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Abstract—This paper presents a framework for input-optimal naviga-
tion under state constraints for vehicles exhibiting stochastic behavior.
The resulting stochastic control law is implementable in real-time on
vehicles with limited computational power. When control actuation is
unconstrained, then convergence with probability one can be theoretically
guaranteed. When inputs are bounded, the probability of convergence is
quantifiable. Experimental implementation on a 5.5 g, 720 MHz processor
that controls a bio-inspired crawling robot with stochastic dynamics,
corroborates the design framework.
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I. INTRODUCTION

Miniature robots can exhibit stochastic behavior for many reasons:
environmental perturbations, unmodeled compliance, ground interac-
tions, battery charge fluctuations. Deterministic feedback navigation
strategies cannot offer guarantees of convergence or obstacle avoid-
ance when applied to systems with stochastic dynamics [3]. At the
miniature scale in particular, and in conjunction with limited on-board
power storage and computation capabilities, uncertainty over the
system’s position can be significant enough to prevent the completion
of the assigned mission. Not only should uncertainty be accounted
for during control design, but given that at this scale power density
is limited, actuation effort must be applied sparingly.

Within an optimal control framework, uncertainty can be ac-
counted for by either deriving worst case bounds [4]–[6], or by
employing stochastic models. Comparatively, the latter can provide
more flexibility and are not as conservative. One can, for example,
adjust the probability that problem constraints are violated, allowing
solutions that are inadmissible otherwise. However, existing methods
for constrained stochastic optimal control are too computationally
demanding for real-time implementation [7]–[9].

For deterministic systems, motion planning is now mature [10],
and existing methods can quickly produce in an open-loop fashion
waypoint sequences that connect start to goal. Systems with stochastic
dynamics, however, may not be able to realize these open loop plans.
When dynamics are discrete-time linear, extensions of the classical
rapidly-exploring random tree (RRT) that consider probabilistic un-
certainty and constraints (chance-constraints) during planning can be
applied [11], [12]. The computational complexity of such chance-
constrained planners [11]–[13], however, is still prohibitive for plat-
forms on the low-end of the processor frequency range.
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Portion of this work have been previously presented at ICRA 2012 [1]
and at SPIE 2013 [2]. The former conference paper dealt with systems
without control multiplicative term and unbounded inputs in a linear setting.
The latter conference paper presented experimental results that corroborated
the theoretical predictions of the former. This paper deals with systems
with control multiplicative term, considers the case of bounded inputs, and
extends the theoretical study to address issues of well-posedness, existence of
solutions, offer proofs of convergence, and include comparative studies.

To rein in computational complexity, receding horizon control
schemes have been used on stochastic linear discrete-time sys-
tems [13], [14]. For linearizable nonlinear discrete-time systems,
an iterative LQG [15] method offers a solution when the cost is
quadratic. Particle filter approximations are used in conjunction with
chance-constrained model predictive control for linear systems with
probabilistic noise [13]. Other methods combine a hybrid density
filter with dynamic programming [7]. Similar problems have been
approached from a hybrid systems perspective in the context of a
reach-avoid formulation [16], offering solutions capable of scaling
up to three dimensions. In continuous-time, stochastic optimal control
formulations do not fare much better. Numerical approximation meth-
ods are applied for the calculation of path integrals [17], and different
applications of the formulation have been explored in conjunction
with reinforcement learning [18], and risk sensitive [9] control.

This paper suggests the sequential application of pre-computed
and real-time implementable locally optimal feedback strategies, that
enable the system to evolve stochastically from one waypoint to the
next all the way to its final destination. The approach is inspired
by input-optimal exit-time stochastic optimal control formulations
[19], [20]. This paper extends the aforementioned formulation to
capture larger classes of systems, and adapts it to a waypoint
navigation problem. It solves this problem by closing the loop through
feedback controllers, shows that the resulting control system is a
well defined stochastic hybrid system, and formally establishes its
convergence properties. In addition to these theoretical contributions,
the paper also shows how the control laws can be computed in
computationally efficient ways that allow real-time application on
low-speed processors, and investigates the effect of input saturation.

Compared to related stochastic optimal control frameworks, the
one reported here applies directly to nonlinear systems (cf. [13]),
without propagating probability densities (cf. [7]). It is developed
along a similar philosophy as those in other path integral methods
[9], but being built within an exit-time optimal formulation, it offers
control law expressions that are not dependent on some given final
time. This exit-time formulation allows solutions to be obtained at
orders of magnitude faster rates (e.g., 18 vs. 5000 seconds of CPU

time) compared to alternative path integral solutions [9]. After some
off-line pre-computation, these solutions can be implemented in real-
time on systems with up to six states.

