
1

Adaptive Symbolic Control for Finite-state Transition
Systems with Grammatical Inference

Jie Fu, Herbert G. Tanner, Jeffrey Heinz, and Jane Chandlee

Abstract—This note presents an approach that integrates elements
from grammatical inference and game theory to address the problem
of supervising finite-state transition systems operating in adversarial,
partially known, rule-governed environments. The combined formulation
produces controllers which guarantee that a transition system satisfies a
task specification in the form of a logical formula, if and only (a) the
true model of the environment is in the class of models inferable from
positive data presentation (observations), (b) a characteristic sample of
the environment’s behavior is observed, and (c) the task specification
is satisfiable given the capabilities described by the abstractions of the
system and its environment.

Index Terms—Hybrid systems, symbolic control, grammatical infer-
ence, algorithmic game theory.

I. I NTRODUCTION

This note shows how grammatical inference can be used in con-
junction with standard game theoretic analysis to enable a transition
system to satisfy a behavior specification while interacting with an
adversarial, unknown, rule-governed environment. Transition systems
such as the ones considered here may arise as discrete abstractions of
hybrid dynamical systems. Specifics on the abstraction process itself
can be found elsewhere (see [1]–[3]).

Conceptually similar problems have been studied in the context
of reactive control [4]–[8], where system behavior is re-planned in
real time based on information observed. A common underlying
assumption is that the environment isadmissible, that is, it cannot
falsify the system’s specification. This assumption is not made here.
Rather, we ask whether there is a method that reduces the problem for
a system interacting with anunknownenvironment, into an instance
where the environment isknown, to allow the application of existing
synthesis methods.

One way to answer this question is to learn, or identify a model for
the environment. The learning paradigm adopted here is grammatical
inference [9], [10], a methodology that identifies formal objects (e.g.
languages) through presentation of examples of elements (e.g. strings
in the language) with or without a teacher and/or oracle. With some
prior knowledge about the object to be learned—narrowing down the
search usually helps—correct identification occurs once a sufficient
number of examples of the object’s features (thecharacteristic
sample) is observed. In model diagnosis [11] and action model
learning [12], a system is identified based on the observed behaviors
and the predicated model for the system. It thus seems plausible
that with some prior knowledge that helps to reduce our hypothesis
space of the true system, one can start with an assumed model for
the system and apply grammatical inference to identify the complete
true system from observations.

Reinforcement learning offers an alternative formal methodology
for regulating a system’s behavior while interacting with unknown
dynamics (see [13] for an application in a discrete event system (DES)
context). There are fundamental differences between the concept of
reinforcement learning (RL) and that of grammatical inference. In a

Jie Fu, and Herbert Tanner are with the Mechanical Engineer-
ing Department at the University of Delaware, Newark DE 19716.
{jiefu,btanner}@udel.edu.

Jeffrey Heinz and Jane Chandlee are with the Department of Linguistics
and Cognitive Science at the University of Delaware, NewarkDE 19716.
{heinz,janemc}@udel.edu.

This work is supported by NSF award #1035577. The authors thank Jim
Rogers for his insightful comments.

Markov decision process (MDP) setting, whereRL takes place, the
uncertainty about the environment interaction is expressed proba-
bilistically, which is natural when there is inherent stochasticity in
the models of the system or the environment. But when dynamics
are purely deterministic, stochasticity becomes a modeling artifact.
Furthermore, what reinforcement learning does is to enablethe
system to learnhow to exercise control; in contrast, grammatical
inference informs the system abouthow to learn its environment.
Whereas grammatical inference has some precedence in supervisory
control of discrete event systems [14], it has not been used for
the model identification. Rather, is has been employed as a tool
for learning the supremal controllable sublanguage for given system
specifications, and in a setting where queries and the use of negative
data is allowed. However, even when nature is not adversarial, she is
unlikely to respond to our queries.

In this note we express the interaction between the system and
its environment as a two-player zero-sum game. This corresponds
to the worst-case assumption typically made for the environment in
DES theory. In this form, the problem differs structurally fromthose
treated using reinforcement learning approaches: when classifying
games [15], a MDP is a1–player stochastic game, whereas the games
of this note are 2–player deterministic games. The note shows that
with the suggested introduction of grammatical inference,control
synthesis is decoupled from learning, and the latter can be performed
outside a probabilistic framework. While demonstrating the approach,
we perform synthesis using game-theoretic tools but that different
options (e.g. [16]) are also available.

The rest of this note is organized as follows. SectionII introduces
the technical background, the notation, and the models used. In
SectionIII , we briefly formulate the control problem into a game,
in which the winning strategy of one player becomes the controller.
In SectionIV we introduce a learner to identify asymptotically the
abstract model of the unknown and adversarial environment,and
then how this knowledge can be utilized in planning and control
synthesis. SectionV illustrates the whole approach through an
example. SectionVI concludes.

