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Abstract— This paper addresses the problem of optimal con-
trol of a unicycle-type robot perturbed with stochastic noise in
an environment with sparsely populated obstacles. The objective
is that the robot pose converges to a neighborhood of a desired
position and orientation. A feedback control law is constructed
such that it is compatible with the differential constraints of
the unicycle. The construction is based on numerical solution of
the Hamilton-Jacobi-Bellman (HJB) partial differential equation
(PDE) associated with a stochastic optimal control problem. The
control law is optimal in terms of control effort and comes with
probabilistic guarantees of convergence to the goal set.

Keywords — wheeled mobile robots, stochastic optimal
control, unicycle, obstacle avoidance

I. INTRODUCTION

The approach in this paper is motivated by recent advance-
ments in manufacturing of miniature bio-inspired crawling
robots (Fig. 1(a)). For systems of the scale of the robot
Fig. 1(a), one it is controllers that require minimal computa-
tion and actuation effort are desirable because of the severe
limitations in payload and available energy storage capacity.

The motion behavior of these robots is inherently stochas-
tic due to the pronounced scale-dependent effects of man-
ufacturing process variations, compliance, ground interac-
tion, and battery charge fluctuations [1], [2]. Under certain
conditions, the kinematics of multi-legged robots with dif-
ferential drive mechanisms can be reasonably approximated
by a unicycle model [3], [4]. Driven by these realizations,
the paper develops input-optimal controllers for stochastic
unicycles, which can extend to cases of motion in constrained
environments.

(a) OctoRoACH platform [1] (b) A wheeled surrogate platform

Fig. 1. Motion of legged platforms at the miniature scale can be effectively
controlled using stochastic versions of well-studied macroscopic wheeled
vehicle models

Control of unicycles in a deterministic setting has been
extensively studied (see [5]–[7] and the references within
for a sparse sample of available literature) Optimal, with
respect to control effort, nonholonomic control designs exist
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[8], [9], some incorporating obstacle avoidance constraints
[10]. It is unclear to what extent available solutions are
robust with respect to stochastic perturbations and noise.
Although feedback can be extremely effective at rejecting
perturbations (c.f. [5]) this typically comes at the expense of
control effort. In addition, most existing nonholonomic con-
trol solutions for obstacle-free environments do not naturally
carry over to cluttered environments, mainly due to the use of
non-invertible state transformations [5], [11]. Finally, when
stochastic noise perturbs deterministic closed loop systems,
the probability that the latter can still reach a neighbor-
hood of their goal configuration without violating obstacle
avoidance constraints has only be assessed a posteriori [12];
stochastic noise being theoretically unbounded prevents one
from establishing deterministic performance bounds. This
paper fills the gap in the middle with a control-effort optimal
stochastic control design, which can be also adjusted to
probabilistically guarantee obstacle avoidance.

Nonholonomic convergence to goal and avoiding obstacles
under stochastic perturbations has been treated as a stochas-
tic reach-avoid control problem [13], but without being
concerned about the final orientation. Final orientation is
regulated in stochastic unicycle systems [14] using switched
feedback controllers, but here the environment is obstacle-
free. There is some somewhat related work in the context
of formation control for stochastic unicycles [15], where
obstacle avoidance is approached deterministically and the
control objective is to achieve a distance-based formation.
For stochastic Dubins-type vehicles, there are minimum-
expected-time feedback controllers [16] computed using the
HJB PDE, but neither obstacle avoidance, nor orientation
convergence is addressed. From an algorithmic viewpoint,
there exist adaptations of rapidly exploring random trees
[17] that explicitly take into account model uncertainty.
However, the latter approaches are fundamentally open-loop.
There is recent work, evolving parallel to the one reported
here, which involves the solution of a PDE for the purpose
of constructing navigation functions for robots exhibiting
stochastic nonlinear dynamics [18]. However, it is unclear
if those PDEs, which use more general incremental cost
functions, admit the probabilistic approximations to their
solutions as the ones in this paper do.

