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Abstract—This note presents an approach that integrates elements
from grammatical inference and game theory to address the mblem
of supervising finite-state transition systems operating i adversarial,
partially known, rule-governed environments. The combine formulation
produces controllers which guarantee that a transition syem satisfies a
task specification in the form of a logical formula, if and only (a) the
true model of the environment is in the class of models inferale from
positive data presentation (observations), (b) a charactistic sample of
the environment's behavior is observed, and (c) the task spéication
is satisfiable given the capabilities described by the absictions of the
system and its environment.

Index Terms—Hybrid systems, symbolic control, grammatical infer-
ence, algorithmic game theory.

. INTRODUCTION

This note shows how grammatical inference can be used in ¢
junction with standard game theoretic analysis to enablarssition
system to satisfy a behavior specification while interartivith an
adversarial, unknown, rule-governed environment. Ttaomssystems
such as the ones considered here may arise as discretectibsg @f
hybrid dynamical systems. Specifics on the abstractiongsdself
can be found elsewhere (seg[3]).

Conceptually similar problems have been studied in the extnt

of reactive control {]-[8], where system behavior is re-planned iqh

real time based on information observed. A common undeglyi
assumption is that the environmentddmissible that is, it cannot
falsify the system’s specification. This assumption is natdmhere.
Rather, we ask whether there is a method that reduces theepréor

a system interacting with annknownenvironment, into an instance

where the environment isnown to allow the application of existing
synthesis methods.

One way to answer this question is to learn, or identify a rhémte
the environment. The learning paradigm adopted here ismegival
inference ], [
languages) through presentation of examples of elementssfeings
in the language) with or without a teacher and/or oracle hWame
prior knowledge about the object to be learned—narrowingrdthe
search usually helps—correct identification occurs oncefficient
number of examples of the object's features (ttiearacteristic
sampl@ is observed. In model diagnosis.l] and action model

that with some prior knowledge that helps to reduce our Hygsis

space of the true system, one can start with an assumed nmdel(gf:k(

the system and apply grammatical inference to identify trapmete
true system from observations.

Reinforcement learning offers an alternative formal mdtiogy
for regulating a system’s behavior while interacting withkmown
dynamics (seel[3] for an application in a discrete event systene §)
context). There are fundamental differences between theegt of
reinforcement learningrL) and that of grammatical inference. In
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], @ methodology that identifies formal objects (e.g.

Markov decision processvppP) setting, whererL takes place, the
uncertainty about the environment interaction is exprgseba-
bilistically, which is natural when there is inherent stasticity in
the models of the system or the environment. But when dyramic
are purely deterministic, stochasticity becomes a mogdedirtifact.
Furthermore, what reinforcement learning does is to endhée
system to learrhow to exercise contrplin contrast, grammatical
inference informs the system abolibw to learn its environment
Whereas grammatical inference has some precedence invisgogr
control of discrete event systems], it has not been used for
the model identification. Rather, is has been employed asob to
for learning the supremal controllable sublanguage foemigystem
specifications, and in a setting where queries and the usegattine
data is allowed. However, even when nature is not advetsaha is
unlikely to respond to our queries.

In this note we express the interaction between the systain an
its environment as a two-player zero-sum game. This cooretsp
to the worst-case assumption typically made for the envi@mt in
DES theory. In this form, the problem differs structurally fratmse
treated using reinforcement learning approaches: whessifying

Odb'mes 5], aMDP is al—player stochastic game, whereas the games

of this note are 2—player deterministic games. The note shbat
with the suggested introduction of grammatical inferencentrol
synthesis is decoupled from learning, and the latter carebfenned
outside a probabilistic framework. While demonstrating épproach,
we perform synthesis using game-theoretic tools but thiéé¢rdit
options (e.g. [6]) are also available.

The rest of this note is organized as follows. Sectioimtroduces
e technical background, the notation, and the models. used

r\Sectionlll, we briefly formulate the control problem into a game,

in which the winning strategy of one player becomes the ctletr

In SectionlV we introduce a learner to identify asymptotically the
abstract model of the unknown and adversarial environmamnd,
then how this knowledge can be utilized in planning and @dntr
synthesis. SectionVV illustrates the whole approach through an
example. Sectiov| concludes.