II. PRELIMINARIES

A. Languages, automata and games

LetΣ denote a fixed, finite alphabet, andΣ∗, Σω be sequences over
this alphabet, of any finite length, and of infinite length, respectively.
The empty stringis denotedλ, and thelength of stringw is denoted
|w|. A languageL is a subset ofΣ∗. A grammarG for a language
L is finite description ofL via a well-defined functionL(·) such that
L(G) = L (an example is given later). A stringu is a prefix (suffix)
of a stringw if there exists a stringv such thatw = uv (w = vu).
The prefix (suffix) of lengthk of a stringw is denotedPr=k(w)
(Sf=k(w)), and the set of prefixes (suffixes) of a stringw of length
≤ k, Pr≤k(w) (Sf≤k(w)). Given anω-word w, Occ(w) denotes the
set of symbols occurring inw and Inf(w) those occurring infinitely
often in w. Given a finite wordw ∈ Σ∗, last(w) denotes the last
symbol ofw.

A semiautomaton is a tupleA = 〈Q,Σ, T 〉, whereQ is a set of
states (here assumed finite),Σ is the finite alphabet, andT : Q×Σ →
Q is the transition function. The mapping from(q1, σ) to q2 via T is
also written asq1

σ
→ q2, and can be expanded recursively in the usual

way. Here, semiautomata are assumed deterministic in transitions. If
T (q, σ) is defined for a given(q, σ) ∈ Q × Σ, we writeT (q, σ) ↓.
The active event functionΓA : Q → 2Σ singles out the alphabet
symbols triggering outgoing transitions from a given stateof A, and
is defined asΓA(q) := {σ ∈ Σ | T (q, σ) ↓}. A run in A on an
input word (resp.ω-word) w = w(0)w(1) . . . ∈ Σ∗ (resp.Σω) is a

2

finite (resp. infinite) sequence of statesρ = ρ(0)ρ(1)ρ(2) . . . ∈ Q∗

(reps.∈ Qω) such thatρ(i + 1) = T (ρ(i), w(i)), i ≥ 0. Then we
say thatρ is generated byw. A semiautomatonA is total if for any
(q, σ) ∈ Q × Σ, T (q, σ) is defined. Any semiautomatonA can be
madetotal by adding a non-final statesink such that in every state,
all symbols that are not inΓA(q) trigger transitions tosink, and at
sink all symbols inΣ produce self-loops.

We think of a deterministic automaton as a quintupleA =
〈Q,Σ, T, I,Acc〉 where〈Q,Σ, T 〉 is a semiautomaton deterministic
in transitions, I is the initial state, andAcc is the acceptance
component. The semantics of an acceptance component is context-
based: if A is a deterministic finite state automaton (DFA) with
Acc = F ⊆ Q, thenA acceptsw ∈ Σ∗ iff run ρ ∈ Q∗ generated by
w satisfiesρ(0) ∈ I and last(ρ) ∈ F ; if A is a deterministic Büchi
automaton (DBA) with Acc = F ⊆ Q, thenA acceptsw ∈ Σω iff
run ρ ∈ Qω on w satisfiesρ(0) ∈ I and Inf(ρ) ∩ F 6= ∅. Language
L(A) is the set of words accepted byA. In the context of this note,
calligraphic uppercase letters are reserved forDFAs.

The automaton form of a two-player turn-based game [17] is a
tupleG = 〈V1 ∪ V2, Σ1 ∪Σ2, T, I, F 〉, whereVi is the set of states
where playeri plays, andΣi is the set of actions for playeri. The sets
of player states and actions are disjoint:V1 ∩ V2 = Σ1 ∩ Σ2 = ∅.
The transition function isT : Vi × Σi → Vj , with I the set of
initial game states, andF ⊆ V1 ∪ V2 the winning condition. If G is
a reachability (or safety) game, then a run is winning for player 1
if last(ρ) ∈ F (or Occ(ρ) ⊆ F); if it is a Büchi game, then the
condition isInf (ρ) ∩ F 6= ∅.

A memoryless strategy1 for player i in game G is a function
Si : Vi → Σi such that for every pair(v, σ) of preimage and image,
a transition is defined. Playeri follows strategySi if at statev ∈ Vi,
player i always playsSi(v). A strategy is awinning strategyfor
player i, denotedWSi, if every run inG in which playeri follows
WSi, is winning for him. Thewinning set of player i, denoted
Wini ⊆ V is the set of states from which there exists a winning
strategy for playeri.

B. Grammatical inference

A positive presentationφ of a languageL is a total functionφ :
N → L ∪ {#} such that for everyw ∈ L, there existsn ∈ N

such thatφ(n) = w [10]. A presentationφ can also be understood
as an infinite sequenceφ(0)φ(1) · · · containing every element ofL,
interspersed with pauses (marked with the# symbol), which are
moments in time when no information is forthcoming. We will take
initial finite subsequencesφ(0)φ(1) · · ·φ(i) and denote themφ[i] to
mark the (time) step at which the particular subsequence of symbols
is observed. Thecontentof φ[i], written content(φ[i]), is the set of
elements of the sequence, less the pauses. A grammatical inference
machine (GIM) GIM, or learner for short,identifies in the limit from
positive presentationsa class of languagesL if for all L ∈ L, and
for all presentationsφ of L, there exists an ∈ N such that for all
m ≥ n, GIM(φ[m]) outputs a grammarG, andL(G) = L [18]. Let
C be a finite subset ofL, C is acharacteristic sampleof L for GIM
if for any positive presentationφ, for all n ≥ 0, C ⊆ content(φ[n])
impliesGIM(φ[n]) = L [9].