In Section II we define a waypoint following problem, which can
be mathematically encoded as an exit-time stochastic optimal control
problem. Section III demonstrates that the optimal control problem
of transitioning from waypoint to waypoint is associated with a
partial differential equation (PDE), which can be solved numerically
by leveraging the Feynman-Kac formula. In Section IV, we show
that the resulting closed loop system is essentially a special case of
a Markov string with well-defined solutions, and we prove that its
convergence can be guaranteed. Section V assesses the performance
of the closed loop system in terms of computational complexity and
optimality, and demonstrates the scheme’s applicability to miniature
vehicles driven by low-end processors.

II. PROBLEM STATEMENT

Consider the motion of vehicles with dynamics that can be repre-
sented as a stochastic process:

dq = b(q) dt+G(q)
[
u(i, q) dt+ Σ(q) dW

]
(1)

q(0) = q0 ,

where q ∈ Rn is the state, b : Rn → Rn is the drift term, G : Rn →
Rn×m is the matrix of control vector fields, i ∈ I , {0, 1, . . . , N}



is a switching index, u : I × Rn → Rm is the control input, and
Σ : Rn → Rm×m is the diffusion matrix. Let W = {W (t),Ft :

0 ≤ t <∞} be an m-dimensional Wiener process on the probability
space (Ω,F ,P), where Ω is the sample space, F is a σ-algebra
on Ω, P is the probability measure and {Ft : t ≥ 0} is a right-
continuous filtration [21]. Assume that b(q), G(q), Σ(q), and Σ−1(q)
are bounded and Lipschitz continuous—standard assumptions for this
type of stochastic processes [21].

Process (1) evolves in a domain P , which is a subset of a larger
bounded domain S ⊂ Rn, called the workspace. Within S, there is
a closed set O ⊂ S ( ¯ denotes closure) which represents obstacles
to be avoided. Thus P , S \O is the system’s free workspace. The
goal is to steer q(t) to a goal set G ⊂ P in finite time, avoiding
∂P (∂ denotes boundary), with minimal control effort. We assume
∂G and ∂P are disjoint, that the free workspace is connected, and
that all boundaries ∂S, ∂O, ∂P and ∂G, are twice continuously
differentiable (i.e., C2). From an implementation viewpoint, we want
to realize this solution on computational platforms less powerful than
currently available cellular devices.

O1

O2

∂B(qi, ε)
∂Di

qi−1 Di \ B(qi, ε)
qi

P = S − (O1 ∪ O2)

S

q0

qN

Fig. 1: The stochastic system evolves within the local domains Di \ Gi
(hashed region–here, Gi , B(qi, ε)). The waypoint sequence {qi} is
marked with crosses over a continuous curve, the obstacles Oj are solid
disks, the boundaries ∂Gi = ∂B(qi, ε) are shown in dashed blue contours,
and boundaries ∂Di appear as dashed red closed curves.

More technically, we require that any system sample path connects
successively elements of a sequence of neighborhoods called goal sets
Gi, i = 0, . . . , N , which are centered around some given waypoints.
In this sequence, G0 is a neighborhood of the system’s initial position,
and GN is a neighborhood of its desired destination. The transition
between Gi−1 and Gi, occurring in the time interval [ti−1, ti], should
be optimal in the sense that the functional

J(i, q(ti−1)) = Eq(ti−1)
[ ˆ ti

ti−1

L
(
q(s), u(i, q(s))

)
ds+ Φ

(
q(ti)

)]
is minimized. Above, E denotes expectation with the superscript
specifying the initial condition of the sample paths, L

(
q, u
)

,
1
2
uᵀ(q)( Σ(q)Σᵀ(q) )−1u(q), and Φ(q) : Rn → R+ is a terminal

cost function. Time instant ti is an exit time: the first time that the
state hits Gi. With P denoting probability, the solution is subject to
the following constraints:

Pq(ti−1)
[
q(ti) ∈ ∂Gi

]
= 1 ,

Pq(ti−1)
[
q(t) ∈ Di

]
= 1, ∀t ∈ [ti−1, ti] ,

where Di can be any obstacle-free bounded domain properly con-
taining both Gi−1 and Gi. The former constraint requires almost-
sure convergence: that the system will reach its destination with
probability one. The latter is an almost-sure safety constraint: that
the system’s probability of colliding with obstacles is zero.