For more general stochastic systems with nonlinear dy-
namics, the stochastic optimal control problem has a longer
history [19]–[22]. Path integrals have been used for control
design in applications ranging from reinforcement learning
[22], to variable impedance control [23], risk sensitive con-
trol [24], and receding horizon-based robot motion planning
[25], [26]. The theoretical foundation [20] of the latter work



allows an exit-time formulation of the robot convergence
problem. Whereas stochastic optimal control methods of
this nature have been developed for holonomic systems
moving in obstacle-free local neighborhoods [25], [26],
this paper particularizes the analysis to stochastic unicycle
systems, allows for the possibility of (small) obstacles inside
neighborhoods, and targets the regulation of both position
and orientation. This is done through off-line, Feynman-Kac
based approximations of solutions to HJB PDE (c.f. [20], [22],
[27]). The solution of this PDE yields a potential field that
steers the stochastic system away from obstacles and toward
the target set.

The paper is organized in the following way. Section II
states the problem. It is followed by Section III, which
gives technical details of the adopted stochastic optimal
control formulation with exit constraints. Section IV presents
simulations and controller analysis, as well as experimental
results, for an application in an environment without obsta-
cles. Section V provides simulations for environment with
obstacles, Section VI discusses implementation issues, and
Section VII concludes.

II. PROBLEM STATEMENT

Let D ⊆ R3 be a bounded domain, and let the obstacles
within D be represented in the form of a closed set O.
The free robot workspace is thus P , D \ O. Assume
that the boundary of P , denoted ∂P , is expressed by a
twice differentiable function (i.e., C2). Figure 2 shows the
coordinate system assigned on D. Consider now a unicycle
perturbed with stochastic noise, with q = (x, y, θ) denoting
its state (x-y position and orientation) and v, ω its linear
and angular speed (inputs). Noise here affects the inputs.
Let W = {W (t),Ft : 0 ≤ t < ∞} model a 2-dimensional
Brownian motion on the probability space (Ω,F ,P), where
Ω is the sample space, F is a σ-algebra on Ω, P is a
probability measure, and {Ft : t ≥ 0} is a filtration (i.e., an
increasing family of sub-σ-algebras of F), assumed right-
continuous and such that F0 contains all P-null (of measure
zero) sets [27]. The diffusion terms, introduced by W ,
are assumed to have state-dependent diffusion coefficients
Σ1(q), Σ2(q), respectively, giving rise to a two-dimensional
diffusion matrix Σ(q) = diag{Σ1(q),Σ2(q)}. With these in
place, we express the dynamics of the system asdx

dy
dθ


︸ ︷︷ ︸

dq

=

cos θ 0
sin θ 0

0 1


︸ ︷︷ ︸

g(q)

([v
ω

]
dt+ Σ(q) dW

)
(1)

An input-optimal feedback control law is sought, such
that the system converges to a goal set E , {(x, y, θ) ∈
R2 × S | ‖(x, y, θ)‖ ≤ ε} where ε is a small constant and1

‖(x, y, θ)‖ ,
√
x2 + y2 + (cos θ − 1)2 + sin2 θ.

1Formally, q = [x, y, θ]ᵀ belongs in the two-dimensional special
Euclidean group SE(2); it can, however, be embedded in R4 [28],
where the usual metrics can be used. Here, the metric ‖[x y θ]ᵀ‖ =√
x2 + y2 + (cos θ − 1)2 + (sin θ)2 is used.

θ

x

y

−θ

Fig. 2. Description of the coordinates for system (1)

Assume that the goal set E is within the free workspace
P , and that the domain P \ E ⊂ R3 is bounded with a C2

boundary ∂(P \ E). Its closure is denoted (P \ E).