For concreteness, this note introduces aGIM with respect to the
class of Strictly 2-Local languages; however, many other formal
language classes have been shown to be learnable [9], any of which
could be used in the current setting. A stringu is a factor of another
string w, if and only ∃ x, y ∈ Σ∗ such thatw = xuy. All such

1For two-player zero-sum reachability and Büchi games withperfect
information, there always exists a memoryless winning strategy for one of
the players [17].

stringsu of length k are thek-factors of w. The k-factor function
factork : Σ∗ → 2Σ

≤k

maps a wordw to the set ofk-factors in it,
if |w| > k; otherwisew maps to itself. We can extendfactork to a
whole language, and writefactork(L) :=

⋃

w∈L factork(w). Let ♯
be a special symbol marking the beginning and the end of a string.
A languageL is Strictly k–Local (SLk) if there exists a finite set
G ⊆ factork(♯Σ

∗♯), such thatL(G) = {w ∈ Σ∗ | factork(♯w♯) ⊆
G}. Machines generating strictlyk-local languages model processes
where the next event depends only on the previousk − 1 events.
Informally, learning can occur because every observed string reveals
some of the elements of the grammar. Therefore, after enoughstrings
from the language are observed, the grammar—being a finite set—
“fills out.” A formal definition of a GIM which learns in this way is
provided later in Definition3. The SLk languages are identifiable in
the limit from positive presentations [19] with a poly-time iterative
and set-driven learner [20].

III. SYSTEM BEHAVIOR AS GAME PLAY

In the interaction between two dynamical systems (the agentand
its environment)—the players in the game—the actions of onehave
conditional effects over the state of their composition, which we refer
to asthe world. The world can be described through a formal system
over a set of atomic propositionsAP [12]. A literal is either an
atomic proposition inAP , or a negation of an atomic proposition. A
sentenceis a conjunction of literals, in which each atomic proposition
appears at most once. The set of all sentences that can be formed in
this way makes a set ofworld statesdenotedC.

In our context, a dynamical system is expressed as a special type of
a Kripke structure. This structure is a semiautomaton augmented with
a labeling function that maps a state to asentencewhich is true at that
state. Thus, playeri is modeled as a tupleAi = 〈Qi,Σi, Ti, LBi〉,
whereLBi : Qi → C. The setΣi may contain the empty actionǫ, in
which a player simply gives up her turn. All transitions inA1 (the
system) are controllable, whereas transitions inA2 (the environment)
are uncontrollable. We assume that the alphabets of the two players
are disjoint, i.e.,Σ1 ∩ Σ2 = ∅.

The conditional effect of actionσ ∈ Σi is captured by its pre- and
post-conditions. The pre-condition PRE(σ) ∈ C is a sentence that has
to be true in order forσ to occur. The post-condition POST(σ) ∈ C is
a sentence that must be true when the action is completed. Whenever
σ ∈ Γi(q), we haveLBi(q) =⇒ PRE(σ); similarly, when we see
a transition fromq to q′ on actionσ, denotedq

σ
→ q′, we infer that

LBi(q
′) =⇒ POST(σ).

We capture how each player can interfere with the dynamics of
the other, by means of aninteraction functionUi : Qi ×Qj → 2Σj ,
in which a pair of states(qi, qj) maps to the set of actions that
playerj can no longer take:

{

a ∈ Γj(qj) | LBi(qi) ∧ LBj(qj) =⇒
¬PRE(a)

}

. Intuitively, the interaction happens at the level of the
images of their labeling functions, with some literals inLBi(qi),
negating some literals inLBj(qj); by doing so they falsify the pre-
condition of actiona ∈ Γj(qj).

We assume that the objective of each player is given as a logic
formula overAP . By restricting this objective to either first-order
logic, or a fragment of Linear Temporal Logic (LTL) [21], the
objective’s formula can be equivalently expressed as aDFA or DBA,
respectively. These automata are referred to as theobjective automata
As = 〈Qs, C, Ts, Is, Fs〉 whereTs is total, i.e.,sink ∈ Qs and for
any (qs, c) ∈ Qs × C, Ts(qs, c) ↓. Two types of objectives can be
considered: a) Reachability or safety2 objectives, in whichAs is a
DFA, and b) Büchi objectives, in whichAs is a DBA.

2A safety objective is a dual of a reachability objective [17].

3

Our game is constructed in a bottom-up fashion, through appropri-
ate product operations on the models of the players and the objective
automaton. The first product introduced in Definition1 constructs the
gamearena, which captures all interactions between players.