III. SWITCHED STOCHASTIC OPTIMAL CONTROL

The sequence of waypoints can be produced in a number of
different ways (e.g., RRTs, potential, or harmonic fields, or other
specialized methods [22]) using the deterministic part (drift) of (1)—
it will not be discussed further here. Having a sequence of sets
{Gi}Ni=0, we develop a stochastic optimal controller that can ensure
that (1) transitions from Gi−1 ⊂ Di to Gi in finite time.

Practically,
⋃

iDi defines a “tunnel” in the obstacle-free space
that should contain the system’s trajectories. Reducing the width of
this tunnel will keep trajectories close to waypoints at the expense
of control actuation. On the other hand, increasing the size of the
tunnel, allows the system to use more of the available free space,
using actuation less frequently to steer away from boundaries. If, for
instance, numerical considerations force Di to be spheres, then one
chooses the maximal radius Ri possible that ensures Di ∩ O = ∅.

Convergence to Gi, and satisfaction of state constraints, is in theory
guaranteed with probability one. Recall (1):

dq(t) = b
(
q(t)

)
dt+G

(
q(t)

)[
u
(
i, q(t)

)
dt+ Σ

(
q(t)

)
dW (t)

]
,

take as initial condition q(ti−1) ∈ Gi−1, and define

V (i, q) , min
u(i,q)

Eq(ti−1)
[ ˆ ti

ti−1

L
(
q(s), u(i, q(s))

)
ds+Φ

(
q(ti)

)]
.

(2)
The associated Hamilton-Jacobi-Bellman (HJB) equation is [23]

min
u(i,q)

{
AV (i, q) + L

(
q(s), u(i, q(s))

)}
= 0 (3)

where A is the second-order partial differential operator

AV (i, q) , ∂qV (i, q)
(
b(q) +G(q)u(i, q)

)
+

1

2
tr
[
∂qqV (i, q) G(q)Σ(q)Σᵀ(q)Gᵀ(q)

]
,

in which tr stands for matrix trace, ∂q ≡ ∂
∂q

is gradient row vector,

and ∂qq ≡ ∂2

∂q2
is the operator generating the Hessian of a scalar

function. Expanding (3) we get

min
u(i,q)

{
∂qV (i, q)b(q) + ∂qV (i, q)G(q)u(i, q)

+
1

2
tr
[
∂qqV (i, q) G(q)Σ(q)Σᵀ(q)Gᵀ(q)

]
+

1

2
uᵀ(i, q)

(
Σ(q)Σᵀ(q)

)−1
u(i, q)

}
= 0 . (4)

The optimal control law u∗(i, q) that satisfies (4) is now

u∗(i, q) = −Σ(q)Σᵀ(q)Gᵀ(q) ∂qV
ᵀ(i, q) . (5)

Substituting (5) in (4) yields

∂qV (i, q)b(q)− 1

2
∂qV (i, q)G(q)Σ(q)Σᵀ(q)Gᵀ(q)∂qV

ᵀ(i, q)

+
1

2
tr
[
∂qqV (i, q) G(q)Σ(q)Σᵀ(q)Gᵀ(q)

]
= 0 . (6)

Using the logarithmic transformation V (i, q) = − log g(i, q) in (6)
we get the PDE [20]

∂qg(i, q) b(q) +
1

2
tr
[
G(q)Σ(q) ∂qqg(i, q) Σᵀ(q)Gᵀ(q)

]
= 0 (7)

with boundary condition

g(i, q) = exp
(
− Φ

(
q(ti)

))
, q ∈ ∂Di ∪ ∂Gi .



We now guarantee that the system does not exit from a specific
portion of the boundary by setting

Φ ,

{
0 on ∂Gi
∞ on ∂Di

=⇒ g
(
i, q
)

=

{
1 on ∂Gi
0 on ∂Di

.

