→ Q×Q that singles

out the transition of TR(H) that is labeled by the particular
label in Λ. Consequently, λ(τ ; q, q′, σ) ≡ λ(τ ; Λ(λ), σ).

It is straightforward to show that TR(H) and R(H) are
weakly bisimilar; intuitively, one merges any pair of states of
the form (q, p) and (q, p′) in TR(H).

Proposition 2: The transformation semiautomaton TR(H)
and the induced register semiautomaton R(H) are weakly
bisimilar: there exists an ordered binary relation R on Q×Q̄
such that: (i) R is total, and (ii) whenever7 (q, (q, ∗)) ∈ R
there exists a read or write transition from q to some q′

in R(H) for some σ ∈ Σ, then there exists a composite
transition in TR(H), (q, ∗) a

 (q′, ∗) with a ∈ Σ ∪ Λ
and (q′, (q′, ∗)) ∈ R. Conversely, if there is a transition in
TR(H) taking (q, ∗) to (q′, ∗), then there exists a composite
transition in R(H) taking q to q′ while (q, (q, ∗)) ∈ R and
(q′, (q′, ∗)) ∈ R.

Proof: Define R implicitly as a partition on Q̄ in which
(q, p) and (q, p′) belong in the same block and the equivalence
class is labeled by q. Note that TR(H) is constructed in a
way that guarantees R to be total. First take the case of a
read transition (q, ϕr)

σ→ (q′, right) in R. By construction,

7∗ stands for either p or p′.
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TR(H) can either take (q, p) σ→ (q′, p) or (q, p′) σ→ (q′, p),
and obviously (q′, (q′, p)) ∈ R. Any transition (q, ϕw) σ→
(q′, stay) in R(H) can be matched by the transition (q, p)

λ
99K

(q′, p′) in TR(H), and since (q′, (q′, p′)) ∈ R, it follows that
TR(H) & R(H).

The other direction is shown as follows: consider any
(q, ∗) a

 (q′, ∗), with a ∈ Σ ∪ Λ. If a ∈ Σ, three possible
cases arise: a) (q, p) a→ (q′, p), b) (q, p′) a→ (q′, p), and
c) (q, p) θ→ (q, p′) a→ (q′, p), for some θ ∈ Θ. In all
three cases, the end state (q′, p) is related to q′ via R and
there is always a transition of the form (q, ϕr)

a→ (q′, right)
in R(H) by construction of TR(H). If a ∈ Λ, then by
construction there is a transition in R(H): (q, ϕw) σ→ (q′, stay)
and since q′ can be reached by a write transition, there
exists (q, p) a→ (q′, p′) ∈ ∆̄. Since both (q, (q, p)) and
(q′, (q′, p′)) belong in R, we conclude that it is also the case
that R(H) & TR(H).

IV. TIME-OPTIMAL PLANNING

Any transition in R(H) may incur a cost, but in this context
we assume only observable transitions do so. The cost of an
observable transition in R(H), corresponding to a continuous
evolution in H, is determined by the component continuous
dynamics active during that time period, the initial conditions
for the continuous states, and the assignment of parameters.
The component dynamics when H is at control mode σ is
expressed as ẋ = fσ (x, `, p), with σ ∈ Σ, p ∈ P , ` ∈ L, and
x ∈ X . An incremental cost function R : X × R+ → R+ is
used to define the atomic cost gσ(x, `, p) for H evolving in
control mode σ along flow φσ(t;x, `, p) for t ∈ [t0, tf ]:

gσ(x, `, p) def=
∫ tf

t0

R
(
x(t)

)
dt .

We define the incremental cost using the indicator function:
R(x(t)) def= 1{L+(p,σ)⊕Bε(0)}c

(
x(t)

)
where 1A denotes the

indicator function of set A, ⊕ the Minkovski (set) sum, Bε(x)
is the open ball of radius ε of appropriate dimension centered
at x, and {·}c denotes set complement. Other choices are of
course possible; however, this choice of R yields an atomic
cost gσ which measures the time it takes the flow of vector
field fσ (x, `, p) to hit an ε-neighborhood of L+(p, σ):

gσ(x, `, p) =
∫ ∞

0

R
(
φσ(t;x, `, p)

)
dt . (3)

In an admissible data word w = (σ1, p1) . . . (σN , pN ), for
any σi−1, σi appearing consecutively in str(w), the data value
pi−1 that comes along with σi−1 should match with some
z ∈ Z , in a way that the pair (z, pi−1) satisfies POST(σi−1).
In addition, for that same z, (z, pi−1) either also satisfies
PRE(σi), or its image under the reset map s contains some
other pi 6= pi−1, for which (z, pi) satisfies PRE(σi).

We can thus eliminate the dependence of gσ on z = (x, `)
in (3) by conservatively over-approximating the atomic cost
for a transition σi ∈ str(w), using a function of parameters:

ḡσi
(
pi−1, pi)

def= max
z:(z,pi−1)∈S

∫ ∞
0

R
(
φσi(t; z, pi)

)
dt (4)

where

S
def=


{z | (z, pi−1) |= PRE(σi) ∧ POST(σi−1)}, pi = pi−1

{z | (z, pi−1) |= POST(σi−1),
pi ∈ s(z, pi−1), (z, pi) |= PRE(σi)}, otherwise.