Definition 1 (Turn-based product):Given two players
Ai = 〈Qi,Σi, Ti, LBi〉, i = 1, 2, their turn-based product
P = 〈Qp,Σ1 ∪Σ2, Tp, LB〉, denotedA1 ◦A2, is defined as follows:
Qp is the set of statesQ1 × Q2 × {0, 1}, where the last

component is a Boolean variablet denoting whoseturn it
is to play: t = 1 for player 1,t = 0 for player 2.

Tp is the transition function with Tp

(

(q1, q2,1), σ
)

=
(q′1, q2,0) if q′1 = T1(q1, σ) and σ /∈ U2(q2, q1), and
Tp

(

(q1, q2,0), σ
)

= (q1, q
′
2,1) if q′2 = T2(q2, σ) and

σ /∈ U1(q1, q2).
LB is the labeling function defined asLB((q1, q2, t)) =

LB1(q1) ∧ LB2(q2).

The following product completes the game construction by incor-
porating the players’ objectives.

Definition 2 (Game automaton):Given the turn-based product
P = A1 ◦ A2 = 〈Qp,Σ, Tp, LB〉 and the objective automaton
As = 〈Qs, C, Ts, Is, Fs〉, a two-player turn-based game automaton
G = (A1 ◦A2)⋉As = 〈V,Σ, T, I, F 〉 is defined, where

V = V1 ∪ V2, whereV1 ⊆ Q1 ×Q2 × {1} ×Qs is the set of
states where player 1 moves, andV2 ⊆ Q1×Q2×{0}×Qs

is the set of states where player 2 moves.
Σ = Σi ∪ Σj , whereΣi is the set of actions of playeri.
T is the transition relation defined as follows:

T
(

(q1, q2, t, qs), σ
)

= (q′1, q
′
2, t

′, q′s) is defined
iff (q′1, q

′
2, t

′) = Tp

(

(q1, q2, t), σ
)

, and q′s =
Ts

(

qs, LB((q
′
1, q

′
2, t

′))
)

.
I =

{

(q1, q2, t, qs) ∈ V | qs = Ts

(

Is, LB(q1, q2, t)
) }

is the
set of initial game states.

F = { (q1, q2, t, qs) ∈ V | qs ∈ Fs } is the set of final states.

For a given statev = (q1, q2, t, qs) ∈ V , a projection operatorπi is
defined such thatπi(v) is thei-th component in the tuplev. The game
automaton has at most|Qp|×|Qs| states. The labeling functionLB is
first extended fromP to G: for each statev = (q1, q2, t, qs) ∈ V , we
defineLB(v) = LB(q1, q2, t); then it is extended to runs inV ∗∪V ω

in the usual way. Aninitialized game is a tuple(G, v0) wherev0 ∈ I
is the initial state. IfAs is aDFA, gameG is a reachability game. Run
ρ is winning for player 1 in gameG if last(ρ) ∈ F . Projecting the
run onQs, we see thatAs also acceptsLB(ρ) since last(π4(ρ)) ∈
π4(F), which is a subset ofFs. If As is a DBA, gameG is a Büchi
game and a runρ is winning for player 1 inG if Inf(ρ)∩F 6= ∅ and
As acceptsLB(ρ) sinceInf(π4(ρ)) ∩ Fs 6= ∅.

With the game expressed as a finite state machine, one can use
standard supervisory control techniques [16] to synthesize controllers
for player 1. As an alternative, we compute a winning strategy WS1 :
Win1 ∩ V1 → Σ1 in G (which can be a reachability or a Büchi
game) based on game-theoretic solutions [17], [21]. Applying these
algorithms to games withm transitions andn states, results in time
complexity O(m + n) if they are reachability games, and in time
complexityO(n(m+ n)) if they are Büchi games [17].

IV. I NCORPORATING GRAMMATICAL INFERENCE

SectionIII established that for a given task, an agent which (a) has
full knowledge of the dynamical environment it interacts with, and
(b) is initialized at a state inWin1 ∩ I , affords a controller that
ensures that its objective is met. This section relaxes the condition
on full knowledge by incorporating aGIM. The GIM updates the
agent’s model of the unknown and rule-governed environmentvia

observations made in the process of playing the game repeatedly, each
time from an initial condition randomly selected from all possible
initial states. During this process, the agent adjusts its behavior based
on the latest instantiation of its environment model. In thelimit,
the system refines its model to one that accurately expressesits
adversary’s behavior, and thus recovers the performance achievable
when full knowledge is assumed.

The assumptions that allow the implementation of the proposed
approach are the following: a) Player 1 cannot restrict player 2, i.e.,
∀ (q1, q2) ∈ Q1 × Q2, U1(q1, q2) = ∅; b) The model of player
2 is identifiable in the limit from positive presentations bya GIM;
c) Player 1 has prior knowledge for selecting the correctGIM; and
d) the observed behavior of player 2 suffices for a correct inference
to be made, i.e., it contains a characteristic sample.