Analytic solutions of (7) are in general not possible for nonlinear
systems. However, the Feynman-Kac formula [21, Lemma 5.7.4]
relates this PDE to an equivalent stochastic differential equation
(SDE), and expresses the solution of (7) in the form

g(i, q) = Pq [ζ(τ) ∈ ∂Gi
]
, (8)

where ζ(t) is the (uncontrolled) Markov process

dζ(t) = b
(
ζ(t)

)
dt+G

(
ζ(t)

)
Σ
(
ζ(t)

)
dW (t); ζ(0) = q (9)

evolving on the same bounded domain Di \ Gi ⊂ Rn, with τ being
the exit time from Di \ Gi for initial condition q ∈ Di \ Gi. Then
(8) suggests that g(i, q) is in fact the probability that a sample path
of (9) from initial condition q hits the boundary ∂Gi before hitting
∂Di. If the optimal control (5) exists, then the infinite penalty on
exiting the wrong boundary is equivalent to a constraint

Pq(ti−1)
[
q(ti) ∈ ∂Di

]
= 0⇔ Pq(ti−1)

[
q(ti) ∈ ∂Gi

]
= 1 . (10)

The proof of the above statement can be constructed along the same
steps as that in [19]. We ensure that the exit time is finite by assuming
that for some l ∈ {1, . . . ,m}

min
q∈Di\Gi

All(q) > 0 (11)

where A = G ΣΣᵀ Gᵀ. This is in fact a mild assumption on non-
degeneracy of noise, which yields Eq(ti−1)[ti] < ∞ [21, Lemma
7.4]. With optimal controller (5), which can be computed by either
solving (7) for g(i, q) analytically, or numerically simulating (9) and
then estimating (8), we can close the loop around (1) in a way that
makes this system transition from Gi−1 to Gi in finite time. Doing so
iteratively for i = 1, . . . , N allows the system to navigate from its
initial configuration, while staying always inside some domain Di,
and therefore avoiding obstacles and converging with probability one.

IV. A STOCHASTIC HYBRID SYSTEM

A. Definition

Closing the loop around (1) using (5) gives rise to a well-defined
special case of a stochastic hybrid system [24]. To see how our closed
loop system falls within thegereral stochastic hybrid system (GSHS)
class, define the hybrid state as (i, q). In this pair, q ∈ Rn and
i ∈ {0, 1, 2, ..., N} are the continuous and discrete components of
the hybrid state, respectively. Now the components of the stochastic
hybrid system can be defined as follows:

• Continuous dynamics: The SDE (1).
• Discrete dynamics: The discrete state i evolves by means of

state-triggered forced transitions i→ i+1, occurring at stopping
time ti , inf{t > ti−1 | q(t) /∈ Di \ Gi}. Note that due to the
set of discrete states being finite, and the discrete transition map
being a bijection, there can only be a finite number of discrete
transitions and the system cannot exhibit Zeno behavior.

• Reset condition: The reset map for the continuous states is
simply the identity.

The solution of (1) for i ∈ {1, . . . , N} now becomes a collection
of Markov processes truncated at (their) exit time, which can be
represented as a Markov string. A Markov string is a hybrid state
jump Markov process [24]. Given the existence of solutions for each

SDE (1) for fixed i [19], and due to N being finite, the solutions for
the closed-loop stochastic hybrid system are well-defined [24].

B. Convergence Properties

We can now show that the closed loop stochastic hybrid system
generates sample paths that converge to a neighborhood of the origin.
Henceforth, without loss of generality, this origin is assumed to be
in the interior of the system’s destination, or target set.

Proposition 1. Consider the switched stochastic system (1) in an
open bounded domain P ⊂ Rn, where i ∈ {1, . . . , N} is the switch-
ing index, and W (t) is a Wiener process. Let K(·) be a C2 control
Lyapunov function for the deterministic system ẋ = b(x) + G(x)u,
defined in the closure of the bounded domain P which contains the
origin. If for every solution q(t) of (1) there exist

• a class-K function η on P , together with a sequence of points
{qi}Ni=0 ∈ P satisfying

max
a∈Gi
{K(a)} − min

b∈Gi−1

{K(b)} ≤ −η(‖qi−1‖) (12)

• and bounded domains Di ⊂ P that satisfy

Gi−1 ⊂ Di ,Gi ⊂ Di , Gi−1 ∩ Gi = ∅ , (13)

then ∀i ∈ {0, . . . , N}, Di are positively invariant and the
closed-loop switched stochastic system (1)–(5) converges to an ε-
neighborhood of origin in finite time with probability one.