A. Languages, automata and games

PRELIMINARIES

Let 3 denote a fixed, finite alphabet, ald, >“ be sequences over
this alphabet, of any finite length, and of infinite lengttspectively.
The empty stringis denoted\, and thelength of stringw is denoted
|w|. A languageL is a subset ob2*. A grammarG for a language

. . o . L is finite description ofL via a well-defined functiord(-) such that
learning [L7], a system is identified based on the observed behaon%G)

and the predicated model for the system. It thus seems plausi

= L (an example is given later). A stringis a prefix (suffix)
of a stringw if there exists a string such thatw = uwv (w = vu).
The prefix (suffix) of lengthk of a stringw is denotedPr="(w)
w)), and the set of prefixes (suffixes) of a stringof length
< k, PrF(w) (SFS*(w)). Given anw-word w, Occ(w) denotes the
set of symbols occurring i and Inf(w) those occurring infinitely
often inw. Given a finite wordw € ¥*, last(w) denotes the last
symbol of w.

A semiautomaton is a tupld = (Q, %, T), whereQ is a set of
states (here assumed finit&)js the finite alphabet, arffl : Q x X —

aQ is the transition function. The mapping frofy:, o) to g2 via T' is
Enginee@_lso written ag; = ¢2, and can be expanded recursively in the usual

way. Here, semiautomata are assumed deterministic initicarss If
T(q,0) is defined for a giver(q,o0) € Q x X, we writeT(q,0) |.
The active event functio®’s : Q — 2% singles out the alphabet
symbols triggering outgoing transitions from a given stfted, and
is defined as"a(q) := {0 € ¥ | T(q,0) J}. Arunin A on an
input word (respw-word) w = w(0)w(1)... € &* (resp.X*) is a



finite (resp. infinite) sequence of states= p(0)p(1)p(2)... € Q" stringsu of length & are thek-factors of w. The k-factor function
(reps.€ Q*) such thatp(i + 1) = T(p(i),w(i)), i > 0. Then we factor : X* — 25" maps a wordw to the set ofk-factors in it,
say thatp is generated byw. A semiautomator is total if for any  if |w| > k; otherwisew maps to itself. We can exterfdctor;, to a
(q,0) € @ x X, T(q,0) is defined. Any semiautomatad can be whole language, and writéactory (L) := |, factory(w). Let §
madetotal by adding a non-final staténk such that in every state, be a special symbol marking the beginning and the end of agstri
all symbols that are not i 4 (¢) trigger transitions tasink, and at A languageL is Strictly k—Local (SLy) if there exists a finite set
sink all symbols in3 produce self-loops. G C factor (§£*4), such thatL(G) = {w € X" | factor(fwf) C

We think of a deterministic automaton as a quintupfe = (G}. Machines generating strictly-local languages model processes
(Q,%,T,1,Acc) where(Q,X,T) is a semiautomaton deterministicwhere the next event depends only on the previbus 1 events.
in transitions, I is the initial state, andAcc is the acceptance Informally, learning can occur because every observedgteveals
component The semantics of an acceptance component is contexbme of the elements of the grammar. Therefore, after enstuigiys
based: if A is a deterministic finite state automatonr@) with from the language are observed, the grammar—being a finite se
Acc = F C Q, then A acceptsw € ¥* iff run p € Q* generated by “fills out.” A formal definition of acim which learns in this way is
w satisfiesp(0) € I andlast(p) € F; if A is a deterministic Biichi provided later in Definitior8. The Sl languages are identifiable in
automaton ©BA) with Acc = F' C @, then A acceptsw € X* iff  the limit from positive presentations §| with a poly-time iterative
run p € Q* on w satisfiesp(0) € I andInf(p) N F # (. Language and set-driven learneg().

L(A) is the set of words accepted by. In the context of this note,
calligraphic uppercase letters are reservedofess.