These assumptions are for the most part conservative, and are
justified as follows. The first assumption suggests that player 1 has
a disadvantage: although player 2 can interfere with the execution
of the plans of player 1, the actions of player 1 have no effect
on the actions player 2 can take. The second assumption requires
positive presentations only, because an adversary is unlikely to
respond to queries (cf. [14]). This assumption can be relaxed in other
grammatical inference frameworks (for instance, less prior knowledge
is required when presentations contain both positive and negative
data). The third and fourth assumptions simply state conditions for
a GIM to converge; they are reasonable, in the sense that it is not
beneficial for an adversary to consistently withhold actionsolely
for the purpose of privacy. Note that this set of assumptionsdoes
not require that the environment cannot falsify the task specification
(cf. [6]). Here environmental actions, and poor—due to ignorance—
response by the system, can falsify the specification duringthe
learning process of a repeated game [22]. When this happens, the
game restarts from a new initial condition, with the agentretaining
the knowledge accumulated until then.

Given a gameG, let L(G) be the set of prefixes of all possible
action sequences made by interleaving the actions of player1 with
those of player 2, andL2(G) be the projection ofL(G) on Σ2. The
behavior of player 2 is a languageL2(G) ∈ Σ∗

2. Based on assumption
b) made earlier in this section, forφ2 of L2, there exists aGIM and
n ∈ N such that for allm ≥ n, GIM(φ2[m]) = GIM(φ2[n]). In
addition, the language of the grammar given byGIM is L2(G), i.e.,
L(GIM(φ2[n])) = L2(G).

Let the presentation of languageL(G) obtained in the repeated
game to beφ, defineφ(0) = λ, and denoteφ[i] the presentation
obtained after movei = 1, . . . , n. Since games are repeated, the
move indexi counts from the first move in the very first game until
the current move in the latest game. If movei+1 is the first in one
of the repeated games and playerk playsσ ∈ Σk thenφ(i+1) = σ;
otherwiseφ(i+ 1) = φ(i)σ. The projection ofφ on the alphabet of
player 2 is a positive presentation ofL2(G), denotedφ2.

Winning Strategy: WS
[0]
1 WS

[1]
1 . . . WS

[i]
1 . . . → WS1

↑ ↑ ↑

Hypothesis of the Game: G[0] G[1] . . . G[i] . . . → G
↑ ↑ ↑

Hypothesis of Player 2: A
[0]
2 A

[1]
2 . . . A

[i]
2 . . . → A2

↑ ↑ ↑
Data Presentation: φ2[0] φ2[1] . . . φ2[i] . . .

Fig. 1: Learning and planning with a grammatical inference module.

Figure 1 illustrates how identification in the limit proceeds.
Through interactions with player 2, player 1 observes a finite initial
segment of a positive presentationφ2[i] of L2(G), and uses the
GIM to update a hypothesized model of player 2. Specifically, the
output of GIM(φ2[i]) becomes aDFA (see Appendix), which after

4

removing the initial state and the finality of final states, yields a
semiautomatonA[i]

2 . The labeling functionLB[i]
2 in A

[i]
2 is defined

as LB
[i]
2 = ∧σ∈IN(q)POST(σ), where IN(q) , {σ ∈ Σ2 | (∃q′ ∈

Q
[i]
2)[T

[i]
2 (q′, σ) = q]}; this is the set of labels of incoming transitions

of the stateq. The computation of labeling function is of time
complexity linear in the size ofA[i]

2 . Given LB
[i]
2 , the interacting

function U2(·) is updated in linear timeO(|Q1| × |Q[i]
2 |). Based

on the interacting functions and the updated model for player 2,
player 1 constructs a hypothesis (model for)G[i], capturing her best
guess of the game being played, and uses this model to compute
WS

[i]
1 , which converges to the trueWS1 as A

[i]
2 converges to the

true A2. StrategiesWS
[i]
1 for i < n, are the best responses for the

system given the information it has so far, but having been devised
based on incorrect hypotheses about the game being played, they
cannot guarantee winning. There is no guaranteed upper bound on
the number of games player 1 has to play before the learning process
converges because one does not know at which point a characteristic
sample of player 2’s behavior is observed. However, as soon as this
happens, convergence is guaranteed.

The game learning procedure is summarized in the following
sequence of steps.

1) The game starts with initial statev0 ∈ I , i := 0, and the
hypothesized game isG[0].

2) At statev = (q1, q2,1, qs), player 1 computesWin
[i]
1 in G[i]. If

v ∈ Win
[i]
1 , a winning strategyWS

[i]
1 exists in(G[i], v). Player

1 playsWS
[i]
1 (v), and proceeds to step4. If v /∈ Win

[i]
1 , player

1 loses and jumps to step3; if T (v, σ) ∈ F , player 1 wins and
jumps to step5.

3) With probability p, player 1 makes a move randomly selected
from available moves at that time instance and jumps to step4;
or she jumps to step5 with probability 1− p.

4) Player 2 makes a move. Player 1 observes the move, updates
A

[i]
2 to A

[i+1]
2 , andG[i] to G[i+1]. Player 1 setsi := i + 1 and

goes to step2.
5) The game is restarted at a random initial statev0 and If v0 /∈

Win
[i]
1 , player 1 makes a random move and goes to step4;

otherwise, she jumps to step2.