III. STOCHASTIC OPTIMAL CONTROL

Consider a class of stochastic systems evolving on the
open set P ⊂ Rn,

dq = b(q) dt+G(q)[u(q) dt+ Σ(q) dW ] . (2)

Assume that b(q), G(q), Σ(q), and Σ−1(q) are bounded and
Lipschitz continuous on P \ E—standard assumptions [27].
Taking τ to be the first time q(t) hits the boundary of P \E ,
a(q) , Σ(q)Σᵀ(q), and choosing a terminal cost Φ

Φ(q(τ)) =

{
0 on ∂E
∞ on ∂P ,

we seek a feedback control law that minimizes the following
cost functional

V (q) = min
u(q)

E
[ ∫ τ

0

1

2
uᵀ
(
q(s)

)
a−1

(
q(s)

)
u
(
q(s)

)
ds

+ Φ
(
q(τ)

)]
. (3)

Denoting ∂q, ∂qq the gradient row vector ∂
∂q and the

Jacobian matrix ∂2

∂q2 , respectively, we consider the generator
A of (2) (see [29])

AV = ∂qV · (b(t) +G(q)u(q))+

1

2
tr{∂qqV ·G(q)Σ(q)Σᵀ(q)Gᵀ(q)} ,

and express the HJB equation associated with (3) as

min
u(q)

{
AV (q) +

1

2
uᵀ(q) a−1(q)u(q)

}
= 0 . (4)

The optimal control law u∗ that is the solution of (4) is
analytically expressed as (see [20])

u∗ = −a Gᵀ ∂qV
ᵀ . (5)

(Dependence of terms on q dropped for brevity.) Substitut-
ing (5) in (4) and applying the logarithmic transformation
V (q) = − log g(q) [19], yields

∂qg b +
1

2
tr
{
∂qqg GΣ ΣᵀGᵀ

}
= 0 (6)



with boundary conditions

g
(
q(τ)

)
=

{
1 on ∂E
0 on ∂P .

Using the Feynman-Kac formula [27], the solution of (6) is

g(q) = P
[
ζ(τ) ∈ ∂E | ζ(0) = q

]
(7)

where ζ(t) is the Markov process

dζ(t) = b(ζ) dt+G(q) Σ(ζ) dW (8)

evolving on P \ E . The optimal control (5) can thus be
expressed as

u∗ = −a Gᵀ
(
∂q logP

[
ζ(τ) ∈ ∂E | ζ(0) = q

])ᵀ
. (9)

With the infinite penalty on ∂P \ E , the optimal control
ensures that the system exits from ∂E with probability one
at time τ , which is finite if for 1 ≤ l ≤ m [27, Lemma 7.4]

min
q∈P\E

all(q) > 0 =⇒ E[τ | q(0) ∈ P \ E ] <∞ . (10)

If Σ and Σ−1 are bounded, then (10) is satisfied. For the
first exit time τ , the constraint that q(τ) ∈ E is equivalent
to [20]

P
[
q(τ) ∈ ∂P | q(0) = q

]
= 0 .

If this constraint is satisfied, then the robot avoids obstacles
and converges to the goal set with probability one. The caveat
is that infinitely large inputs may be required arbitrarily close
to the obstacle surface, and realistically, control inputs are
always bounded. As a result, depending on the magnitude
of noise and control input bounds, the actual probability of
success of convergence to goal can be smaller than one. This
issue is discussed in Section IV-B.

IV. BOUNDED INPUTS WITHOUT OBSTACLES

This section presents simulation and experimental results
that investigate the behavior of optimal feedback control laws
described in Section III, for the case where the control input
is bounded. For computational purposes we assume that D
is free of internal obstacles. The workspace P is circular
with radius 1.0 m, P = {(x, y, θ) ∈ R2 × S |

√
(x2 + y2 <

1.0, ∀θ}. The goal set is given as E = {(x, y, θ) ∈ R2× S |
‖(x, y, θ)‖ ≤ 0.1}, and the system evolves within the domain
P \ E . The unicycle is assumed to be a point.

Let us particularize the general dynamics (2) to the case
of unicycle kinematics (1), where, in addition, b

(
q(t)

)
= 0.