Proof: Set q̂(t0) = q0, and construct a path QT of finite length,
having a partition with N − 1 segments such that there is a segment
that links point qi−1 to qi, for all i = 1, . . . , N . Given that the
initial condition for (1)–(5) is inside D0, the invariance of Di for
every i ∈ {0, . . . , N} follows from (10). Since now the bounded
domain D1 satisfies D1 ⊂ P and (13), the application of control law
(5) ensures that for all q(t0) ∈ G0, Pq(t0)[q(t1) ∈ ∂G1] = 1, that
is, the state at time t1 is in G1 almost surely (see [19]). Condition
(11) ensures that the time that this happens is finite. Now, if controller
u(k, q) is applied iteratively, at some time tk, q(tk) ∈ ∂Gk. As Gk ⊂
Dk+1 and given (13), there exists a controller u(k+1, q) to steer the
state to the next goal set Gk+1. Given now that Dk+1 also satisfies
Dk+1 ⊂ P and (13), the law (5) gives Pq(tk)[q(tk+1) ∈ ∂Gk+1] = 1
with Eq(tk)[tk+1] <∞. Inductively, since GN := B(0, ε), the proof
is completed.

V. PERFORMANCE ASSESSMENT

This section reports on performance evaluation results for the
closed loop stochastic navigation strategy, and compares the solution
with existing methodologies developed along a similar philosophy.
Our assessment indicates that the reported solution (i) compares
favorably computationally with alternatives, (ii) can be successfully
implemented experimentally in real-time on compliant miniature
multi-legged robots controlled by 720 MHz processors, and (iii) the
trade-off established between optimality and computational speed is
such that the former is not significantly affected.

A. Comparison with existing solutions

Take the particle in half space example of [9]:

dX1
t = u dt+ σ dW , X1

0 = 1 ,



with σ2 = 10, and u unconstrained. The optimization objective in
[9] is to minimize over a time interval of [0, T ] with T = 10 s, the
expectation

E
[
50(X1

T − 1)2 +

ˆ T

0

V (X1
s ) + 0.5u(X1

s )2 ds
]

where V (x) = ∞ if x ≤ 0, and zero otherwise. The system starts
from 1 and crosses 1 again in T = 10 s, while minimizing the above
expectation. This is a finite-time optimization problem.

The formulation in this paper gives rise to an infinite-horizon
optimal control problem. In addition, the objective is to hit a set,
rather than to cross a threshold value from either direction, and
our constraints are bidirectional, not unidirectional (x > 0) as in
[9]. Finally, the solution of this paper offers formal guarantees of
convergence to the desired final state. Having stated these differences,
we proceed to formulate an optimal control problem in our framework
trying to stay as close as possible to that of [9]. We keep the same
initial condition and assign D := (0, 4) and G := [0.9, 1.1]. Whereas
in [9, Fig. 4] the computation time required for the approximated opti-
mal controller to yield a cost in the neighborhood of the analytically
computed value is close to 5 000 seconds, our optimal solution is
obtained in just 17.32 seconds.

B. Optimality gap

In this section we investigate the difference in terms of cost,
between a globally optimal solution from initial configuration q0 all
the way to its destination, and the one generated by the stochastic
hybrid system steered by (1) along the series of waypoints {qi}Ni=1.
Specifically, we want to see how suboptimal the solution can be when
the trajectory is constrained to (i) pass close to the waypoints, and
(ii) stay within the domains Di.

For the comparison to be meaningful, we generate the series of
waypoints in a suboptimal manner, by solving a receding horizon
optimization problem on the deterministic part q̇ = u of the dynamics
of a stochastic single integrator

dq = u(i, q) dt+ Σ(q) dW ; q(0) = q0 , (14)

required to navigate in a two-dimensional workspace that includes
two spherical obstacles (Fig. 2). In (14), q = [x y]ᵀ ∈ R2 is the state
of the system, and W (t) is a 2-dimensional Wiener process. For the
generation of the waypoint sequence (solid red disks in Fig. 2), we
follow [25]. The time history of the control inputs that steer (14)
along the sample path of Fig. 2 is shown in Fig. 3(a).
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Fig. 2: Navigation of (14) in an obstacle environment
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(a) Control effort in Fig. 2
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Fig. 3: Comparison of input effort between locally optimal waypoint
navigation and globally optimal unconstrained control

We now evaluate analytically and implement a globally optimal
controller based on (5), for a single domain of the same radius as the
cluttered one of Fig. 2 but without any obstacles, for simplicity—this
simplification is likely to yield more optimistic cost estimates, which
are nevertheless just as useful for comparison purposes. We generated
50 sample paths of this globally optimal control law in (14) to obtain
cost statistics. The control input history for a representative sample
path is shown in Fig. 3(b).

