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Abstract— This paper presents a receding horizon control
design for a robot subject to stochastic uncertainty, moving in a
constrained environment. Instead of minimizing the expectation
of a cost functional while ensuring satisfaction of probabilistic
state constraints, we propose a two-stage solution where the
path that minimizes the cost functional is planned determin-
istically, and a local stochastic optimal controller with exit
constraints ensures satisfaction of probabilistic state constraints
while following the planned path. This control design strategy
ensures boundedness of errors around the reference path and
collision-free convergence to the goal with probability one under
the assumption of unbounded inputs. We show that explicit
expressions for the control law are possible for certain cases.
We provide simulation results for a point robot moving in
a constrained two-dimensional environment under Brownian
noise. The method can be extended to systems with bounded
inputs, if a small nonzero probability of failure can be accepted.

Keywords - stochastic receding horizon, exit time, stochastic
optimal control, stochastic path following

I. INTRODUCTION

Uncertainty plagues almost all robotic systems, especially
those deployed in the real world. Sources of uncertainty
are un-modeled dynamics, measurement errors, unknown
environment or environmental effects and component fail-
ures. The uncertainty is often expressed stochastically, in
which case, one obtains a dynamic system in the form of a
stochastic differential equation (SDE). The problem of robot
navigation with guarantees of collision avoidance and con-
vergence becomes challenging in the stochastic framework
due to the unbounded nature of the applied disturbances.

In this paper, we consider robots with stochastic dynamics
moving in constrained environments, and we want to design
controllers which can guarantee that even in the presence of
uncertainty, the system does not collide with obstacles, does
not deviate too much from a nominal path, and converges to
its goal configuration while satisfying a given formal proba-
bilistic convergence criterion. Our approach is to construct a
reference path to the goal using the drift (known) term of the
robot’s dynamics and use stochastic controllers in receding
horizon manner to keep the system close to the path and
force the robot to follow it asymptotically to the goal.

In a stochastic framework, state constraints are popularly
treated as chance-constraints [1]–[6]. Almost all the existing
chance constraint formulations are for linear discrete-time
systems. In a recent work, the chance-constraint optimization
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problem for finite horizon planning with obstacles was
solved using mixed integer linear programming (MILP)
[6]. Our intent is to implement stochastic receding horizon
control on platforms with limited computational resources
and nonlinear dynamics. The solution of the aforementioned
chance-constraint problems is currently too computationally
demanding for real-time implementation on the robotic plat-
forms of interest. Hence, this paper deals with the receding
horizon control framework for nonlinear continuous-time
systems and we look for closed form solutions of control
laws to reduce computation burden.

There exist multiple efforts toward a solution of stochastic
model predictive control and it is difficult to provide a
comprehensive review of literature due to limited space. We
refer readers to [6] and references there in for the same. In
addition, there exists model predictive control method based
on path integral [7], which is difficult to extend for practical
problems while method using density propagation [8] faces
curse of dimensionality for extension to practical systems.

Methods based on dynamic programming often express
the optimal value for the cost as the solution of a Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE).
Viscosity solutions of the HJB in the context of stochastic
optimal control are treated in [9]. The latter reference [9] (see
also [10]) showed that the logarithm of some exit probability
represents the solution of a particular HJB equation. In this
setting, one can derive stochastic optimal control laws that
guarantee that the system does not hit a pre-specified region
of the workspace boundary (obstacles) with probability one.
The control law can be found analytically in certain simple
cases. What motivates us is the realization that the comple-
ment of this exit region can be mapped to the boundary of a
region around the goal (or intermediate waypoints), in which
case the formulation can be exploited to ensure obstacle
avoidance for the robot navigation scenario we consider.

Toward this end, we adopt an approach to the considered
stochastic robot navigation problem in which a reference path
from initial to final configuration is planned using the drift
term of the dynamics only, and then a finite sequence of
overlapping regions cover this path. An exit time optimal
controller [10] can then be used to guide the system from
one region to the next in a cascaded fashion all the way to its
destination. The overall control strategy is a switched one,
where a series of different control laws are implemented, one
for each local region.

Such a two-stage approach has a long history in de-
terministic robot navigation—see [11]–[13] for indicative
applications. This type of switching strategy allows simpler



control design, since the local potential fields the system
switches over are easier to construct and tune compared
to a global one. While these deterministic approaches will
fail to ensure collision avoidance in a stochastic setting,
the idea of computational and analytical savings from the
local construction carries over. Thus, instead of using a
general chance constrained optimization approach, we opt
for the sequential solution of local exit problems which
by appropriate choice of workspace boundaries might even
afford closed form solutions.