Compared to the general case (2), system (1) does not have
a drift term. For the numerical implementation we choose
Σ1 = 0.1 and Σ2 = 0.5 to be constant variances. We
constrain the linear and angular velocity in the intervals
v ∈ [−0.3, 0.3] m/s and ω ∈ [−2, 2] rad/s, respectively.

The optimal control input (9) can be obtained by simulat-
ing (8)—in most practical cases the solution of the PDE (6)
cannot be given analytically. System (8) is written asdx

dy
dθ

 =

cos θ 0
sin θ 0

0 1

[Σ1 0
0 Σ2

] [
dW1

dW2

]
,

which is a stochastic differential equation that can be simu-
lated using the Euler-Maruyama method [30]. The Brownian
noise term is generated as a Gaussian noise with zero
mean and variance equal to dt [30]. With the function g(q)
estimated of line, as the empirical probability of sample paths
of (8) first hitting the goal boundary, the control law (9), now
takes the form

u∗(q) = −ΣΣT · ∂q

(
− log g(q)

)
.

A. Simulation results

The state space P\E is discretized into a 41×41×41 grid,
and each grid point is treated as a potential initial condition.
Five hundred sample paths are simulated for each initial
condition. The discretization time is chosen to be dt = 0.05
seconds, and the total simulation time is kept large enough
such that at least 95% of the sample paths, from each initial
condition, exit either at the goal boundary ∂E or at the
obstacle boundary ∂P \ ∂E . A visual representation of the
function g(q) computed for unicycle kinematics of system
(11) is shown in Figure 4(b).

There are three factors that affect computation speed when
estimating g(q): grid size, number of samples per cell, and
whether a drift term is included in the stochastic simulations
at each cell. The following computation times are reported
for the purpose of assessing the effect of changing these
problem parameters, and are conservative since no effort
was made to optimize the algorithm itself for speed. That
algorithm, running on a common laptop with a four-core
i5-3210M CPU clocked at 2.5 GHz and 3.2 GB of RAM,
computing g(q) for a configuration of a 21×21 grid with
50 samples out of each cell and a nudging drift term of
the form (0.2 cos θ 0.2 sin θ 0)ᵀ required 1 minute and 5
seconds. The same grid and sample configuration without
the drift term required 9 minutes and 45 seconds. Increasing
the resolution with a 41×41 grid, and taking 10 times more
samples out of each initial condition results in computation
times of 85 minutes (with drift) and 794 minutes (without
the drift term).

Applying optimal control u∗ of (9) results in sample
paths like the one shown in Figure 3(a). The trajectories
of individual state components are depicted in Figure 3(b)
and the optimal control inputs applied to the system are
contained in Figure 3(c). With this implementation, control
inputs can attain large values near the obstacle boundary and
are subsequently saturated so that v and ω remain within
their designated intervals. As a result, some configurations
near the outer boundary have no feasible control solution. In
practice, restricting control authority impacts the probability
of reaching the goal set. Section IV-B elaborates.

B. Probability of success

When input constraints are imposed on a system, the
probability of convergence to the goal set is no longer one.
The empirical probability of success is defined as the ratio
of sample paths that exit at the goal set boundary, to the total
number of sample paths which exit either at the goal or at the
outer (or obstacle) boundary. To assess the impact of input
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(a) A sample path of (1)–(9)
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(b) State trajectory for the sample
path of Figure 3(a)
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(c) Control inputs given by controller (9)

Fig. 3. Simulation of (9) applied to (1). A sample path is shown in part (a).
The outer boundary is shown as a circle and the initial and final orientation
of unicycle are shown as triangles, with the goal being at the origin.
Individual state trajectories are shown in part (b), indicating convergence to
a neighborhood of origin. The control inputs applied during this simulation
are shown in part (c).

saturation on the probability of success, we simulate 500
sample paths from initial position (x, y, θ) = (0.0, 0.8, 0.0)
(cf. Figure 4(a)). We find that for v ∈ [−0.3, 0.3], and with-
out constraints on angular velocity, the empirical probability
of success is still 1.0. But when an additional constraint of
the form ω ∈ [−2, 2] is imposed on the angular velocity, the
estimated probability of success drops to 0.66.