The integral in (4) does not always have to be computed ex-
plicitly. This is because the time required for a continuous state
x ∈ X to converge under controller σ to an ε neighborhood
of L+(p, σ) can be over-approximated using Lyapunov-based
techniques, discussed briefly in Appendix B.

The accumulated cost Jw for executing data word w =
(σ1, p1) . . . (σN , pN ) from configuration [z, p, σ], assuming
that w is admissible at [z, p, σ], is upper bounded by

Jw(z, p) ≤ J̄w(z, p)

def= gσ1(z, p1) +
N∑
i=2

ḡσi
(
valw(i− 1), valw(i)

)
.

The optimization problem can then be stated as follows:
Problem 2: With the hybrid agent H at an initial con-

figuration [z0, p0, σ0], where (z0, p0) satisfies INIT ∈ C
and σ0 ∈ Σ, find out of all admissible sequences w =
(σ1, p1) · · · (σN , pN ) solving Problem 1, the one that achieves
min{pj}Nj=1

J̄w(z0, p0).
Let us define a set of ternary vectors q ∈ {0,1, ∗}|AP|,

where the semantics of ∗ at location i within a vector q, is
that atomic proposition αi can be either true or false. In that
sense, a ternary vector q can be identified with a set of binary
vectors, and thus we may write q ∈ q. Recalling formula SPEC
in Problem 1, we represent the set of all binary vectors q for
which a pair (z, p) with VM (z, p) = q satisfies SPEC, by a
single ternary vector qSPEC. If qSPEC[i] = ∗, this means that αi
does not appear in SPEC.

Problem 2, defined on H, can now be recast as a problem
defined on R(H) and TR(H):

Problem 3: For a given SPEC ∈ C and a pair (z0, p0)
satisfying INIT, and for any qf ∈ qSPEC, find a data word
w = (σ1, p1) · · · (σN , pN ) for which

1) there exists a walk w in TR(H) from (q0, p) to (qf , p)
with q0 = VM (z0, p0) and qf ∈ qSPEC, such that its
projection to Σ, denoted w �Σ, satisfies w �Σ= str(w),
and

2) J̄w(z0, p0) is minimized with respect to {pj}Nj=1, where
pN = pf as specified in SPEC.

Condition 2) restates the optimality requirement of Problem 2.
Theorem 1 ensures that w is a solution to Problem 1.

At a first glance, the way that Problem 3 is stated seems to
suggest a solution approach: path search for 1) and DP for 2).
This intuition is basically correct, with the exception that there
are technical complications in the implementation. For the first
part, path search may not yield a solution—condition 1) calls
for a walk, rather than a simple path; because of the restrictions
imposed by the set-valued map λ, the run might have to revisit
some state in Q̄ a few times in order to bring the parameter to
the value specified in SPEC. In addition, due to the possible
existence of cycles in a candidate walk w, a straightforward
application of DP may fail. Finally, the decision sequence in
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DP may not be finite, and an implication of this is that no
“worst case” policy to improve on.

To solve Problem 3 we introduce modifications in the two
methodological components: graph search and DP. To find the
walks we augment TR(H) by adding the initial and desired
final states based on Problem 3, and obtain a deterministic
finite state automaton (DFA). Then we generate a regular
expression (RE) of this DFA.8 From this RE we can construct
successively longer walks satisfying condition 1) of Problem 3,
and then optimize them using a modified version of dynamic
programming discussed next. With cycles allowed there is no
theoretical bound on the length of admissible strings in the
DFA, and thus we limit the number of walks that can be
checked for optimality by setting an upper bound on the cost,
based on an assumed maximum affordable cost, and the cost
of the least expensive observable transition.

The modification of dynamic programming used for param-
eter optimization in candidate walks is based on reversing
the direction of search for the optimal solution. Instead of
taking the worst case and try to improve on it, we start
with the best case—the shortest possible walk found—and test
locally for optimality. If an optimal solution is encountered,
the search stops. The details of these technical modifications
are discussed in the following sections.

A. Finding walk candidates

With initial state (q0, p) and final state (qf , p), we obtain
the DFA 〈TR(H), (q0, p), (qf , p)〉 = 〈Q̄, Σ̄, T̄ , (q0, p), (qf , p)〉
and find an RE, denoted RE(H), associated with this DFA
using known methods [33]. Replacing every occurrence of
the Kleene star ∗ in RE(H) with a natural number, gives
a set W(m) of all admissible walks of length m in the
DFA, W(m) def= {w|w ∈ RE(H), |w| = m}. Any walk in
W(m) has a matching admissible input data word on R(H)
(Theorem 1). However, TR(H) has no information on specific
register values, and thus the corresponding admissible data
word may not comply with the requirement for p0 and pf .
To remove inadmissible walks we develop a procedure for
translating a walk in TR(H) to a family w̄ of data words in
R(H), in which all individual words w̄ have the same symbol
string str(w) but different the data value assignments. The
domains of possible data value assignments is specified by a
sequence of set-valued maps:

Given a walk w = u1 · · ·um, set i := 1, j := 1, and for
1 ≤ i ≤ m, distinguish three cases:

1) ui ∈ Σ: then, set σj := ui, w̄j := (σj , pj), Mj(·) :=
idP (·), j := j + 1, i := i+ 1;

2) ui ∈ Λ: then, set σj := ui+1, Mj(·) := λ(· ; Λ(ui), σj),
w̄j := (σj , pj), j := j + 1, i := i+ 2;

3) otherwise, set σj := ui+1, Mj(·) := idP (·), w̄j :=
(σj , pj), j := j + 1, i := i+ 2.