When player 1 finds herself out of her assumed winning set she
can either quit and restart the game, or explore an action with some
probability 0 ≤ p ≤ 1 and keep playing hoping that her opponent’s
response allows her to improve her hypothesis of the game. She has
nothing to lose by trying to exploit her adversary’s desire to win in
order to extract information about her opponent’s behavior.

Having no particular reason to choose otherwise, we define the
utility or reward resulting from using a particular strategy as a binary
function awarding1 for a win and 0 for a loss. This reward is
realized at the end of a game, and the regretr(S) that the system
experiences for not following a strategyS in the process of learning,
is the difference between the reward it gets while learning and the
one it would have received if adhered toS [22]. The learning rule we
introduce here is ano regret rule [22] in the sense that the average
regret for not using a true winning strategy from the beginning—
albeit there is no way to formulate it in advance based on available
information—tends to zero as the game rounds increase. Specifically,
if u(S) denotes the payoff (win: 1, lose: 0) of employing strategyS,
realized at the end of the game, andWS1 is any true winning strategy
for player 1, thenlim infi→∞

[

u
(

WS
[i]
1

)

−u
(

WS1

)]

≤ 0. This is due
to the guaranteed convergence of the grammatical inferencemodule
in the limit, combined with the derivation of winning strategies on
each hypothesized gameG[i].

V. PLAYING FOR REAL

A robot (player 1) must visit all four rooms in the environment of
Fig. 2, where doors connecting rooms are controlled by an adversary
(player 2). The rules of the game are:
Rule 1: at each round, either no door opens (thusǫ ∈ Σ2), or one

opens and another one closes;
Rule 2: doors closed must be opposite to each other, that is,Σ2 =

{ad, ae, af, bf, ce, ef, ǫ} whereij, denotes doorsi andj being
closed.

Rule 1 makesL2(G) a strictly 2–local (SL2) language [20], [23].
The graph of this language acceptor can be represented with aMyhill
graph. Algorithms for deciding whether a language is strictly k–local
and for whichk it is can be found in [24].

The prior knowledge used in this game is the following:
(i) Initially, player 1 is aware of Rule 2 only,3 and (ii) player
1 starts the game knowing that the language of player 2 is
strictly 2-local. Let AP = {αi : robot in roomi} ∪ {dij :
the door connecting roomsi and j is closed}. Without any other in-
formation about the doors’ behavior, player 1 starts the game hoping
that the doors will stay as they appear at the outset: all open.
Player 1 plans with this in mind, modeling her own dynamics as
A1 = 〈Q1,Σ1, T1, LB1〉 where Q1 = {1, 2, 3, 4}, Σ1 = Q1 ×
Q1 \ {(i, i) | i ∈ Q1}, and transitionT1

(

i, (i, j)
)

= j suggests
movement from roomi to j. We setLB1(i) = αi. Player 1 models
the opponent asA2 = 〈Q2,Σ2, T2, LB2〉 whereQ2 = Σ2 \ ǫ and
T2(q1, q2) = q2 if q2 6= ǫ, andT2(q1, ǫ) = q1. The labeling function
LB2 is understood graphically, for example,LB2(ad) = d12∧d34 as
a connects rooms1, 2 andd connects3, 4. The objective automaton is
As = 〈Qs, C, Ts, Is, Fs〉, which is the canonical finite state automa-
ton accepting the union of the shuffle ideals4 of the permutations of
string α1α2α3α4. The interaction functionU2(dd

′, i) indicates the
rooms player 1 cannot go to from roomi due to doorsd and d′

being closed. The actions of player 1 do not inhibit that of player 2:
U1(q) = ∅,∀q ∈ Q1 ×Q2. Player 1 always moves first. A fragment
of the game automatonG is shown in Fig.3.

Given the game automatonG, which has370 states and1202
transitions. The computation of player 1’s winning setWin1 takes
0.05 seconds running python on a laptop with Intel CoreTM 2
Duo CPU and 2GB of RAM. For a game(G, v0), where v0 ∈
I ∩ Win1 =

{

(1, ad,1, 1), (1, ce,1, 1), (2, ad,1, 2), (2, bf,1, 2),
(4, ce,1, 4), (4, bf, 1, 4)

}

, player 1 has a winning strategy. Hence,
with full knowledge of the game, player 1 has|I∩Win1|

|I|
= 25%

chance of winning. But starting just knowing that the opponent’s
language is a strictly 2–local language, player 1 uses the following
learner:

Definition 3 ([23]): For all positive presentationsφ, defineGIMf

as: 1) i = 0: GIMf(φ[i]) := ∅; 2) φ(i) = #: GIMf(φ[i]) :=
GIMf(φ[i−1]); 3) otherwise:GIMf(φ[i]) := GIMf(φ[i−1])∪f(φ[i]).