The automaton form of a two-player turn-based gamd |s a
tupleG = (Vi UV, B1 U, T, I, F), whereV; is the set of states  In the interaction between two dynamical systems (the agedt
where playet plays, andz; is the set of actions for playeér The sets its environment)—the players in the game—the actions of fune
of player states and actions are disjoibi: N V> = ¥; N3y = (.  conditional effects over the state of their compositionjolitwe refer
The transition function isT" : V; x ¥; — V;, with I the set of to asthe world The world can be described through a formal system
initial game states, an& C V; U V» the winning condition If G is  over a set of atomic propositiond? [17]. A literal is either an
a reachability (or safety) game, then a run is winning foryptal atomic proposition indP, or a negation of an atomic proposition. A
if last(p) € F (or Occ(p) C F ); if it is a Buichi game, then the sentencés a conjunction of literals, in which each atomic propasiti
condition isInf (p) N F # (. appears at most once. The set of all sentences that can bedonm

A memoryless strategyfor player i in game G is a function this way makes a set aforld statesdenotedC.

S; : Vi — 3; such that for every paifv, o) of preimage and image, In our context, a dynamical system is expressed as a spggeabf
a transition is defined. Playérfollows strategyS; if at statev € V;,  a Kripke structure. This structure is a semiautomaton angeadewith
player i always playsS;(v). A strategy is awinning strategyfor a labeling function that maps a state teemtencevhich is true at that
playeri, denotedWs;, if every run inG in which playeri follows state. Thus, playei is modeled as a tuplel; = (Q:, X;, T3, LB;),
WS;, is winning for him. Thewinning setof player i, denoted wherelLB; : Q; — C. The setX; may contain the empty action in
Win; C V is the set of states from which there exists a winninghich a player simply gives up her turn. All transitions ih (the
strategy for playes. system) are controllable, whereas transitionsiin(the environment)
are uncontrollable. We assume that the alphabets of the lay@ns
are disjoint, i.e.X; N X2 = 0.

The conditional effect of action € 3; is captured by its pre- and
post-conditions. The pre-conditiorRB(c) € C is a sentence that has
to be true in order fot to occur. The post-conditiondsT(o) € C is
a sentence that must be true when the action is completednéViae
o € I'i(q), we havelB;(¢) = PRE(0); similarly, when we see
a transition fromg to ¢’ on actiono, denotedg > ¢/, we infer that
LB;(¢') = PosT(0).

We capture how each player can interfere with the dynamics of
the other, by means of dnteraction functionU; : Q; x Q; — 2% |
in which a pair of stategq¢;,q;) maps to the set of actions that
player j can no longer take{ a € I';(g;) | LBi(q:) ALB;(g;) =
—PRE(a) } Intuitively, the interaction happens at the level of the
images of their labeling functions, with some literals LiB;(g;),
negating some literals ihB;(g;); by doing so they falsify the pre-
condition of actiona € T';(g;)-

We assume that the objective of each player is given as a logic
formula over AP. By restricting this objective to either first-order
logic, or a fragment of Linear Temporal LogiaTl) [2]], the
objective’s formula can be equivalently expressed @sa or DBA,
respectively. These automata are referred to ashfective automata
As = {(Qs,C, Ts, I, Fs) whereTsy is total, i.e.,sink € Qs and for
any (gs,c) € Qs x C, Ts(gs,c) |. Two types of objectives can be
considered: a) Reachability or safetybjectives, in whichA, is a
DFA, and b) Buichi objectives, in whicll; is aDBA.

IIl. SYSTEM BEHAVIOR AS GAME PLAY

B. Grammatical inference

A positive presentatiorp of a languagel is a total functiong :
N — L U {#} such that for everyw € L, there existsn € N
such that¢(n) = w [10]. A presentationy can also be understood
as an infinite sequencg(0)¢(1) - -- containing every element df,
interspersed with pauses (marked with ti#esymbol), which are
moments in time when no information is forthcoming. We wilke
initial finite subsequences(0)¢(1) - - - ¢(¢) and denote thenp[i] to
mark the (time) step at which the particular subsequencegrobsls
is observed. Theontentof ¢[:], written content(¢[i]), is the set of
elements of the sequence, less the pauses. A grammatieggnce
machine ¢im) GIM, or learner for shortidentifies in the limit from
positive presentationa class of languages if for all L € £, and
for all presentations of L, there exists a» € N such that for all
m > n, GIM(¢[m]) outputs a grammat?, and L(G) = L [19]. Let
C be a finite subset of, C' is acharacteristic samplef L for GIM
if for any positive presentatior, for all n > 0, C' C content(¢[n])
implies GIM(¢[n]) = L [9].