In the above, idP : p 7→ p is the identity map on P . A walk
w = u1 . . . um is thus translated into a family of data words

8A regular expression is defined recursively as follows [32]: 1) empty string
ε and all σ ∈ Σ are REs 2) If r and s are REs, then rs (concatenation), (r+s)
(union) and r∗, s∗ (Kleene-closure) are REs; 3) There are no RE other than
those constructed by applying rules 1 and 2 above a finite number of times.

w̄ = (σ1, p1) · · · (σN , pN ), and a sequence of set-valued maps
Mi(·) : P → 2P , for i ∈ {1, . . . , N}.

To check whether a walk w generates a data word w ∈
w̄ that can match the parameter specifications, we use the
sequence of set-valued maps {Mi(·)}Ni=1 constructed by this
procedure and verify the consistency condition

{p∈P |∃z∈Z :VM (z, p) = qf}∩MN ◦· · ·◦M1(p0) 6= ∅. (5)

B. A modified dynamic programming algorithm

Let the maximal allowable cost for any solution to Prob-
lem 3 be Jmax. Then, if the minimum cost of executing an
observable transition labeled with σ ∈ Σ is some Jmin > 0,
an upper bound U on the length of data words translated from
walks is U def=

⌈
Jmax

Jmin

⌉
.

If (5) holds, then there exists a sequence of N parameter
values {pi}Ni=1 with |w �Σ | = N ≤ m such that w =
(σ1, p1) · · · (σN , pN ) is an admissible input for R(H). Input w
takes the register semiautomaton from configuration [1, q0, p0]
to some configuration

[
N + 1, qf , pf

]
where qf ∈ qSPEC.

Among all walks which pass the test (5), we pick the shortest
one as the candidate most likely to yield the optimal solution
to Problem 3.

In the case a candidate walk is found, we modify the
standard DP algorithm of [34], and apply it in its new form
to obtain an optimal sequence of parameters. We first obtain
a set of subsets of P , denoted {Pi}i∈dom(w̄), where each Pi
consists of all parameter values that can be used to parametrize
a control mode (data atom) at stage i of execution of an input
data word in w̄, and is found as

Pi
def= Mi ◦ . . . ◦M1(p0) ∩

(
MN ◦ . . . ◦Mi+1

)−1(S) .

where S = {p | ∃z ∈ Z : VM (z, p) = qf}. Closed-
form expressions for the optimal values of parameters and the
accumulated cost can be obtained in the special case where
the continuous dynamics of each control mode associated with
a data atom in the input w̄ is linear, and the related atomic
cost is quadratic. In more general (nonlinear) cases, sets Pi,
for i ∈ dom(w̄) may have to be discretized. Naturally, the
resolution of this discretization affects the optimality of the
solution obtained.

Assuming a general case where closed form solutions for the
optimal parameters are impractical, consider a partition of Pi
into Ki blocks, enumerate the blocks, and let pi[k] denote the
representative of the parameter values belonging to block k ∈
{1, . . . ,Ki}. The DP algorithm selects the optimal sequence
of parameter representatives {p1

∗, . . . , pN
∗} in the family w̄

as follows.
Let i = N , and for each pN−1[k] ∈ PN−1 for k =

1, . . . ,KN−1, set

PN
∗(pN−1[k]) := arg min

pN [j]∈PN
ḡσN

(
pN−1[k], pN [j]

)
(6a)

J̄∗N (pN−1[k]) := ḡσN
(
pN−1[k], PN ∗(pN−1[k])

)
. (6b)

This process constructs two discrete maps on PN−1. The first
map associates pN−1[k] to the value PN ∗(pN−1[k]), which the
parameter should be reset to in order to trigger the transition
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with the minimum cost. The second map associates a repre-
sentative pN−1[k], assumed to be written at the register before
the σN transition is triggered, to the minimum accumulated
cost J̄∗N (pN−1[k]) incurred during the σN transition.

For i = N − 1, . . . , 2 we repeat

Pi
∗(pi−1[k]) := arg min

pi[j]∈Pi

{
ḡσi(pi−1[k], pi[j])

+ J̄∗i+1(pi[j])
}

(7a)

J̄∗i (pi−1[k]) := ḡσi
(
pi−1[k], Pi∗(pi−1[k])

)
+ J̄∗i+1

(
Pi
∗(pi−1[k])

)
. (7b)

Finally, for i = 1 we finish by setting

P1
∗(p0) := arg min

p1[j]∈P1

{
gσ1(z0, p1[j]) + J̄∗2 (p1[j])

}
(8a)

J̄∗1 (z0, p0) := ḡσ1

(
z0, P1

∗(p0)
)

+ J̄∗2 (P ∗1 (p0)) . (8b)

Then the optimal sequence of parameter representatives
{p1
∗, . . . , pN

∗} is obtained iteratively. This sequence identifies
a particular member of the input word family w̄ as the solution
w∗ to Problem 3. The (conservative) accumulated cost is given
by J̄∗1 (z0, p0).

The time complexity of DP with discretized parameter
space is polynomial O(NK2), in which N = |w̄| and
K = maxi=1,...,N Ki. To generate a candidate data word
for DP, one checks (5), which in the worst case requires the
enumeration of all data words of maximal length U .