As each subsystem’s evolution is truncated at an exit time,
the complete solution can be thought of as a collection
of truncated Markov processes, one for each (local) exit
problem. To make sure such solutions of our closed loop
system are well defined as the stochastic optimal controllers
switch, we use the notion of Markov strings [14]. In this
setting, concatenations of such truncated processes provide
a complete solution and can be shown to possess the strong
Markov and càdlàg properties.

The contribution of this paper is a planning and control
framework for receding horizon control of continuous time
stochastic systems that provides closed form control laws
to drive the system towards the goal in finite time and
avoid obstacles with probability one. Since the uncertain
term in the SDE can take arbitrary large values with a small
but nonzero probability, such performance guarantees can
only be achieved under assumption of unbounded inputs.
Moreover, the receding horizon framework requires that
the probability of reaching intermediate way-points is one,
otherwise if there is a large number of such way-points,
the probability of reaching the final goal becomes arbitrary
small. For practical purposes, the assumption of unbounded
inputs can be relaxed by allowing a small probability of
collision and restricting the number of way-points to a
comfortable finite natural.

The work presented in this paper is organized in the fol-
lowing way. Section II states the problem formally. Section
III is a brief introduction to computing exit probabilities,
which is utilized in Section IV for control design. The
latter section presents our main results on the design of the
navigation controller followed by an example in Section V. A
comment on existence of solutions for our closed loop system
is presented in Section VI. The stability and convergence
aspects are covered in Section VII followed by conclusion
in Section VIII.

II. PROBLEM STATEMENT

We consider an open bounded region W ⊆ Rn which
represents our workspace. A closed set O ⊂ W represents
forbidden regions (obstacles) in the workspace. Thus, the free
workspace is P ,W\O. Let W = {W (t),Ft : 0 ≤ t <∞}
be an m-dimensional Brownian motion on the probability
space (Ω,F ,P) where Ω is the sample space, F is a σ-
algebra on Ω, P is the probability measure and {Ft : t ≥ 0}
is the filtration (i.e., an increasing family of sub-σ-algebras
of F) that is right continuous and F0 contains all P-null sets
[15]. Consider a representation of a robot with stochastic

uncertainty in the form of an SDE within the free workspace
P

dx(t) = b(x(t))dt+ ui(x(t))dt+ σ(x(t))dW (t) , (1)

with x(0) = x0, where x ∈ Rn is the state, b : Rn → Rn

is the drift term, ui : Rn → Rn is an affine control input
and σ : Rn → Rn×m is the diffusion term of the system.
Subscript i ∈ N+ is a switching index that indicates which
of the vector fields from a family {ui : i ∈ N+} is active at
a given time t ≥ 0. We define a : Rn → Rn×n;x 7→ a(x) ,
σ(x)σT (x).

The problem is to find a control law to drive a robot to
the goal in the constrained environment P without hitting
the obstacles O, i.e. satisfying the state constraint:

P[x(t) ∈ O] = 0, ∀t ≥ 0,

and minimizing the following discrete finite horizon cost:

min
xi

J =
n∑

i=0

L(xi) + V (xn); s.t. ‖xi−1 − xi‖ ≤ d

and continuous local cost:

min
ui

Ji =
∫ ti

ti−1

(ui)Ta(x)(ui)dt,

s.t. P[‖x(ti)− xi‖ ≤ εi] = 1. Here, xi’s are discrete control
horizon way-points along the receding horizon trajectory,
xn represents the point at the end of prediction horizon,
ti represents the time at ith control horizon, the εi’s are
arbitrary small numbers, V (x) is a positive definite function
and d is a given constant. Minimization of the above costs
involves first selecting the series of way-points to minimize
J and then designing control inputs to navigate between
these way-points while minimizing Ji.

III. PRELIMINARIES

Consider a stochastic system similar to (1),

dx(t) = b(x(t))dt+ σ(x(t))dW (t); x(0) = x0,

where b : Rn → Rn is the drift and σ : Rn → Rn×m is the
diffusion term. Let L be the second-order partial differential
operator

L ,
n∑

i=1

bi(x)
∂

∂xi
+

1
2

n∑
i=1

n∑
k=1

aik(x)
∂2

∂xi∂xk
. (2)

Consider an open bounded domain D ⊂ Rn, the closure
D and boundary ∂D. Also assume that b(x) and σ(x) are
Lipschitz continuous in D.