For concreteness, this note introducesia with respect to the
class of Strictly 2-Local languages; however, many othemtd
language classes have been shown to be learnéhlary of which
could be used in the current setting. A striags afactor of another
string w, if and only 3z,y € ¥* such thatw = zuy. All such

1For two-player zero-sum reachability and Biichi games wptrfect
information, there always exists a memoryless winningtetra for one of
the players 17]. 2A safety objective is a dual of a reachability objectivie’][



Our game is constructed in a bottom-up fashion, throughagpr observations made in the process of playing the game rejigatach
ate product operations on the models of the players and fleetade time from an initial condition randomly selected from allgsible
automaton. The first product introduced in Definitibnonstructs the initial states. During this process, the agent adjustsdtsabior based

gameareng which captures all interactions between players. on the latest instantiation of its environment model. In timait,
Definition 1 (Turn-based product)Given two players the system refines its model to one that accurately exprasses
Ai = (Qi, %, T3, LB;), i« = 1,2, their turn-based product adversary’s behavior, and thus recovers the performaniewvable

P =(Q,,%1UX, Ty, LB), denotedA; o A,, is defined as follows: when full knowledge is assumed.

Qp is the set of state); x Q2 x {0,1}, where the last The assumptions that allow the implementation of the pregos
component is a Boolean variabtedenoting whoseurn it approach are the following: a) Player 1 cannot restrict g, i.e.,
is to play:t = 1 for player 1,t = 0 for player 2. V(q1,q2) € Q1 X Q2, Ui(q1,q2) = 0; b) The model of player

T, is the transition function withT,((q1,¢2,1),0) = 2 is identifiable in the limit from positive presentations &yGIMm;
(¢1,42,0) if ¢ = Ti(q1,0) and o ¢ Usz(g2,q1), and c) Player 1 has prior knowledge for selecting the corot; and
Tp((q1,42,0),0) = (q1,45,1) if ¢5 = Ta(q2,0) and d) the observed behavior of player 2 suffices for a correatrérfce

o & Ui(qu, g2). to be made, i.e., it contains a characteristic sample.
LB is the labeling function defined a&B((q1,q2,t)) = These assumptions are for the most part conservative, and ar
LB1(q1) A LB2(g2). justified as follows. The first assumption suggests thatepldyhas

a disadvantage: although player 2 can interfere with thewgian
of the plans of player 1, the actions of player 1 have no effect
S . on the actions player 2 can take. The second assumptionresqui
Definition 2 (Game automaton)Siven - the tu_rn-b_ased prOdUCtpositive presentations only, because an adversary is alito
P = Ai1o Ay = (Qp,%,T5,LB) and the objective automaton respond to queries (cf1{]). This assumption can be relaxed in other
As = (Qs,C, Ts, I, Fo), @ two-player_ turn-_based game automato'drammatical inference frameworks (for instance, lessrfmowledge
g :‘EAl 314X1/2)UMX;48w:h(<3‘r257 g’gF igdiﬂ{nff’chgherg the set of is required when presentations contain both positive arghtive
stattlas wr?ére playei fmolves ;mc 0 x 652 % {0} % 0. data). The third and fourth assumptions simply state ctmitfor
is the set of states where plaltyer > moves a GIM tp converge; they are reasongble, in th_e sense that it is not
) beneficial for an adversary to consistently withhold actgwmiely

The following product completes the game construction lmpiin
porating the players’ objectives.

P o [N pUOSe O prcy. Not s set of sssumpicoss
T((ql 02, 4,05) U) _ (@5, t.q) is defined not require that the enwronmentl cannot falsify the tasIcFﬁpatlon
it (dhaht) = T, (¢ 02, 0), 07) Y and ¢ = (cf[6D. Here environmental actions, and poor—due to ignorance—
T\(q. 1L7I32(7(q' y t’))) P YA T s response by the system, can falsify the spemflcatlon duthg

I :5 { (&(1717q2,t71f;5)27€ v |. =T, (157 LB(q1,qQ7t)) } is the learning process of a repeated game][ When this happens, the

game restarts from a new initial condition, with the agestaining
the knowledge accumulated until then.
Given a gameg, let L(G) be the set of prefixes of all possible