The solution obtained is sub-optimal because: (i) in the case
when a weak bisimulation cannot be established between H
and R(H), there may exist sequences of parametrized control
modes with lower cost that are only admissible in H; (ii) the
accumulated cost computed in R(H) over-approximates the
time needed for executing w from (z, p) in H, and it is
conceivable that a word with a higher accumulated cost J̄w
might actually be executed faster; (iii) if the upper bound on
the length of data words U is smaller than the length of the
optimal solution, then the optimal solution is not analyzed;
and (iv) the discretization on the parameter space introduces
quantization errors.

V. CASE STUDY: FETCH MY PRINTOUT

We illustrate the method with an example. The problem to
be solved is as follows: a mobile manipulator is instructed to
fetch a document at the printer and deliver it to the user. The
locations of the printer and the user is known.

The mobile manipulator consists of two subsystems: a
wheeled mobile platform, and a two degree-of-freedom robotic
arm moving on a vertical plane. The robot exhibits three
different behaviors: (i) it can move from some initial position
to a desired posture (position and orientation), (ii) it can reach
out with its arm, grasp an object in the workspace and hold it,
and (iii) it can reach out with its arm to a desired position
and release an object held in its gripper. When the robot
performs any one of these maneuvers we say that it is in a
particular control mode, and these modes are labeled a, b, and
c, respectively. The controller responsible for each of these
behaviors is given to us a priori and no access to its low-
level software is permitted. We have to determine the sequence

and parameterization of the controllers to achieve the desired
outcome: printout delivered to user.

One obvious (to a human) solution is to bring the robot to
the vicinity of the printer, have it reach out and pick up the
printout from the output tray, then navigate to the user and
deliver the paper stack. However, it is not clear how such a
plan can be generated automatically.

A. Control mode a: nonholonomic control

The mobile platform is modeled kinematically as a unicycle

ẋ = v cosϑ ẏ = v sinϑ ϑ̇ = ω

where v the velocity and ω the angular velocity are the
control inputs. Control mode a steers the robot’s posture
Xp

def= (x, y, ϑ)ᵀ ∈ R2 × S1 from an initial configuration
Xp0 =

(
x0, y0, ϑ0

)ᵀ
to a target Xpf =

(
xf , yf , ϑf

)ᵀ
. A

coordinate transformation naturally reduces this problem to
steering the unicycle to the origin.9

The controller in mode a is designed based on [36]. Let
x1 = ϑ mod (2π), x2 = x cosϑ+ y sinϑ, x3 = −2(x sinϑ−
y cosϑ) +

(
ϑ mod (2π)

)
(x cosϑ+ y sinϑ). Define

ω = −k1x1 + k3
xr3
x2

v = −k1x2 + 0.5(x1x2 − x3)ω

where k1, k3 > 0 are control gains, r = m
n , and m < n are

odd naturals. The closed loop system is

ẋ1 = −k1x1 + k3
xr3
x2

ẋ2 = −k1x2 ẋ3 = −k3x
r
3 . (9)

Vector field fa is defined by the right-hand sides of (9).
It can be verified that with C

def= x3(0)1−r and T
def=

C
k3(1−r) , when t ≤ T , x3(t) = sign(C)

∣∣ |C| − k3(1 −

r)t
∣∣ 1
1−r , and for t ≥ T , x3(t) = 0. Then for t ≥ T ,

x1(t) = x1(T )ek1(t−T ) , x2(t) = x2(T )ek1(t−T ) , where

x1(T ) =
x1(0)+

k3
x2(0)

R T
0 e2k1s(C−k3(1−r)s)

r
1−r ds

ek1T
and x2(T ) =

x2(0)ek1T . POST(a) is defined as the area where x1 and x2 are
in a ball of radius ε of the origin. It is guaranteed that POST(a)

is satisfied in time at most max
{
T + ln(

√
2x1(T )

2ε )

k1
,

ln(
√

2x2(0)
2ε )

k1

}
after switching to control mode a.

B. Control modes b and c: catch and release

In control modes b and c, the robot’s arm maneuvers to
pick, and release an object, respectively. The arm is mounted
on the mobile platform at a height hp. The lengths of the two
arm links are l1, l2, and the corresponding joint angles are ψ1,
ψ2. Let Ψ def= (ψ1, ψ2)ᵀ. The workspace of the arm is the set
of end-effector absolute positions pa = (pxa, pya, pza)ᵀ ∈ R3,
reachable in the sense that given Xp = (x, y, ϑ) we have

√
(pxa−x)2+(pya−y)2+(pza−hp)2∈[ |l1−l2|,|l1+l2| ]

tanϑ=
pya−y
pxa−x

}
(10)

9Here, the workspace is obstacle-free. If obstacles are present, one may
replace the controller in mode a with one that can handle obstacles, such as
[35]. The challenge comes in approximating convergence rate—for this, see
Appendix B.
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If (10) is true, we write pa ∈ W (Xp). The system is
kinematically redundant: for a given pa, many postures Xp

can satisfy (10). Let the set of all these postures be W−1(pa).

Inverse kinematics yields the joint angles Ψd def= (ψd1 , ψ
d
2)ᵀ

that positions the end-effector to a desired pa:

ψd2=cos−1 (pxa−x)2+(pya−y)2+(pza−hp)2−(l21+l22)
2l1l2

ψd1=tan−1 (pza−hp)(l1+l2 cosψd2 )−l2
√

(pxa−x)2+(pya−y)2 sinψd2

l2(pza−hp) sinψd2+
√

(pxa−x)2+(pya−y)2(l1+l2 cosψd2 )
.