Under the assumption minx∈D all(x) > 0 for some 1 ≤
l ≤ n, one can show that Ex0 [τD] < ∞1, ∀x0 ∈ D [15,
Lemma 7.4], where τD is the first exit time from D.

Moreover, expectations of the form Ex0 [f(x(τD))] for any
continuous function f : ∂D → R can be computed by finding

1The representation Ex0 means the expectation with respect to initial
condition being x0



a function h ∈ C(D) ∩ C2(D) which solves the Dirichlet
problem

Lh = 0 in D (3a)
h = f on ∂D, (3b)

where, L is assumed to be uniformly elliptic in D, that is,
for some δ > 0,

n∑
i=1

n∑
k=1

aik(x)ζiζk ≥ δ‖ζ‖2; ∀x ∈ D, ζ ∈ Rn

It can be shown [15, Proposition 7.2], [15, Lemma 7.4] that,
if h ∈ C(D)∩C2(D) is a solution to the Dirichlet problem
(3) with f : ∂D → R a continuous function, then

h(x0) = Ex0 [f(x(τD))].

In particular, if2

f∂D1(x) =

{
1 if x ∈ ∂D1

0 if x ∈ ∂D2

where ∂D1 ∪ ∂D2 = ∂D then

h(x0) = Px0(x(τD) ∈ ∂D1)

represents the probability of hitting a particular part of
boundary for initial condition x(0) = x0.

IV. STOCHASTIC RECEDING HORIZON CONTROL

Consider the switched stochastic system (1) defined in
Section II,

dx(t) = b(x(t))dt+ ui(x(t))dt+ σ(x(t))dW (t) (4)

with x(0) = x0, x0 ∈ P . The system undergoes forced
switching where the switch occurs upon the state hitting a
particular part of boundary of a domain. In between each
switch, the system is a Markov process represented by an
SDE and its exit time is represented as τi. The switching
times are thus described as ti ,

∑i
j=1 τj .

In receding horizon framework one plans a trajectory over
(0, T ] where T is the prediction horizon, executes a part
of the trajectory over time (0, δ], δ < T and recomputes
the prediction horizon trajectory for (δ, T + δ]. In our
implementation, we use drift term to plan a discrete time
trajectory for the length of the prediction horizon, {xi}ni=0,
implement it until the first way-point x1 and then repeat. The
discrete sequence of points {xi} satisfies

min
xk

J =
n+i∑
k=i

L(xk) + V (xn+i); ‖xi−1 − xi‖ ≤ d

where {xk}n+i
k=i ∩O = ∅ and straight line segments connect-

ing these points do not intersect O.
The objective of the local navigation is to steer the

stochastic system through the succession of these waypoints
making the state of (4) visit arbitrarily small neighborhood
of these points. For that purpose, we construct overlapping

2Such a function f will be continuous if ∂D1 and ∂D2 are closed and
disconnected.

domains the union of which contain all waypoints and such
that each domain contains two consecutive points in the
sequence. The overlapping domains are defined such that
their union defines a collision-free safe corridor in which
the system will be steered to its goal configuration.

A. Stochastic Navigation Controller

Assume that the system is ε-close to waypoint xi−1

and the goal is to reach an ε neighborhood of xi with
probability one, before hitting any obstacles. For the purpose,
we construct a bounded region Di, the closure of which
is denoted Di and its boundary ∂Di. The boundary ∂Di

consists of two disjoint parts: Ni ∪ N c
i = ∂Di, where

Ni = {x ∈ ∂Di | ‖x− xi‖ ≤ εi}. Assume that

Di ∩ O = ∅, Ni−1 ⊂ Di and Ni−1 ∩Ni = ∅ (5)

A controller ui−1 acts on the system (1) while x(t) ∈ Di−1

and switches to controller ui when the state x(t) hits Ni−1

and acts for time t ∈ [ti−1, ti). When applied, ui(x) should
satisfy the following probabilistic requirements:

Ex[τi] <∞, τi = ti − ti−1 (6)
Px(x(ti) ∈ N c

i ) = 0⇔ Px(x(ti) ∈ Ni) = 1. (7)

Condition (6) requires that each waypoint is reached in finite
time. Condition (7) requires that the system reaches an ε-
neighborhood of xi with probability one before hitting the
obstacles.