A visual comparison of the two representative control histories in
Fig. 3 reveals that restraining the system sample paths inside the
domains Di increases the magnitude of control inputs utilized—as
much as tenfold, in the particular example. On the other hand, the
time it takes the system to converge is much shorter in the waypoint
navigation case; almost three times shorter for Fig. 3. This is due
to the optimal controller (5) letting the system drift on its own for
extended periods of time, as long as it does not come close to the
workspace boundaries. As a result, the integral of the control effort
over time as measured by (2) is significantly increased. In some
sense, it appears that the waypoints have the potential to funnel the
system to its destination fast enough to counterweight the effect of
the local optimization. The cost of the 50 sample paths produced by
the globally optimal unconstrained controller is 5.9± 0.9 m2/s. The
cost for the sample path shown in Fig. 2 is 6.2 m2/s.

C. Experimental implementation

This section discusses results obtained from an experimental eval-
uation on a robotic system with stochastic kinematics (Fig. 4(a)).
The implementation demonstrates that the application of the reported
controller is relatively inexpensive computationally, and feasible for
an Overo Fire COM board with 720 MHz processor and 500 MB RAM.

The stochasticity in the motion of the robot in Fig. 4(a) comes
primarily due to the effect of ground interactions, which is relatively
significant for a platform of that size factor [26]. The deterministic
kinematics of crawling robots with similar differential steering but
larger size than that of the OctoRoACH have been reasonably approx-
imated by a unicycle model [27]. We therefore hypothesize that a
reasonable kinematic model for the OctoRoACH of Fig. 4(a) would
be a Dubin’s car model with a stochastic extension:dx

dy
dθ


︸ ︷︷ ︸

dq

=

v cos θ
v sin θ

0


︸ ︷︷ ︸

b(q)

dt+

0
0
1


︸︷︷︸
G(q)

 ω︸︷︷︸
u(i,q)

dt+ Σ dW (t)

 , (15)

where linear velocity v and variance Σ are constants, experimentally



(a) The OctoRoACH robot

(b) The workspace
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Fig. 4: Experimental scenario. The small crawling robot in (a) is to
navigate along a narrow corridor shown in (b), outside which it falls and
fails the mission. A diagram of the robot’s workspace with dimensions
and assigned coordinate systems in shown in (c), where the domains Di,
and the goal sets Gi for i = 1, . . . , 5 are sketched. The boundaries of
these sets are approximated by C2 functions.

estimated as 0.02 m/s and 0.25 respectively.1 Figure 5 suggests that
this model hypothesis is valid.
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(b) OctoRoACH open-loop paths

Fig. 5: Stochastic Dubin’s car simulated paths (left) and experimental
OctoRoACH paths (right)

For the rectangular (with rounded corners) domain of Fig. 4(c), the

1An alternative formal method for estimating noise intensity from experi-
mental data is reported in [28].
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Fig. 6: Experimental path. Left: the observed path of the robot, in blue,
along the waypoints (∗) superimposed on the workspace, in black. Right:
input motor gains applied.

numerical solution of PDE (7) is obtained off-line, and uploaded on
the robot’s processor in order for the control inputs to be calculated
in real-time. Unless the shape of the domains needs to be changed,
the PDE does not need to be resolved; the robot can use the pre-
computed solution in workspaces with different geometry, as long as
the free space admits concatenations of any scaled versions of these
domains. Figure 6 shows a path and the input motor gains used during
the experiment. Although there can be additional sources of energy
dissipation during execution, e.g. communication, computation, PWM

motor driving, etc., this optimization targets solely the portion of
power that goes toward actuator utilization.

VI. CONCLUSIONS

Miniature robotic vehicles that exhibit stochastic dynamics require
special control techniques for navigation in cluttered environments.
Stochasticity needs to be taken into account in control design.
Whereas stochastic optimal control methods are notoriously ex-
pensive computationally, there exist relaxations that allow efficient
solutions with theoretical guarantees of safety and convergence, that
are implementable on processors at the low end of the frequency scale
without sacrificing too much in terms of performance. This paper
outlines one such solution. It involves the off-line computation of the
value function of a HJB equation for robot domains of predefined
shape surrounding the robot. The solution can then be “scaled”
and reused in different problem instantiations without the need for
additional computations. Nonlinear stochastic models with up to six
states are well within the applicability range of the reported control
design approach, based on available mobile computing power.
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