Let Ψh def= (ψh1 , ψ
h
2 )ᵀ denote the center of the arm’s

workspace, the joint angle combination for which the distance
between the end-effector the workspace boundary is maxi-
mized. With the workspace being a compact set, the existence
of this joint angle configuration is ensured.

The error in joint angles is written Eψ(t) def= Ψ(t) − Ψd.
With direct joint angle control, and with steady state con-
sidered reached when |ψ1 − ψd1 | ≤ ε and |ψ2 − ψd2 | ≤ ε,
vector fields fb and fc are defined by the closed loop joint
error dynamics Ėψ = −KEψ , where K

def=
(
b1 0
0 b2

)
. The

difference between the two control modes is that while in
mode b the arm’s gripper is initially open and closes to grasp
the object at the desired end-effector position, in mode c the
originally closed gripper opens at the arm’s desired config-
uration. With the arm anywhere within its workspace, the
maximum time to complete a pick (b) or place (c) maneuver

is Tj = max
{ 2 ln

„
|ψh1−ψ

d
1 |

ε

«
b1

,
2 ln

„
ψh2−ψ

d
2

ε

«
b2

}
.

C. The system model

We model the robot as a hybrid agent H =
〈Z,P,Σ, ι, πi,AP, fσ, PRE, POST, s, T 〉 with components:
Z = X × L set of composite statesa

P = R2 × S1 × R3 set of control parametersb

Σ = {a, b, c} set of control modesc

ι = {(a, 1), (b, 2), (c, 3)} indexing bijection on Σ
πi, i ∈ {1, 2, 3} projection function on p ∈ P d

fσ , σ ∈ Σ parameterized vector fieldsc

AP = {α1, α2, α3, α4} indexed atomic propositionse

PRE : Σ→ C precondition of mode σ ∈ Σ f

POST : Σ→ C postcondition of mode σ ∈ Σ f

s : Z × P → 2P system parameter reset mapg

T : Z×P×Σ→Z×P×Σ mode transition map.
a X = R2× S1× S2×R3 is the set of continuous variables

describing the posture of the platform Xp ∈ R2 × S1, the
joint angles of the arm Ψ ∈ S2, and the position of the
manipulated object Xo

def= (xo, yo, zo)ᵀ ∈ R3. Here, L =
{g} contains a single Boolean variable g that expresses
whether the gripper is closed (g = 1), or not (g = 0).

b The parameter vector p = (pᵀ
p , p

ᵀ
a)ᵀ ∈ P describes the

desired posture pp ∈ R2 × S1 for the mobile platform and
the absolute position reference pa ∈ R3 for the arm’s end-
effector. Component pa ∈ R3 parameterizes modes b, c.

c In control mode a, the mobile platform evolves according
to fa and converges to a desired posture pp; in control
mode b, the joint angles evolve under fb, the arm picks up
an object at Xo and holds it; in mode c, the joint angles
evolve under fc and the arm releases the object at pa.

d Defined as π1(p) def= pp, π2(p) def= pa, π3(p) def= pa.
e Proposition α1 is Xp ∈ pp⊕Bε(0) and when true, it means

that the platform is ε-close to its reference position; α2

is Xo ∈ pa ⊕ Bε(0), and when true, the object is in an
ε-neighborhood of position pa; α3 is pa ∈ W (pp), and
when true, it suggests given the platform being at pp, the
parameter component pa specifying a reference location
for the end-effector, is within the reachable workspace.
Proposition α4 is true iff g = 1.

f C is the set of logical sentences obtained with AP . Table I
summarizes the PRE and POST for each mode.

g For p = (pᵀ
p , p

ᵀ
a)ᵀ and p′ = (p′p

ᵀ
, p′a

ᵀ)ᵀ, writing p′ ∈
s(z, p) implies that p′a /∈ pa + Bε(0) or p′p /∈ pp + Bε(0).

h Exactly as in Definition 2.
TABLE I

PRE AND POST MAPS FOR THE CONTROL MODES OF THE HYBRID AGENT.

a b c

PRE ¬α1 α1 ∧ α2 ∧ α3 ∧ (¬α4) α1 ∧ (¬α2) ∧ α3 ∧ α4

POST α1 α1 ∧ (¬α2) ∧ α3 ∧ α4 α1 ∧ α2 ∧ α3 ∧ (¬α4)

The induced register semiautomaton for H is the tuple
R(H) = 〈Q,Σ,P ∪ {∅}, τ,∆〉, with:
Q set of statesα

τ : 1→ P ∪ {∅} register assignment
∆ transition relation.β–γ

α This set can be practically restricted to
{0000,1000,1110,1011,1001,0110,0001}. More
states exist, but for this task of reaching qf from q0 (see
Section V-D), the remaining states are either unreachable
from q0, or cannot reach qf , and thus are ignored.

β The read transitions are the following:
(0000, ϕr)

a→ (1000, right), (1110, ϕr)
b→ (1011, right),

(1011, ϕr)
c→ (1110, right), (0001, ϕr)

a→ (1001, right),
(0110, ϕr)

a→ (1110, right).
γ The write transitions are the following:

(1000, ϕw) a→ (0000, stay), (1000, ϕw) b→ (1110, stay),
(1011, ϕw) a→ (0001, stay), (1011, ϕw) c→ (1011, stay),
(1001, ϕw) c→ (1011, stay), (1110, ϕw) a→ (0110, stay).