We design a local optimal stochastic controller ui in an
exit problem framework which ensures satisfaction of above
state constraints with optimal inputs within the local domain
Di. Intuitively, boundary Ni acts as an attraction region
while boundary N c

i acts as a repulsive region. The method
presented is based on the results of [9], [10].

The Markov process x(t) within the local domain Di is
described by an SDE (1)

dx(t) = b(x(t))dt+ ui(x(t))dt+ σ(x(t))dW (t) (8)

with initial condition x(ti−1), within the local domain Di ⊂
Rn, where Di is assumed a bounded domain with C2
boundary. The functions σ(x) and b(x) +ui(x) are assumed
to be Lipschitz on Di and σ−1(x) along with σ(x) and
b(x)+ui(x) are bounded. The local controller is built with an
objective to find a solution to the following stochastic optimal
control problem such that ui(x(t)) is bounded, progressively
measurable3 and achieves,

min Ex(ti−1)

[∫ ti

ti−1

L(x(s), ui(s))ds+ Φ(x(ti))

]
(9)

where ti is the time when the system hits boundary Ni and
τi = ti − ti−1 is the exit time for the SDE evolving in
Di. There exists an explicit solution to such an optimization
problem for a particular choice of cost using a log transfor-
mation method [9]:

I(x) = − log g(x)

3A stochastic process is progressively measurable when it is non-
anticipative.



where
g(x) = Ex [exp(−Φ(ζ(τ∂Di

)))] .

In the above, τ∂Di is the first time when the system hits
boundary ∂Di and g(x) is the solution of the PDE

Lg = 0 in Di (10a)
g = exp(−Φ(·))) on ∂Di, (10b)

with L being the generator defined in (2) for an auxiliary
Markov process ζ(t) on the same bounded open set Di ⊂
Rn. The Markov process ζ(t) is given as

dζ(t) = b(ζ(t))dt+ σ(ζ(t))dW (t).

Then, according to [9], the optimal control law u∗(x(t)) for
(8) which minimizes (9) can be given as

ui
∗(x) = −a(x)∇I(x), (11)

where the incremental cost is defined as

L(x, u) =
1
2

(ui)′a(x)−1(ui).

Choosing Φ to be

Φ = +∞ · XN c
i

(12)

where

XN c
i

=

{
0 on Ni

1 on N c
i

yields a solution [10]

I(x) = − log g(x)

g(x) = Px [ζ(τi) ∈ Ni]

where g(x) is computed as discussed in Section III. It can be
shown that I(x) is the optimal solution of the optimization
problem [10] and u∗i is the optimal feedback control which
minimizes the cost,

min Ex

[∫ ti

ti−1

L(x(s), ui(s))ds

]
In (12), Φ can be interpreted as an infinite penalty for state
hitting the forbidden part of the boundary at the first exit time
x(τi) ∈ N c

i , τi = ti − ti−1. The optimal control input u∗

needs to be unbounded in order to satisfy the constraints with
probability one; in the case of bounded inputs the system
has some positive probability to exit at either part of the
boundary of Di.

The controller u∗i is recursively applied in receding hori-
zon manner until the system reaches an ε-neighborhood of
the goal. The control law (11) is computable analytically
in simple cases and the method lends itself to real time
applications. By simple case, we mean that the vector field
b(·) and σ(·) are such that the boundary value problem for
PDE (10) is solvable explicitly.

V. EXAMPLE

We present an example for a simple system describing
a point robot with stochastic uncertainty in a 2-D space.
Consider the system without drift and with an identity
diffusion term,

dx(t) = ui(x(t))dt+ dW (t); x(0) = x0, (13)

where x = (x, y) and W (t) is a 2-dimensional Brownian
motion. The first step is to find a reference trajectory for
(13). We use the nominal dynamics ẋ = u(x(t)) and the
model predictive control approach presented in [16] to find a
continuous trajectory for t ∈ [0, T ], where T is the prediction
horizon.

Let us assume that a feasible continuous state trajectory
is given as x∗(t) ∈ P . The control horizon points {xk}n+i

k=i ,
are found along the solution trajectory x̂∗(t), t ∈ [0, T ] such
that given a positive definite function V ,

max
y∈Ni

{V (y)} − min
z∈Ni−1

{V (z)} ≤ −γ(‖xi−1‖)

and ‖xi−1 − xi‖ ≤ d

where d gives an upper bound on the distance between
waypoints. The next step is to construct bounded domains
around the waypoints. We construct these domains in the
form of a set of concentric circles.