Example 1:Let f = factor2. SupposeGIMf(φ[m]) = {♯a, ab, b♯}
and φ(m + 1) = ac. Then GIMf(φ[m + 1]) = GIMf(φ[m]) ∪
factor2(♯ac♯) = {♯a, ab, b♯} ∪ {♯a, ac, c♯} = {♯a, ab, ac, b♯, c♯}.

The learning algorithmGIM used by player 1 performs as fol-
lows: given the finite initial segment of a presentationφ2[m],
firstly the learner usesGIMfactor2

to compute a set of2-factors
GIMfactor2

(φ2[m]); then it constructs aDFA A[m]
2 that accepts

L(GIMfactor2(φ2[m])) with the method outlined in the Appendix.

3This assumption can be lifted, and player 1 may know nothing.She can
still obtain the alphabet of player 2 through observations during the course
of the game.

4For w = σ1σ2 · · · σn ∈ Σ∗, the shuffle ideal of w is
Σ∗σ1Σ∗σ2 · · ·Σ∗σnΣ∗.

5

Fig. 2: A physical implementation of the game.
A Khepera II is player 1.

Fig. 3: A fragment of the game automatonG = (A1 ◦ A2) ⋉As = 〈V,Σ1 ∪ Σ2, T, I, F 〉
for the door-robot game. A state, for example,(3, af,1, 13) means the robot is in room 3,
doorsa and f is closed, now it is robot’s turn (t = 1) and the rooms has been visited is
{1, 3}. The transitionT1(i, (i, j)) = j in A1 is briefly expressed byT1(i, j) = j.

1,ad,1,1

4,ad,0,14

3,ad,0,13

3,af,1,13

4,af,1,14

1,af,0,13

2,af,0,123

4,af,0,124

1,af,0,14

3,af,0,134. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
4

3

af

af

1

2

4

1

3

By removing initial and final states fromA[m]
2 we obtainA[m]

2 ,
based on which the interacting functionU2(·) is updated and se-
quentially the gameG[m] is obtained (Fig.1).

Figure4 shows that the learner converges after approximately 42
games, withn = 125 moves. The probabilityp in the learning
procedure of SectionIV is set to0 which means no exploration if the
current state is not initial. TableI shows the outcomes of repeated
games in three different scenarios: (a)Full-Knowledge: player 1
knowsA2 exactly; (b)No Learning: player 1 has no knowledge ofA2

and no ability of learning; and (c)Learning: player 1 starts without a
model of player 2 but utilizesGIMfactor2 . Initial conditions are chosen
randomly. For theno learningcase, player 1 does not win even once
in 300 games. When she has full knowledge of the game our data
indicates a winning ratio of27%, which is close to the theoretical
value of25%. When player utilizes a learner, she reaches a win ratio
of 26%.

VI. D ISCUSSION AND CONCLUSION

This note demonstrates the use of grammatical inference for
planning in two-player zero-sum games involving uncertainfinite-
state transition systems that interact adversarially. Starting with an
incomplete model of the adversary, a player iteratively updates the
model based on observations of the opponent’s behavior, using an
appropriate learning algorithm selected based on whateverprior
knowledge is available. If none is available, a hypothesis about
the class of models the adversary dynamics belongs to is made.
If the correct hypothesis is made, and a characteristic sample of
the opponent’s behavior (language) is observed, the behavior of
the learned model converges to the actual player 2 behavior in
finitely many steps. As the adversary model becomes more accurate,
strategy development is increasingly more effective. In the proposed
architecture, learning and control are combined in a modular way, in
the sense that a range of different methods can be adapted andused,
in conjunction with grammatical inference, for control synthesis.

APPENDIX

Given a grammarG in the form of a set ofk-factors that generates a
Strictly k–Local language, a finite state automaton accepting the lan-
guage described withG is obtained through the following procedure:
first consider a (non)-canonical finite state automaton thataccepts
Σ∗: Dk = 〈QD,Σ, TD, {λ}, FD〉, where (i)QD = Pr

≤k−1(Σ∗);
(ii) TD(u, a) = Sf

=k−1(ua) iff |ua| ≥ k − 1 and ua otherwise;
(iii) λ is the initial state, and (iv)FD = QD is the set of final states
(all states are final). We refer toDk as the SLk finite state automaton
for Σ∗. Figure 5(a) shows the SL3 finite state automaton forΣ∗.
Given a SLk grammarG, a (non)-canonical finite state automaton

acceptingL(G) can be obtained by removing some transitions and
the finality of some of the states5 in Dk [25]. Given a SL3 grammar
G = {♯aa, ♯ab, aab, aaa, aba, ba♯}, the output of the learner is given

in Fig. 5(b). For example, transitionba
b
−→ ab is removed because

bab is not inG.

REFERENCES

[1] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pap-
pas, “Symbolic planning and control of robot motion,”IEEE Robotics
Automation Magazine, vol. 14, no. 1, pp. 61–70, 2007.

[2] P. Tabuada, “Approximate simulation relations and finite abstractions of
quantized control systems,” inHybrid Systems: Computation and Con-
trol, ser. Lecture Notes in Computer Science, A. Bemporad, A. Bicchi,
and G. Buttazzo, Eds. Springer-Verlag, 2007, vol. 4416, pp.529–542.

