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Relaxed Stability Conditions for Switched Systems with Dwell Time

Herbert G. Tanner

ABSTRACT

The paper presents asymptotic, and input-to-state stability results,

for switched systems with dwell time in which the switching signal is not

arbitrary, but is rather chosen as part of the control design strategy.

Then, appropriate switching policies allow the use of functions without

sign-definite time derivatives in lieu of a common Lyapunov-like function.

I. INTRODUCTION

Stability certificates for nonlinear switched

systems often come in the form of Lyapunov

functions, common or multiple. A review on stability

results under arbitrary, and constrained switching,

are available in the context of switched [1], and

hybrid systems [2]. For randomly switching nonlinear

systems, stability can be analyzed using multiple

Lyapunov functions [3]. Conditions for establishing

uniform stability in nonlinear time-varying switched

systems are provided in [4]. For uniform asymptotic

stability within the Lyapunov framework, an upper

bound on the derivative of the Lyapunov function

in the form of a negative definite function is usually
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required [1, 2, 5].

In the case of a common Lyapunov function, in

particular, it is known [1, Part II] that the supremum

of the Lyapunov function derivative cannot be taken

as zero when switching is arbitrary. One might be

tempted to apply an invariance argument, and in

the context of switched nonlinear systems related

results exist for systems with state-dependent dwell

time [6], average dwell time [7, 8], and persistent

or weak dwell-time [9]. There are some limitations,

though. In this work [6, 8, 7] the index set for the

switched system is finite, and typically to invariance-

type results, determining the invariant set may be

challenging. Specifically, to verify weak invariance as

in [6], one may have to check all solutions for every

element of the index set in the worst case. This is

clearly infeasible if the index set is not finite.
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For the case where the time derivative of

the Lyapunov-like functions, common or multiple,

is sign-indefinite, there exist results for switched

linear systems [10, 11]. Some related work can

also be found in the context of hybrid systems

for single [12] and multiple [2] Lyapunov functions,

and single Lyapunov functions for discontinuous

systems [13]. The idea behind multiple Lyapunov

functions [2] is that when a system that flows

along a given vector field switches to another vector

field, the Lyapunov function associated with the

original vector field has to decrease when that same

vector field is reactivated; in the meantime, other

vector fields somehow overcome the increase of that

particular function, in addition to decreasing their

own Lyapunov function. This reasoning does not

directly apply to the single function case, since it

would imply that the function decreases all the

time. The idea behind a single function [12], on

the other hand, is that the function decreases at

switching times, and in the meantime is bounded by

a continuous [12] or linear [13] function of its value

at the last switching instant.

In this paper, a result similar in spirit to one

established in [12] is first presented. Compared to

that of [12, Theorem 4.1], the one in this paper

is less general, because the rate of change of the

function is bounded by a K-class instead of just a

continuous function; the more stringent conditions,

however, allow us an input-to-state stability (iss)

extension. Compared to the stability result of [13],

the one presented here is less conservative, because

linear comparison functions are only a subclass of the

K-class functions of this paper. In addition, what is

implicitly assumed by [12, 13], is emphasized in this

paper: instead of a common Lyapunov function, the

switching signal can be used to establish the stability

properties of the switched system.

The idea of using switching to control an

otherwise unstable or uncontrollable system has

already found application in the context of switched

linear [14] as well as event-triggered systems, both

linear [15] and nonliner [16]. Another case where

switching can be controlled, and a function with a

sign-indefinite time derivative may be needed, can

be found in applications of Model Predictive Control

(mpc) to mobile robot navigation [17, 18, 19], as

well as in the context of self-triggered control [15]. In

both of these cases, there is also a need to establish

robustness with respect to external disturbances.

Some form of robustness can be established

in the context of input to state stability (iss).

For nonlinear switched systems, iss is typically

established by ensuring that each component

dynamics is iss [20, 21]. (Different assumptions are

made for feedforward systems by [22].) The result

in this paper is different, in the sense that the

individual component dynamics need not be iss; the

iss conditions we impose on them apply only during

the time interval when the particular component

dynamics is active. Along similar lines, results

for composite input/output-to-state systems are
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proposed by [23]. Another feature that differentiates

the approach described here from related literature

is the fact that the switching signal is used as a

control design tool for nonlinear systems. Trading-

off the generality of switching allows us to relax

the sign-definiteness of the Lyapunov-like function

derivative, without affecting asymptotic stability.

In this context, the switching signal becomes a

mechanism for stabilization, and functions that do

not qualify as Lyapunov functions can be used as

stability certificates.

In summary, the contribution of this paper is

twofold: a) it relaxes the conditions on the derivative

of a Lyapunov-like function of a switched system by

controlling the switching signal, and b) it does so in a

way that input-to-state stability can be established

without relying on the component dynamics being

iss. The results suggest that given a monotonically

increasing sequence of switching instants,∗ separated

by at least some constant dwell time, stability is

recovered if some Lyapunov-like function evolves

fairly liberally between, but decreases sufficiently at

switching times.

Section II presents the asymptotic stability

result for switched systems with a common

Lyapunov-like function. The same section contains

a regional iss [24] extension of this result. Section

III offers a detailed computational example of the

application of the proposed framework on physical

∗Actual switching may not necessarily occur at all these
times (see Section II).

systems. Finally, Section IV summarizes the results

of the paper.

II. MAIN RESULTS

Following [1], we consider the switching system

ẋ = fσ(t)(x), (1)

where x ∈ Rn is the state and σ : R+ → N+; t 7→ p

is a piecewise constant signal that indicates the

vector field from a parameterized family {fp : p ∈

N+}† which is active at a given time instant t ∈ R+.