C. Comparison to a deterministic controller

Control law (9) lets the system ‘sail’ with noise for as long
as it can, and exercises corrective action at ‘full throttle’ only
when necessary to avoid collisions. Instead, a deterministic
feedback controller would constantly use control effort to
steer the system toward its goal region. In some cases, (e.g.
[5]) the combination of feedback with the absence of singular
state transformations yields closed loop systems that are
extremely robust to perturbations and noise. The difference
in philosophy on control effort application between (9) and
deterministic alternatives (specifically [5]), is illustrated in
Table I. In three simulation trials, both controllers succeed
in driving the simulated robot to its goal, but (9) uses
consistently significantly less power.

D. Experimental testing

Intuitively, controller (9) works by applying minimal effort
in general, and use full force to avoid the obstacle boundary.

TABLE I
COMPARISON OF CONTROL EFFORTS BETWEEN THE STOCHASTIC

OPTIMAL CONTROLLER AND THE FEEDBACK CONTROLLER OF [5].

Stochastic optimal controller Feedback controller of [5]∑
v

∑
ω

∑
v

∑
ω

Trial 1 8.4561 49.0434 21.0152 138.6997
Trial 2 8.6472 27.6933 31.8662 406.6131
Trial 3 9.0893 51.5052 23.6704 174.2929

As a result, convergence time can be long, but input effort
is small. One way to reduce convergence-time is to push the
system gently toward the goal by means of a small controlled
drift term (which is missing from (1)). Hence, consider (1)
with a constant drift velocity Vn, compactly written as

[
dx
dy
dθ

]
=
[

cos θ 0
sin θ 0

0 1

]([Vn + v
ω

]
dt+

[
Σ1 0
0 Σ2

] [dW1

dW2

])
(11)

where Σ1 = 0.1 and Σ2 = 0.5 are constant variances as
before, and Vn is taken2 to be 0.2 m/sec. The workspace
P is obstacle free, and of radius 1.0 m.

A three-wheeled, differential-steering robot (Figure 1(b))
is used as an experimental platform, with kinematics de-
scribed by those of a unicycle. The control law is computed
on a dual core 2.0 GHz processor, and is sent over a wireless
network to the robot. Although this robot exhibits uncertain
behavior on its own due to wheel slippage, ground friction,
random network delays and inaccurate velocity command
realization, we additionally contaminate the control inputs
by Gaussian noise. Full state (x, y and θ) feedback data is
obtained using a motion capture system, which also intro-
duces some noise of small magnitude. Linear velocity inputs
are saturated at ±0.3 m/s and angular velocity commands at
±1.0 rad/s. Hardware limitations do not allow the platform
to realize linear velocities of magnitude smaller than 0.1
m/s. Thus control inputs are constrained in the intervals
v ∈ [−0.3,−0.1] ∪ {0} ∪ [0.1, 0.3] m/s, and ω ∈ [−1, 1]
rad/s.

Velocity commands are sent to the robot at a frequency of
5 Hz, in the form[

v
ω

]
= sat0.3

1.0

([
Vn + v∗

ω∗

]
+

[
Σ1 dW1/∆t
Σ2 dW2/∆t

])
(12)

where sat(0.3,1.0)ᵀ denotes the saturation function, applied
element-wise, capping the magnitude of the first component
at 0.3 and of the second at 1.0. The noise components were
divided with ∆t = 0.2 seconds to make the implementation
compatible with (11) in the formdx

dy
dθ

 =

cos θ 0
sin θ 0

0 1

 sat0.3
1.0

([
Vn + v∗

ω∗

]
+

[
Σ1 dW1/∆t
Σ2 dW2/∆t

])
∆t

Function g(q) is obtained by simulating (13) and estimating

2The physical system’s absolute linear velocity is lower bounded at 0.1
m/s.
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Fig. 4. Computation of function g(q). Part (a) shows 50 sample paths
for (13) used for computation of g(q). Sample paths are color coded; red
paths exit at outer boundary (circle), while blue sample paths exit at goal
boundary (dotted circle) for an initial condition (−0.8, 0.0, 0.0). Part (b)
gives three slices of the function g(q) for system (11) computed using 500
sample paths.
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applied to the system (1)
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(b) Trajectory of state components
for sample path shown in Figure 5(a)