For a given state = (q1,¢2,t,¢;) € V, a projection operator; is action sequences made by interleaving the actions of plhyeith
defined such that; (v) is thei-th component in the tuple. The game those of player 2, and.»(G) be the projection of.(G) on X,. The
automaton has at mop,| x | Q.| states. The labeling functidrB is ~ behavior of player 2 is a languade (G) € X;. Based on assumption
first extended fromP to G: for each state = (q1, g2, t, qs) € V, we b) made earlier in this section, far. of L., there exists &Im and
defineLB(v) = LB(q1, ga, t); then it is extended to runs iW*UV* n € N such that for allm > n, GIM(¢2[m]) = GIM(¢2[n]). In
in the usual way. Annitialized game is a tupléG, vo) wherev, € I~ addition, the language of the grammar given® is L(9), i.e.,
is theinitial state. If A, is aDFA, gameg is a reachability game. Run L(GIM(¢2[n])) = L2(G).

p is winning for player 1 in gamg if last(p) € F. Projecting the ~ Let the presentation of language(G) obtained in the repeated
run on Q,, we see thatd, also acceptd B(p) sincelast(r(p)) € 9game to beg, define$(0) = A, and denotep[i] the presentation

set of initial game states.
F ={(qi,q2,t,¢s) € V | qs € F } is the set of final states.

w4 (F), which is a subset of’;. If A, is aDBA, gameg is a Biichi obtained after move = 1,...,n. Since games are repeated, the
game and a rup is winning for player 1 inG if Inf(p)NF # ¢ and Mmove indexi counts from the first move in the very first game until
A, acceptsLB(p) sincelnf(ms(p)) N Fs # 0. the current move in the latest game. If mavé 1 is the first in one

With the game expressed as a finite state machine, one can @sthe repeated games and playeplayso € Xy, then¢(i+1) = o;
standard supervisory control techniqués][to synthesize controllers Otherwiseq (i + 1) = ¢(i)o. The projection of on the alphabet of
for player 1. As an alternative, we compute a winning styatdt, :  Player 2 is a positive presentation 6(G), denotedgp..

Wini N Vi — X3 in G (which can be a reachability or a Biichi Winning Strategy: WS[10] WS[11] WS[f] S WS,
game) based on game-theoretic solutiohd,[[21]. Applying these 0 + 0
algorithms to games withn transitions and: states, results in time  wypothesis of the Game: ~ GL0] gt ... gl . o G
complexity O(m + n) if they are reachability games, and in time ) ) 0
complexity O(n(m + n)) if they are Biichi gamesl[]. wpotnesis ot Plyer 2 AL A Al
) ) )
Data Presentation: (1)2 [0} d)g [1] N (1)2 [Z]

IV. INCORPORATING GRAMMATICAL INFERENCE

Sectionlll established that for a given task, an agent which (a) hgg' 1: Learning and planning with a grammatical inferenaariie.

full knowledge of the dynamical environment it interactshyiand Figure 1 illustrates how identification in the limit proceeds.
(b) is initialized at a state iWin; N I, affords a controller that Through interactions with player 2, player 1 observes adfiittial
ensures that its objective is met. This section relaxes tmgliion segment of a positive presentatiafi[i] of L2(G), and uses the
on full knowledge by incorporating &imM. The cim updates the GIM to update a hypothesized model of player 2. Specifically, the
agent’s model of the unknown and rule-governed environnwémt output of GIM(¢2[i]) becomes aDFA (see Appendix), which after



removing the initial state and the finality of final statesglgs a V. PLAYING FOR REAL
semiautomatorﬂ[;]. The labeling functionLBL! in A}l is defined o _ _
as LBgL] = Aseingg POST(0), where IN(g) L4 e% | 3 € A robot (player 1) must visit all four rooms in the environmef