Consider notation for a closed ball B(p, q) , {x ∈ Rn :
‖p − x‖ ≤ q}. The boundary is represented as ∂B and the
interior of the ball is represented as B(p, q) , B(p, q) \ ∂B.

Consider two concentric balls B(xi, Ri) and B(xi, εi)
where Ri and εi are radius of concentric circles centered
at xi, εi < Ri. The local domains Di are defined as

Di , B(xi, Ri) \ B(xi, εi)

∂Di , ∂B(xi, εi) ∪ ∂B(xi, Ri)

Di = Di \ ∂Di .

Here, Ni = ∂B(xi, εi) and N c
i = ∂B(xi, Ri).

∂B(xi, Ri)

∂B(xi, εi)

∂B(xi−1, εi−1)

∂B(xi−1, Ri−1)

Fig. 1. The construction of local domains. The dotted line shows
deterministically planned trajectory and cross marks are the waypoints. The
bigger circles show the boundary ∂B(xi, Ri) while the smaller circles show
the boundary ∂B(xi, εi).

We pose the following constraints for determining the



values of radius Ri and εi,

B(xi, Ri) ∩ O = ∅ (14)

B(xi−1, εi−1) ⊂ B(xi, Ri) \ B(xi, εi) (15)
εi < ‖xi − x(t)‖ < Ri, t ∈ [ti−1, ti) (16)

where, ti−1 and ti are the exit times of the system (1)
and correspond to hitting at boundary ∂B(xi−1, εi−1) and
∂B(xi, εi) respectively. There is no unique solution for the
above constraints and one can further define an arbitrary
upper bound for Ri and an arbitrary lower bound for εi

for the system. The construction of such domains for a two
dimensional system is shown in Fig. 1. The local control
laws for such a system can be constructed as explained in
Section IV-A, achieving

min Ex(ti−1)

[
1
2

∫ ti

ti−1

u2

]
and is expressed as u∗(x) = −∇I(x) where I(x) =
− log g(x) and g(x) = Px(ti−1) [ζ(τi) ∈ Ni] . The auxiliary
process ζ is given as dζ(t) = dW (t) and g(x) is the solution
of the exit time problem

Lg = 0 in Di

g = 0 on N c
i , g = 1 on Ni

and L = 1
2

(
∂2

∂x2 + ∂2

∂y2

)
.

Using the derivations of Section III, we can find g(x) to
be

g(x) =
Ri − ‖x− xi‖

Ri − εi
.

Hence:
I(x) = − log

Ri − ‖x− xi‖
Ri − εi

and the control law is given as

ui(x) = −∇I(x) =
−(x− xi)

(Ri − ‖x− xi‖)‖x− xi‖
. (18)

Control input ui(x) switches to ui+1(x) upon hitting the
boundary Ni for i = 1, 2, . . . until the state is in ε-
neighborhood of the goal configuration.

A. Simulation Results

Simulations are performed for a point robot moving in
R2. The overall bounded domain is considered to be W =
B(0, 10), and the robot initial condition is taken as x0 =
(x, y) = (−3.0,−3.0) m. The goal is to drive the system
to the origin. The environment includes two obstacles at
(−3.0,−1.0) m and (−2.0,−2.0) m with radius 0.2 m.
Simulation results are shown in Fig. 2.

A navigation function V (x) is first constructed on R2

and a randomized algorithm is used to generate a trajectory
for ẋ = u(x(t)) [16]. The navigation function is depicted
in the form of a contour plot while the discrete control
horizon waypoints are center of red circles in Fig. 2. The
local navigation boundary is then decided based on (14)-
(16) represented by dotted black circles. The robot is steered

using the control law described as (18) under the effect of
noise in the form of (13).

To compare our method with existing chance constraint
approaches [6], we simulated two obstacle setup of Fig. 2.
That method found an 8 way-point path in 1.19 seconds,
while an 20 way-point path required 70.0 seconds. That
path intersected with obstacles. In contras, an implementation
of [16] yielded in a collision-free continuous path in 0.79
seconds. It is to be noted, however, that the contribution
of the present paper is not the use of randomized receding
horizon optimization, but on the construction of a two-
stage planning strategy, using any deterministic path planning
method to achieve closed-form stochastic receding horizon
control with performance guarantees.

−4 −3 −2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

x [m]

y
[m

]

Fig. 2. Simulation of a stochastic receding horizon control for a point robot
in a two obstacle environment. The blue trajectory shows the actual stochas-
tic path taken by the robot. The initial condition of the robot is marked with
a blue dot. The black dashed circles represent the outer boundary of domains
Di while red circles represent the region around control horizon with its
boundary Ni and the blue circle is the boundary around the final goal. The
simulation was generated using MATLABTM Econometrics toolbox.