Fig. 5. Experimental result of controller (9) applied to a unicycle-type
robot. The observed path is shown in part (a). The outer boundary is circular,
the initial configuration is the one on top, and the desired one is at the center,
with zero orientation. Initial and final unicycle configurations are marked
with triangles. Trajectories of individual state components are shown in part
(b), indicating convergence to a neighborhood of the desired configuration.
The curve with the dip around 10 sec represents the unicycle’s orientation.

g(q) from the sample paths. The control inputs can be
computed as per (9).dx

dy
dθ

 =

Vn cos θ
Vn sin θ

0

+

cos θ 0
sin θ 0

0 1

[Σ1 0
0 Σ2

] [
dW1

dW2

]
(13)

Figure 4(a) shows 50 sample paths for this system where
28% of the paths exited at the goal boundary, implying that
g([−0.8, 0.0, 0.0]ᵀ) = 0.28. Figure 4(b) shows three slices
for θ = −π/2, 0 and π/2 from the 4-dimensional plot of the
function g(q), estimated using 500 sample paths.

Control law (5)–(12) is applied to the robot of Figure 1(b).
The observed path taken by the robot is shown in Figure 5(a)
for an initial condition (x, y, θ) = (0.0, 0.8, 0.0), exiting at
a neighborhood of the origin. Figure 5(b) shows the time
profile of the path. Figures 6(a)–(b) give the resulting optimal
control inputs in a single sample path realization, and Fig-
ures 6(c)–(d) reveal the noise components that contaminated
the nominal optimal control inputs during the experiment.
Figures 6(e)–(f) show the saturated control inputs (12) sent
to the robot.

0 10 20 30 40

−2

−1

0

1

2

Time [sec]

v
∗
[m

/
s]

(a)

0 10 20 30 40
−15

−10

−5

0

5

10

15

Time [sec]

ω
∗
[r
a
d
/
s]

(b)

0 10 20 30 40
−1

−0.5

0

0.5

1

Time [sec]

Σ
1
d
W

1
/
∆
t

(c)

0 10 20 30 40
−3

−2

−1

0

1

2

3

Time [sec]

Σ
2
d
W

2
/
∆
t

(d)

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

Time [sec]

V
n
+
v∗

+
Σ
1
d
W

1
/
∆
t

(e)

0 10 20 30 40
−3

−2

−1

0

1

2

3

Time [sec]

ω
∗
+
Σ
2
d
W

2
/
∆
t

(f)

Fig. 6. Experimental data for the trajectories of Figure 5. Plots (a)–(b)
depict the optimal linear and angular velocity control, respectively, from (9),
Plots (c)–(d) record the noise that disturbed the system, while (e)–(f) show
the applied linear and angular velocity inputs (after saturation at control
limits).

V. BOUNDED INPUTS AND OBSTACLES

In this section we demonstrate the extension of the control
design (9) to cases where the workspace is cluttered with
obstacles. The setup is otherwise identical to that of Section
IV-D, but the system here is simulated in Player/Stage [31]
with control loop frequency set at 5 Hz; hence disturbances
such as wheel slip and surface friction are not present,
and inputs velocities are assumed to be accurately realized.
The system’s velocities, however, are constrained in the
intervals [−0.3, 0.3] and [−2, 2], for v and ω, respectively.
The workspace P is of radius 1.5 m, containing four obsta-
cles of radius 0.1 m at coordinates (−0.7, 0.0), (0.7, 0.0),
(0.0,−0.7) and (0.0, 0.7).