The set-valued maps λ appearing in the write transitions of
R(H) are defined through (1):

λ
(
τ ;1000,0000,a

)
=
{
p′∈P|p′a=pa,p

′
p∈{R

2×S1\W−1(pa)}\{pp}
}

λ
(
τ ;1000,1110,b

)
=
{
p′∈P|p′p=pp∈W−1(Xo),p′a=Xo

}
λ
(
τ ;1011,0001,a

)
=
{
p′∈P|p′p∈R2×S1\{W−1(pa)},p′a=pa

}
λ
(
τ ;1011,1011,c

)
=
{
p′∈P|p′p=pp,p

′
a∈W (pp)\{pa}

}
λ
(
τ ;1001,1011,c

)
=
{
p′∈P|p′p=pp,p

′
a∈W (pp)

}
λ
(
τ ;1110,0110,a

)
=
{
p′∈P|p′p∈W

−1(pa)\{pp},p′a=pa

}
.
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For a fixed tuple (q, q′, σ) ∈ Q ×Q× Σ, the set-valued map
λ(· ; q, q′, σ) maps τ ∈ P to a subset of P , and can be inverted
on appropriate subsets of P:

λ−1(p′;1000,0000,a)={p∈P|pp∈R2×S1\{{p′p}∪W
−1(pa)},pa=p′a}

λ−1(p′;1000,1110,b)={p∈P|pp=p′p∈W
−1(p′a),pa=R3\W (p′p)}

λ−1(p′;1011,0001,a)={p∈P|pp∈W−1(p′a),pa=p′a}

λ−1(p′;1011,1011,c)={p∈P|pp=p′p,pa∈W (p′p)\{p′a}}

λ−1(p′;1001,1011,c)={p∈P|pp=p′p,pa∈R3\W (p′p)}

λ−1(p′;1110,0110,a)={p∈P|pp∈W−1(p′a)\{p′p},pa=p′a} .

The transformation semiautomaton TR(H) = 〈Q̄,Σ, ∆̄〉 is
described graphically in Fig. 1. The assignment of labels {λi}
to transitions in R(H) is done by the function Λ : Λ→ Q×Q.
Explicitly, Λ(λ1) = (1000,0000), Λ(λ2) = (1000,1110),
Λ(λ3) = (1011,0001), Λ(λ4) = (1001,1011), Λ(λ5) =
(1011,1011), Λ(λ6) = (1110,0110).

D. Task specification

Given some initial configuration for the robot, Xp(0) =
(0, 1, π4 )ᵀ, Ψ(0) = Ψh = (0, π)ᵀ, g = 0, and the manipulated
object Xo(0) = (−1, 2, 0.3)ᵀ, we seek a time-optimal plan for
the robot to pick the object and deliver it to a user located at
Xu = (2, 3, 0.4)ᵀ. To avoid trivial solutions, we assume that
Xo(0) /∈ W (Xp(0)), and W−1(Xo(0)) ∩ W−1(Xu) = ∅,
which means the object is not within the vicinity of initial
base location, and that the arm cannot deliver the object to
the user without the robot base having to reposition itself.

Assume the register initialized with p0 = (Xp(0)ᵀ, Xᵀ
u)ᵀ,

which sets the register semiautomaton to state 1000. When
the user receives the object at time tf , for t > tf the system
holds. At time tf , we have Xu ∈ W (Xp(tf )), Xp(tf ) ∈
π1(pf )+Bε(0), and Xo = Xu, g = 0; thus α1, α2, α3 evaluate
true. The semiautomaton would then be at state 1110, while
π2(pf ) = Xu. Thus, when (z, p) satisfies SPEC, this means
that VM (z, p) = 1110, and π2(p) = π2(pf ) = Xu. The
objective is thus to find the shortest walk w from (1000, p) to
(1110, p) in TR(H), which ensures (5) is satisfied for some
data word in the family w̄ given by the translation procedure.

E. Solving the planning problem

For the DFA obtained from TR(H) with initial (1000, p)
and final (1110, p) states, the equivalent RE(H) is:

RE(H) = (λ1 a)∗
(
λ2 b

(
λ3 aλ4 c+ (λ5 + θ ) c

)
(
θ b
(
λ3 aλ4 c+ (λ5 + θ) c

)
+ λ6 a

)∗)
. (11)

By replacing the Kleene-star in (11) with natural numbers,
we obtain strings that correspond to walks of certain length
in the graph of TR(H). Let us denote W(m) the set of
walks of length m. Substitution in (11) verifies that the
set of walks has to be of even length with m > 3. For
m = 4, we find W(4) = {λ2 b λ5 c, λ2 b θ c}. Set w =
λ2 b λ5 c translates to w̄ = (b, p1)(c, p2) and {Mj(·)}2j=1 =
{M1 = λ(· ; Λ(λ2), b),M2 = λ(· ; Λ(λ5), c)}, in which
Λ(λ2) = (1000,1110) and Λ(λ5) = (1011,1011). The

resulted map M(p0) = M2 ◦M1

(
(Xp(0)T, XT

u )T
)

= ∅ since
M1

(
(Xp(0)T, XT

u )T
)