VI. EXISTENCE OF SOLUTIONS

The solution of the system (1) is a collection of Markov
processes truncated at exit time. Such a collection of trun-
cated Markov processes can be represented as a Markov
string. A Markov string is a hybrid state jump Markov
process, where the continuous state evolves according to
some evolution modes which is truncated at a given stopping
time, jumps to a new mode according to a renewal kernel,
while a discrete state defines the modes which could have
either random jumps or forced jumps [14]. Jumps in the con-
tinuous state are also allowed at mode switching. A detailed
construction of such Markov strings as in the form of an
execution of General Stochastic Hybrid System is presented



in [14]. There it is also shown that the Markov string enjoys
the strong Markov and càdlàg properties. These properties
are in fact inherited from the component processes.

The system uses only forced transitions while the renewal
kernel is a simple Dirac measure. The continuous process
under control law ui(x) is truncated at the exit time τi which
is the exit time when x is close to waypoint xi. Without state
reset, the system updates its control law to a precomputed
ui+1. The new process starts as soon as ui+1 is implemented,
and the procedure repeats until a neighborhood of the goal is
reached. The use of Markov strings to represent this switched
system requires that drift terms are bounded, in order for
local solutions to exist; but if Φ = +∞·XN c

i
in (12), control

law u∗i (x) is unbounded on N c
i . To overcome this problem,

one can assume Φ = +M · XN c
i

where M is a large known
positive number representing an arbitrarily large penalty of
hitting the obstacle boundary. The resulting probability of
hitting Ni is close to one. The modification allows the inputs
to be bounded and guarantees the existence of solution in
the form of a Markov string. Note also that since the system
path is defined through a sequence of finite waypoints, the
system undergoes only a finite number of transitions, and the
switching condition ensures that the system evolves forward;
therefore, the system does not exhibit Zeno behavior.

VII. CONVERGENCE AND STABILITY

Proposition 1: Consider the switched stochastic system
(1) in a open bounded domain W ⊂ Rn, where i ∈ N+

is the switching index and W (t) is a Wiener process. Let
V (x) be a C2, positive definite function in a closure of a
bounded domain W which contains origin. For some class
K function γ defined on W and for every solution of the
stochastic switched system, if there exists a sequence of
points {xi}ni=1 ∈ W , such that,

max
y∈Ni

{V (y)} − min
z∈Ni−1

{V (z)} ≤ −γ(‖xi−1‖) (19)

and there exist bounded domains Di that satisfy condition
(5) then the switched stochastic system (1) converges an ε-
neighborhood of origin in finite time using control law (11).

Proof: Given bounded domains Di that satisfy condi-
tion (5), the application of control (11) ensures that

∀x(ti−1) ∈ Ni−1, P{x(ti) ∈ Ni} = 1 ,

which together with the assumption (19) implies that
sequence {V (x(ti))} is strictly decreasing. In addition,
{V (x(ti))} is lower bounded by zero and therefore it
converges. Since the sequence is converging, the Cauchy
criterion implies that as i → ∞ and εi → 0, the difference
between two consecutive terms ‖V (x(ti)) − V (x(ti−1))‖
converges. Now it is not possible that γ(‖xi‖)→ 0, without
(‖xi‖) → 0 as γ(·) is a class- K function. Which implies
that limi→∞,εi→0 V (x(ti)) = 0. Therefore {V (x(ti))→ 0}
as i→∞, and with γ(·) being a class-K function, ‖xi‖ → 0
as i → ∞ and εi → 0. The fact the convergence to a
finite neighborhood of origin in finite time is ensured by
E[ti+1 − ti] <∞ and εi > 0.

If so desired, one can construct a stabilizing controller (in
classical sense) [17] on an n+ 1th domain once the system
reaches an ε-neighborhood of origin. The conditions (6)-(7)
ensure the reachability of this neighborhood in finite time.

VIII. CONCLUSIONS AND FUTURE WORK

The proposed method allows to design a navigation
controller for systems governed by stochastic differential
equations. If a feasible optimal path is given in the form
of a finite sequence of waypoints, then an explicit solution
for an optimal control law can be constructed, steering the
system along these waypoints while avoiding the obstacles
with probability one. This method can be applied to aerial
or ground mobile robots subject to stochastic disturbances.
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