In this scenario, the domain is

D , {q ∈ R2 × S |
√
x2 + y2 < 1.5,∀θ} ,

with the obstacle region defined as

O , {q ∈ D | [(x−Oxi
)2+(y−Oyi)2]

1
2 ≤ 0.1,∀θ, i = 1, . . . , 4} ,

for obstacles centered at (Oxi
, Oyi), i = 1, . . . , 4. The free

workspace is P = D \ O, and the goal set is defined as

E = {q ∈ P |
√
x2 + y2 + (cos θ − 1)2 + (sin θ)2 ≤ 0.1} .

Figure 7 shows Stage simulation results for two initial
conditions. The robot—although modeled as a point—is
shown in the figures as a rectangle, rounded in the front,
and the obstacles are depicted as solid disks.

VI. DISCUSSION

The control design method presented is input-optimal and
feedback-based, and uses the solution of a PDE precomputed
numerically off-line. Due to the numerical solution, the



(a) q0 = (−1.2, 0.0, 0.0) (b) q0 = (0.0, 1.2, 0.0)

Fig. 7. Simulated paths of a stochastic differential drive robot

resolution of the discretization influences accuracy. State
and time can be discretized at different resolution. The
question of optimal resolution is beyond the scope of this
paper, and the one used in the examples of this paper
is chosen empirically; so is the size of the goal set. As
the goal set becomes smaller, the set of initial conditions
producing trajectories hitting the target becomes smaller as
well, and sufficiently accurate estimation of the probability
function requires increasingly fine resolution for state-space
discretization. Finally, the obstacles considered in Section V
are implicitly assumed sparse. Heavily cluttered environ-
ments are not in the context of the scenario discussed at the
beginning of that section, and are more appropriately treated
using alternative techniques (see, for instance, [25], [26]).

VII. CONCLUSIONS AND FUTURE WORK

Unicycle-type robots perturbed by stochastic noise can
be steered to a neighborhood of a desired position and
orientation using the control law presented in this paper. This
method naturally extends to cases where the workspace is
sparsely populated by obstacles, and yields controllers that
utilize minimum control effort while steering the system to
the designated goal set. The design has been validated both
in simulations and in experiments.

REFERENCES

[1] A. Pullin, N. Kohut, D. Zarrouk, and R. Fearing, “Dynamic turning
of 13 cm robot comparing tail and differential drive,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2012, pp. 5086–5093.

[2] K. Karydis, I. Poulakakis, and H. G. Tanner, “Probabilistic valida-
tion of a stochastic kinematic model for an eight-legged robot,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2013, pp. 2562–2567.

[3] D. Panagou and H. Tanner, “Modeling of a Hexapod Robot; Kinematic
Equivalence to a Unicycle,” University of Delaware, Department of
Mechanical Engineering, Tech. Rep., 04 2009.

[4] K. Karydis, D. Zarouk, I. Poulakakis, R. S. Fearing, and H. G. Tanner.,
“Planning with the STARs,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014, pp. 3033–
3038.

[5] C. Canudas de Wit and O. Sørdalen, “Exponential stabilization of
mobile robots with nonholonomic constraints,” IEEE Transactions on
Automatic Control, vol. 37, no. 11, pp. 1791–1797, 1992.

[6] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via dynamic
feedback linearization: design, implementation, and experimental val-
idation,” IEEE Transactions on Control Systems Technology, vol. 10,
no. 6, pp. 835 – 852, 2002.

[7] D. Panagou, H. G. Tanner, and K. J. Kyriakopoulos, “Dipole-like fields
for stabilization of systems with pfaffian constraints.” in Proceedings
of IEEE International Conference on Robotics and Automation, 2010,
pp. 4499–4504.

[8] K. A. Morgansen and R. W. Brockett, “Nonholonomic control based on
approximate inversion,” in Proceedings of the IEEE American Control
Conference, 1999, pp. 3515–3519.