[3] H. Tanner, J. Fu, C. Rawal, J. Piovesan, and C. Abdallah, “Finite ab-
stractions for hybrid systems with stable continuous dynamics,” Discrete
Event Dynamic Systems, vol. 22, pp. 83–99, 2012.

[4] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in In Pro-
ceedings of Verification, Model Checking, and Abstract Interpretation.
Springer, 2006, pp. 364–380.

[5] G. E. Fainekos and H. Kress-Gazit, “Hybrid controllers for path
planning: A temporal logic approach,” inProceedings of the IEEE
Conference on Decision and Control, 2005, pp. 4885—4890.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,”IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, dec. 2009.

[7] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,”Robotics Automation Magazine, IEEE, vol. 18,
no. 3, pp. 65 –74, sept. 2011.

[8] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” inHybrid Systems: Compu-
tation and Control, K. H. Johansson and W. Yi, Eds. New York, NY,
USA: ACM, 2010, pp. 101–110.

[9] C. de la Higuera,Grammatical Inference: Learning Automata and
Grammars. Cambridge University Press, 2010.

[10] S. Jain, D. Osherson, J. S. Royer, and A. Sharma,Systems That
Learn: An Introduction to Learning Theory (Learning, Development and
Conceptual Change), 2nd ed. The MIT Press, 1999.

[11] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artif.
Intell., vol. 32, no. 1, pp. 97–130, Apr. 1987.

[12] R. Reiter,Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, 2001.

[13] C. B. Yushan Chen, Jana Tumova, “LTL robot motion control based on
automata learning of environmental dynamics,” inIEEE International
Conference on Robotics and Automation, Saint Paul, MN, USA, 2012.

[14] X. Yang, M. Lemmon, and P. Antsaklis, “Inductive inference of optimal
controllers for uncertain logical discrete event systems,” in Proceedings
of the 1995 IEEE International Symposium on Intelligent Control, aug
1995, pp. 585–590.

[15] K. Chatterjee and T. A. Henzinger, “A survey of stochastic ω-regular
games,”Journal of Computer and System Sciences, vol. 78, pp. 394–
413, 2012.

5Removing finality of a stateq in A means to removeq from the set of
final states inA.

6

λ

b

a

aa

bb

ab

ba

b

a

a

b

b

a

a

b

ab

a

b

(a) The (non)-canonicalD3

λ

a

aa

ab

baba

a

a

b

a

a

b

(b) SL3 automaton forL(G)

Fig. 5: The (non)-canonical automatonD3 acceptingΣ∗ for Σ =
{a, b} (top) and the SL3 automaton obtained forL(G), where
G = {♯aa, ♯ab, aab, aaa, aba, ba♯}, after removing transitions and
the finality of some states (bottom).

[16] C. Cassandras and S. Lafortune,Introduction to Discrete Event Systems.

Kuwer, 1999.
[17] W. Thomas, “Infinite games and verification (extended abstract of

a tutorial),” in Proceedings of the 14th International Conference on
Computer Aided Verification, ser. CAV ’02. London, UK, UK: Springer-
Verlag, 2002, pp. 58–64.

[18] E. M. Gold, “Language identification in the limit,”Information and
Control, vol. 10, no. 5, pp. 447–474, 1967.

[19] P. Garcia, E. Vidal, and J. Oncina, “Learning locally testable languages
in the strict sense,” inProceedings of the Workshop on Algorithmic
Learning Theory, 1990, pp. 325–338.

[20] J. Heinz, A. Kasprzik, and T. Kötzing, “Learning with lattice-structured
hypothesis spaces,”Theoretical Computer Science, vol. 457, pp. 111–
127, 2012.

[21] D. Perrin and J.́E. Pin, Infinite words: automata, semigroups, logic and
games. Elsevier, 2004.

[22] Y. Shoham and K. Layton-Brown,Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press,
2009.

[23] J. Heinz, “String extension learning,” inProceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, Uppsala,
Sweden, July 2010, pp. 897–906.

[24] P. Caron, “Langage: A maple package for automaton characterization
of regular languages,” Theoretical Computer Science, vol.
231, no. 1, pp. 5 – 15, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397599000134

[25] J. Heinz, “Inductive learning of phonotactic patterns,” Ph.D. dissertation,
University of California, Los Angeles, 2007.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Turns

%
 tr

an
si

tio
ns

 s
w

itc
he

d
on

Fig. 4:Ratio of transitions learned versus all possible adversarytransitions,
in terms of number of turns played.

Games Wins

No learning 300 0
Learning 300 79
Full knowledge 300 82

TABLE I: Comparison results with three types of
player 1. For the case ofno learning, player 1
eventually moves out of her winning set.

http://www.sciencedirect.com/science/article/pii/S0304397599000134

	Introduction
	Preliminaries
	Languages, automata and games
	Grammatical inference

	System Behavior as Game Play
	Incorporating grammatical inference
	Playing for Real
	Discussion and conclusion
	Appendix
	References