= {(Xp(0)T, p′a
T)T | p′a ∈ {Xo(0)} ∩

W (Xp(0))} = ∅ as the initial position of the object is
not within the workspace of the mobile platform. The same
procedure applies to the other walk and it turns out none
of them satisfies (5). For m = 6 (11) generates W(6) =
{λ1 a λ2 b λ5 c, λ1 a λ2 b θ c, λ2 b λ3 aλ4 c, λ2 b λ5 c λ6 a,
λ2 b θ c λ6 a}, all of which are rejected. For example, walk
w = λ1 a λ2 b λ5 c translates to w = (a, p1)(b, p2)(c, p3)
and M(·) = λ(· ; Λ(λ5), c) ◦ λ(· ; Λ(λ2), b) ◦ λ(· ; Λ(λ1), a),
so M(p0) = {(p′ᵀp , p′ᵀa )ᵀ | p′p ∈ W−1(Xo(0)), p′a ∈
W−1(p′p) \ {Xo(0)}}; but ∀ p′p ∈ W−1(Xo(0)), one has
Xu /∈W−1(p′p) \ {Xo(0)}, unless the user can get the object
without the robot’s base moving—which is trivial.

Finally, for m = 8, we find a walk w = λ1 a λ2 b λ3 a λ4 c,
which translates to w̄ = (a, p1)(b, p2)(a, p3)(c, p4), and
M1(·) = λ

(
· ; Λ(λ1), a

)
, M2(·) = λ

(
· ; Λ(λ2), b

)
, M3(·) =

λ
(
· ; Λ(λ3), a

)
, M4(·) = λ

(
· ; Λ(λ4), c

)
. Since the composi-

tion of maps M(p0) =
{

(p′ᵀp , p
′ᵀ
a )ᵀ | p′p ∈ R2 × S1, p′a ∈

W (p′p)
}

allows p′a = Xu, this walk is a candidate, and the
search is terminated.

Now we resort to DP to obtain the optimal sequence of
parameter vectors pi = (pT

pi, p
T
ai)

T for i = 1, . . . , 4 = N . We
have p4 = pf , and must satisfy π2(p4) = Xu. The range of
possible parameter values at each stage is:

P1 = M1

(
[Xp(0)Xu]

)
∩
(
M4◦M3◦M2

)−1(
W−1(Xu)×{Xu}

)
= R2 × S1 \ {{Xp(0)} ∪W−1(Xu)} × {Xu}
∩W−1(Xo(0))× R3 = W−1(Xo(0))× {Xu}

P2 =
(
M4◦M3

)−1(
W−1(Xu)×{Xu}

)
∩M2◦M1

(
[Xp(0)Xu]

)
=
(
R2 × S1 \W−1(Xu)

)
×
(
R3 \ {Xu}

)
∩W−1(Xo(0))× {Xo(0)} = W−1(Xo(0))× {Xo(0)}

P3 = M3◦M2◦M1

(
[Xp(0)Xu]

)
∩M−1

4

(
W−1(Xu)×{Xu}

)
=
(
R2 × S1 \W−1(Xo(0))

)
× {Xo(0)}

∩W−1(Xu)× R3 \ {Xu} = W−1(Xu)× {Xo(0)}
P4 = W−1(Xu)× {Xu} .

We discretize the domain of parameter pp using a polar
coordinate system, in which the radial increment between
successive parameter settings is 0.06 m, and the angular in-
crement is 10◦. Figure 2 shows two sets of possible parameter
settings for the position component of pp, clustered around
the object’s position at Xo = (−1, 2, 0.3)T, and the user’s
location at Xu = (2, 3, 0.4)T. The geometric parameters of
the robot are l1 = l2 = 0.2 m, and hp = 0.15 m. Then,
after setting rmin(z) =

√
max{0, (l1 − l2)2 − (z − hp)2}, and

rmax(z) =
√

(l1 + l2)2 − (z − hp)2, the domains P1, P2, P3

and P4 are covered by sets of points {p1[k]}N1
k=1, {p2[k]}N2

k=1,
{p3[k]}N3

k=1, and {p4[k]}N4
k=1, respectively, where N1 = N2 =

36
⌊ rmax(0.3)−rmin(0.3)

0.06

⌋
, N3 = N4 = 36

⌊ rmax(0.4)−rmin(0.4)
0.06 c.

The DP algorithm described in Section IV runs as follows.

N = 4: For every p3[k], compute (6)

P4
∗(p3[k]) = argminp4[j]∈P4

ḡc(p3[k], p4[j]) .
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0000, p 1000, p 1110, p 1011, p 0001, p

0000, p′ 1110, p′ 1011, p′ 1001, p 0001, p′

0110, p 0110, p′
θ

λ6

a

θ θ λ5, θ θ

λ1

λ2

λ3

λ4

a b

c
a

Fig. 1. The transformation semiautomaton TR(H) of hybrid agent H, for the task specification considered.
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X

Y

Fig. 2. Discretized workspace for the mobile manipulator and optimal path.
The two concentric collection of points mark parameter class representatives
around the object and user positions.

N = 3, 2: For every p2[k] and p1[k], compute (7)

P3
∗(p2[k]) = argminp3[j]∈P3

{
ḡa(p2[k], p3[j]) + J̄∗4 (p3[j])

}
P2
∗(p1[k]) = argminp2[j]∈P2

{
ḡb(p1[k], p2[j]) + J̄∗3 (p2[j])

}
N = 1: Finish by evaluating (8) for z0 = [Xp(0) Xo(0)]

P1
∗(p0) = argminp1[j]∈P1

{
ga(z0, p1[j]) + J̄∗2 (p1[j])

}
.