[9] C.-C. Yih and P. I. Ro, “Near-optimal motion planning for nonholo-
nomic systems using a multi-point shooting method,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
1996, pp. 2943–2948.

[10] M. Kobilarov and G. Sukhatme, “Optimal control using nonholonomic
integrators,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2007, pp. 1832–1837.

[11] A. Astolfi, “Discontinuous control of nonholonomic systems,” Systems
and Control Letters, vol. 27, no. 1, pp. 37–45, Jan. 1996.

[12] S. Shah, C. Pahlajani, and H. Tanner, “Probability of success in
stochastic robot navigation with state feedback,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011, pp. 3911–3916.

[13] S. Summers, M. Kamgarpour, C. J. Tomlin, and J. Lygeros, “A
Stochastic Reach-Avoid Problem with Random Obstacles,” in Hybrid
Systems: Computation and Control. ACM, 2011, pp. 251–260.

[14] W. Zhao-Jing and L. Yong-Hui, “Stochastic stabilization of non-
holonomic mobile robot,” in Proceedings of 30th Chinese Control
Conference, 2011, pp. 1290–1295.

[15] R. Anderson and D. Milutinovic, “A stochastic optimal enhancement
of feedback control for unicycle formations,” in International Sympo-
sium on Distributed Autonomous Robotic Systems, 2012.

[16] R. P. Anderson, E. Bakolas, D. Milutinovic, and P. Tsiotras, “The
markov-dubins problem in the presence of a stochastic drift field,” in
Proceedings of the IEEE Conference on Decision and Control, 2012,
pp. 130–135.

[17] G. Kewlani, G. Ishigami, and K. Iagnemma, “Stochastic mobility-
based path planning in uncertain environments,” in Proceedings of the
IEEE/RSJ international conference on Intelligent robots and systems,
2009, pp. 1183–1189.

[18] M. B. Horowitz and J. W. Burdick, “Optimal navigation functions
for nonlinear stochastic systems,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014, pp.
224–231.

[19] W. H. Fleming, “Exit probabilities and optimal stochastic control,”
Applied Mathematics and Optimization, vol. 4, pp. 329–346, 1977.

[20] M. Day, “On a stochastic control problem with exit constraints,”
Applied Mathematics and Optimization, vol. 6, pp. 181–188, 1980.

[21] H. J. Kappen, “Path integrals and symmetry breaking for optimal con-
trol theory,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2005, no. 11, p. P11011, 2005.

[22] E. Theodorou, F. Stulp, J. Buchli, and S. Schaal, “Iterative path integral
stochastic optimal control for learning robotic tasks,” in The 18th
World Congress of The International Federation of Automatic Control,
Milan, Italy, 2011.

[23] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820–833, 2011.

[24] B. van den Broek, W. Wiegerinck, and B. Kappen, “Stochastic optimal
control of state constrained systems,” International Journal of Control,
vol. 84, no. 3, pp. 597–615, 2011.

[25] S. Shah, C. Pahlajani, N. Lacock, and H. Tanner, “Stochastic receding
horizon control for robots with probabilistic state constraints,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2012, pp. 2893–2898.

[26] S. K. Shah, H. G. Tanner, and C. D. Pahlajani, “Optimal navigation
for vehicles with stochastic dynamics,” IEEE Transactions on Control
Systems Technology, (to appear) 2015.

[27] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus
(Graduate Texts in Mathematics), 2nd ed. Springer, 1991.

[28] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[29] W. H. Fleming and H. M. Soner, Controlled Markov Processes and
Viscosity Solutions, 2nd ed. Springer, 2005.

[30] D. J. Higham, “An algorithmic introduction to numerical simulation
of stochastic differential equations,” SIAM Review, vol. 43, no. 3, pp.
525–546, 2001.

[31] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in Pro-
ceedings of the 11th International Conference on Advanced Robotics,
2003, pp. 317–323.