[27;])[T2[i](q/7 o) = q]}: this is the set of labels of incoming transitions”19- 2 where doors connecting rooms are controlled by an adwersar

of the stateq. The computation of labeling function is of time (Player 2). The rules of the game are:

complexity linear in the size ofil). Given LB, the interacting Rule 1: at each round, either no door opens (thus %), or one
function Us(-) is updated in linear timeD(|Q:| x |QL|). Based opens and another one closes; _

on the interacting functions and the updated model for plae Rulé 2: doors closed must be opposite to each other, thatisy
player 1 constructs a hypothesis (model f6f), capturing her best {ad,ae,af,bf,ce,ef, e} whereij, denotes doors and; being
guess of the game being played, and uses this model to compute €0Sed:

wsl, which converges to the trua/S; as A} converges to the Rule 1 makesL:(G) a strictly 2-local (Sk) language {C], [27].
true A,. StrategiesWS!” for i < n, are the best responses for thel & graph of this language acceptor can be represented Ml
system given the information it has so far, but having beerisdd graph. Algorithms for deciding Whethgr a language is dyrigtlocal
based on incorrect hypotheses about the game being playeg, @nd for whichk it is can be found in74].

cannot guarantee winning. There is no guaranteed upperdbonn ~ The prior knowledge used in this game is the following:
the number of games player 1 has to play before the learniogeps (i) Initially, player 1 is aware of Rule 2 onfy,and (i) player
converges because one does not know at which point a chasticte 1 starts the game knowing that the language of player 2 is

sample of player 2's behavior is observed. However, as ssahig strictly 2-local. Let AP = {a; : robotin roomi} U {di;
happens, convergence is guaranteed. the door connecting roomisand j is closed. Without any other in-

formation about the doors’ behavior, player 1 starts theeghoping
The game learning procedure is summarized in the followingiat the doors will stay as they appear at the outset: all .open
sequence of steps. Player 1 plans with this in mind, modeling her own dynamics as
A = <Q17217T1,L81> where Ql = {172,3,4}, Y = Ql X
Q1 \ {(i,9) | ¢ € @1}, and transitionT’ (i, (i, 5)) = j suggests
movement from room to j. We setLB: (i) = a;. Player 1 models
the opponent asly = (Q2, X2, 72,LB2) where@Q2: = X \ € and
i T T2 (q1,q92) = q2 if g2 # ¢, andT>(q1,€¢) = ¢1. The labeling function
1 pIaysWS[l]_(v), and proce_eds to step If v ¢ Wmlll, _player LB(2 is ur)lderstood graphically, f(or ex)ampleBg(ad) = di2 Ndss @S
_1 loses and jumps to step if T'(v, o) € F%, player 1 wins and a connects rooms, 2 andd connects3, 4. The objective automaton is
Jumps to ste.pls. As = (Qs,C, Ty, I, Fs), which is the canonical finite state automa-
3) With propabllltyp, player 1 mgkeg a move randomly selectegon accepting the union of the shuffle idéats the permutations of
from a\{allable moves a.t that tlme. |.nstance and jumps to &epstring arazasay. The interaction functiorl/z(dd’,7) indicates the
or she jumps to step with probability 1 — p. rooms player 1 cannot go to from rooindue to doorsd and d’
4) ZI[%yer Z[iTﬁkeS a T]ove. Elfl)]/er 1 observes'the ‘move, updzﬂg%g closed. The actions of player 1 do not inhibit that afypt 2:
2 10Ay"", andG™ to G". Player 1 sets := i + 1 and Ui(q) = 0,Yq € Q1 x Q2. Player 1 always moves first. A fragment
goes 1o Ste!y' o of the game automato@ is shown in Fig.3.
5) \mﬁ[f?,agz;:rrisﬁgﬁgsa;i gﬁgg%mn;rg\t):l ;r%izggslftgo s‘iep Gi\{e_n the game autom_ato@, which h:f1537_0 ;tates andl 202
otherwise, she jumps to stép transitions. The computatlon of player 1's winning $¥in; takes
' 0.05 seconds running python on a laptop with Intel C8re

When player 1 finds herself out of her assumed winning set sR&l0 CPU and 2GB of RAM. For a game(g,vo), where vy €
can either quit and restart the game, or explore an actidnsaitne 1 N Wini = {(1,ad, 1,1),(1,ce,1,1),(2,ad, 1,2),(2,bf,1,2),
probability 0 < p < 1 and keep playing hoping that her opponenté4; ce,1,4), (4,bf,1,4)}, player 1 has a winning strategy. Hence,
response allows her to improve her hypothesis of the ganehas Wwith full knowledge of the game, player 1 hdé%'"” = 25%
nothing to lose by trying to exploit her adversary’s desvanin in  chance of winning. But starting just knowing that the oppuise

order to extract information about her opponent’s behavior language is a strictly 2-local language, player 1 uses thewfing
learner:

Having no particular reason to choose otherwise, we defige th pefinition 3 ([23]): For all positive presentations, define GIM;
utility or reward resulting from using a particular strafegs abinary as: 1y = 0: GIM(¢[i]) = 0; 2) ¢(i) = #: GIMe(¢[i]) =
function awardingl for a win and0 for a loss. This reward is Gim,(g[i—1]); 3) otherwise GIM¢ ([i]) := GIM¢(¢[i—1]) Uf(¢]i]).
realized at the end of a game, and the regi@&) that the system Example 1:Let f = factors. SUppOSEGIM;(¢[m]) = {ta, ab, bt}
experiences for not following a strate@yin the process of learning, ;.4 é(m + 1) = ac. Then GIM¢(¢[m + 1]) = GIM¢(¢[m]) U
is the difference between the reward it gets while learnind the factors (fact) = {#a, ab, bt} U {ta, ac, ct} = {#a, ab, ac, bt, ct}.
one it would have received if adheredSd27]. The learning rule we
introduce here is &o regretrule [27] in the sense that the average
regret for not using a true winning strategy from the begignri-
albeit there is no way to formulate it in advance based onlablai
information—tends to zero as the game rounds increaseifigpéy,
if u(S) denotes the payoff (win: 1, lose: 0) of employing strat&gy
realized at the end of the game, ai$, is any true winning strategy ) ] )
for player 1, therim inf;_; o [u(WS[li])—u(Wsl)} < 0. This is due _3Th|s assumption can be lifted, and player 1 may know noth8tge can

. . still obtain the alphabet of player 2 through observationsimg) the course
to the guaranteed convergence of the grammatical infersrmtile ¢ e game.
in the limit, combined with the derivation of winning strgtes on 4For w = oio9---0n € *, the shuffle ideal of w is
each hypothesized gang?. DILESDILP SN P 3

1) The game starts with initial statey € I, ¢ := 0, and the
hypothesized game i§°!. _

2) At statev = (q1, ¢z, 1,¢s), player 1 computesVin! in glil. If
v € Winl!, a winning strategys!” exists in(G7, v). Player

The learning algorithmGIM used by player 1 performs as fol-
ows: given the finite initial segment of a presentatign|[m],
firstly the learner usesGIMgcor, t0 CcOmpute a set oR-factors
GlMfactor, (P2[m]); then it constructs abra A[Qm] that accepts
L(GIMactor, (92[m])) with the method outlined in the Appendix.



Fig. 3: A fragment of the game automatoh= (A4; o A2) X As = (V, X1 U2, T, 1, F)
for the door-robot game. A state, for examp(8, a f, 1, 13) means the robot is in room 3,
doorsa and f is closed, now it is robot’s turnt(= 1) and the rooms has been visited is
7 i | {1, 3}. The transitionT (¢, (i, 5)) = j in A; is briefly expressed b{7 (i, j) = j.

i
i

Fig. 2: A physical implementation of the game
A Khepera Il is player 1.

By removing initial and final states frorm[zm] we obtainA[zm], acceptingL(G) can be obtained by removing some transitions and
based on which the interacting functidi(-) is updated and se- the finality of some of the statéin Dy, [25]. Given a Sls grammar
quentially the game!™ is obtained (Fig.1). G = {faa, fab, aab, aaa, aba, baf}, the output of the learner is given

Figure 4 shows that the learner converges after approximately 42 Fig. 5(b). For example, transitioba ~ ab is removed because
games, withn = 125 moves. The probabilityp in the learning pab is not in G.
procedure of SectiofV/ is set to0 which means no exploration if the
current state is not initial. Table shows the outcomes of repeated REFERENCES
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(b) SL3 automaton forL(G)
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Games Wins
No learning 300 0
Learning 300 79
Full knowledge 300 82

TABLE I: Comparison results with three types of
player 1. For the case afo learning, player 1
eventually moves out of her winning set.
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