We find p∗1 = (−0.60, 1.85, 2.79, 2, 3, 0.4),
p∗2 = (−0.60, 1.85, 2.79,−1, 2, 0.3), p∗3 =
(2.10, 2.91, 2.62,−1, 2, 0.3) and p∗4 =
(2.10, 2.91, 2.62, 2, 3, 0.4). The accumulated cost is
J̄w
(
z0, p0) = ḡc+ ḡa+ ḡb+ga = 5.49 + 31.72 + 6.08 + 35.80

seconds. The resulting path on the horizontal plane of the
mobile manipulator is shown in Fig. 2.

VI. CONCLUSIONS

Certain type of hybrid systems where the continuous dy-
namics are convergent, afford a partitioning of the continuous
state space based on the asymptotic properties of the vector
fields and the capacity of the system to re-parametrize its con-
tinuous controllers. This partitioning gives rise to purely dis-
crete abstractions—no dynamics on the continuous values—
which are weakly simulated by the underlying concrete hybrid
dynamics. The abstractions permit a solution to a planning
problem at the discrete level. Solutions obtained through this
process are in general suboptimal, unless under some special
conditions which are identified.

APPENDIX

A. Example of a register automaton

Consider a language over Σ×D of the following property:
the data value in an atom that immediately follows an atom
containing symbol a, has to be the same as the data value in

the atom with the symbol a. This language is recognized by a
one-way, 2-register automaton R2 = 〈Q, q0, F,Σ, 2, τ,∆〉 =
〈{q0, q1, q2}, q0, {q0, q1}, {a, b, c}, 2, τ : 2 → R2 ∪ {∅},∆〉
where τ0(1) = τ0(2) = ∅, ϕr ⇔ d = τ(i), ϕw ⇔
d 6= τ(i) , and ∆: (q0, ϕw)

b,c→ (q0, 1, right), (q0, ϕw) a→
(q1, 2, right), (q1, ϕw)

a,b,c−−−→ (q2, 2, right), (2, q1, ϕr)
b,c→

(q0, right), (2, q1, ϕr)
a→ (q1, right), (2, q2, ϕr)

a,b,c−−−→ (q2, right)
, (1, q2, ϕr)

a,b,c−−−→ (q2, right), (q2, ϕw)
a,b,c−−−→ (q2, 2, right).

q0 q1 q2
a

b, c

b, c

a

a, b, c

a, b, c

Fig. 3. An example of a 2-register automaton. On receiving initially an atom
with symbol a, the machine stores the data value in τ(2) and enters q1 which
indicates “I have just seen an a.” If the data value of the next atom doesn’t
equal τ(2), then machine will enter q2 and stay there forever, otherwise,
depending on the symbol in the atom and the machine returns to q0 (if b or
c) or stays in q1 (if a). The values associated with b or c are stored τ(1).

B. Asymptotic (T, d) equivalence classes

Denote dist
(
x,A

)
the distance between point x and set A

and let dist
(
x,A

) def= infy∈A ‖x− y‖.
Theorem 3 (Zubov [37]): The set Ω is the region of at-

traction of a periodic orbit x = ϕ(t) with period T , if and
only if there exist two functions V (x) and W (x) defined on
Ω satisfying: 1) V (x) is continuous on Ω and the domain
of W (x) can be extended to entire X , 2) V (x) ∈ (0, 1)
∀x ∈ Ω \ ϕ, and V (x) = 0 for dist

(
x, ϕ

)
= 0, 3) W (x) > 0

for dist
(
x, ϕ

)
> 0 and W (x) = 0 for dist

(
x, ϕ

)
= 0, 4)

∇V T f(x) = −W (x)
√

1 + ‖f‖2(1− V ) , (12)

5) limx→∂Ω V (x) = 1.
Proposition 3: Consider a system ẋ = f(x) and assume

that its trajectories remain inside a compact set Ω and the
(attractive) limit set L+ of the trajectories contain a single, iso-
lated component. Denote φ(t;x(0)) the trajectory of f starting
at x(0), and let V (x) be a solution to (12) that satisfies the
requirements of Theorem 3. Then the trajectories of f starting
in Ω will enter an ε-neighborhood of L+, in finite time at
most T = ln

(
1−c
1−C

)
, where10 c

def= minx∈cl{L+⊕Bε(0)} V (x)

and C def= maxx∈Ω V (x).
Proof: Pick W (x) = dist

(
x, ϕ

)
. This choice trivially

satisfies the requirements of Theorem 3. Now let V (x) be a
solution of (12) that conforms with the conditions of Theorem

10cl is used to denote set closure.
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3. Then from (12), for x ∈ Ω \ {L+ ⊕ Bε(0)} it follows that
V̇ ≤ −d(1 − V ) and applying the Comparison Lemma with
C = maxx∈Ω V (x) one obtains V (x(t)) ≤ 1−(1−C)edt. Let
V (x) = c be the largest level set of V included in the closure
of L+⊕Bε(0). Then, the following upper bound for the time
required for the flows starting within the level set V (x) = C

to reach L+⊕Bε(0) can be obtained: t ≤ 1
d ln

(
1−c
1−C

)
. Setting

T , ln
(

1−c
1−C

)
, the proof is completed.
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