We assume that each fσ(t) satisfies the standard

Lipschitz continuity conditions for all p ∈ N, and the

solutions of (1) are defined in the Caratheodory sense

as in [1].

The switching signal belongs in a class denoted

S+
dwell (cf. [5]) defined as follows.

Definition 1 (switching signals) The set S+
dwell

contains all piecewise constant functions from R+

onto P ⊂ N+, for which the inverse image of every

p ∈ P is a (possibly infinite) collection of intervals

in R+ of measure no less than τD > 0 and no more

than TD <∞.

Switching signals in S+
dwell induce ascending

sequences {τi}i∈N of switching times (which include

instances at which σ(t) is discontinuous [5]), with the

property that ∀i ∈ N, τi+1 − τi ≥ τD. Note also that

the domain of σ is the whole R+ implying that for

†Since p can be arbitrarily large, this collection can
potentially have infinite many members.
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all t ∈ R+, there exists a p ∈ N such that p = σ(t).

The case of systems in which switching stops can

be accounted for by considering σ ∈ S+
dwell which

are ultimately periodic, i.e., they exhibit periodicity

after k <∞ switches and for which fσ(τi) = fσ(τj),

∀ i, j > k.

Theorem 1 Let V (x) be a differentiable, positive

definite function in a domain D ⊆ Rn that contains

the origin. For some class-K functions [25] α and γ,

and within each of the switching intervals (τi, τi+1]

of some σ ∈ S+
dwell, assume that every solution of (1)

satisfies

sup
t∈(τi,τi+1]

{
∂V
∂x fσ(t)(x)

}
<
α(V

(
x(τi)

)
)

τi+1 − τi
(2)

V
(
x(τi+1)

)
− V

(
x(τi)

)
≤ −γ(‖x(τi)‖) . (3)

Then all trajectories of (1) starting in D asymptot-

ically converge to the origin. Moreover, if D = Rn,

the system is globally asymptotically stable.

Proof : For the arbitrary time interval (τi, τi+1),

pick an ε > 0 and define a ball Bε , {x ∈ D | ‖x‖ ≤

ε} (Fig. 1). On the boundary of Bε, V (x) attains

a minimum by continuity. Call this minimum Vε ,

minx∈∂Bε V (x) and define Ωε , {x ∈ D | V (x) ≤

Vε}.

Select an appropriately small δ > 0 so that r ,

Vε − α(δ) > 0, and define Ωδ , {x ∈ Rn | V (x) ≤

min{r, δ}}. Then inside Ωδ, fit a ball Bδ , {x ∈ Rn |

‖x‖ ≤ minx∈∂Ωδ ‖x‖}.

Bε
Ωε

Ωδ Bδ
x(τi)

x(τi+1)

Fig. 1. The sets defined in the proof of Theorem 1, and a
possible system trajectory in the time interval [τi, τi+1].

Let x(0) = τ1 be in Bδ. Then for t ∈ (τ1, τ2)

V (x(t)) = V (x(τ1)) +
∫ t
τ1

∂V
∂x fσ(t)(x(τ)) dτ , and due

to (2)

V (x(t)) ≤ V (x(τ1)) +
α
(
V (x(τ1))

)
τ2 − τ1

(t− τ1)

≤ V (x(τ1)) + α
(
V (x(τ1))

)
≤ V (x(τ1)) + α

(
min{r, δ}

)
≤ r + α(δ) < Vε,

which means that for t ∈ (τ1, τ2], x(t) remains in

Ωε. Now we have x(τ2) ∈ Ωε, and since (3) implies

V (x(τ3)) < V (x(τ2)), we have

V (x(t)) ≤ V (x(τ2)) + α
(
V (x(τ2))

)
≤ V (x(τ1)) + α

(
V (x(τ1))

)
< Vε .

Repeating the exact same argument for x(τi) ∈ Bδ
with i > 2, we conclude that for t ∈ (τi, τi+1), x(t) ∈

Ωε. This establishes the positive invariance of Ωε in

an inductive way.

Since we know that at every τi, (1) satisfies (2)
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and (3), a similar inductive argument can be applied

to establish the stability of the system at the origin.

Condition (3) indicates a converging sequence

{V
(
x(τk)

)
}, since V (x) is lower bounded by zero,

which is strictly decreasing. Since the sequence is

converging, it is a Cauchy sequence and therefore

‖V
(
x(τi)

)
− V

(
x(τi+1)

)
‖ → 0 when i→∞. Rewrit-

ing (3) as V
(
x(τi+1)

)
− V

(
x(τi)

)
≥ γ

(
‖x(τi)‖

)
, we

see that the convergence of ‖V
(
x(τi)

)
− V

(
x(τi+1)

)
‖

to zero forces γ
(
‖x(τi)‖

)
→ 0 as i→∞. Given that

γ is a class K function, that can only happen if and

only if ‖x(τi)‖ → 0.‡

Theorem 1 implies that if a dwell-time

switching signal can be selected to make an

otherwise failing Lyapunov function candidate

decrease sufficiently (measured by some K-class

function γ) at switching times, then asymptotic

stability can be recovered. Conditions (2)–(3) are

not meant to be verified analytically. Since ∂V
∂x fp(x)

is a scalar, straightforward constrained numerical

optimization can offer bounds for this Lie derivative

within compact subsets of the state space. While

no general method is offered here, depending on the

shape of the boundary of state space regions where

the derivative has the “wrong” sign, a combination

of numerical Lie derivative extremum computation

with applications of the comparison lemma may

indicate switching signals for which (2)-(3) is satisfied

‡Note how the role of the class-K functions that uniformly
bound V from above and below in classical statements of
Lyapunov’s second method, is played here by γ. The system
therefore is asymptotically stable at the origin.

(see Section III).

Assume now that (1) is augmented with affine

“inputs,” which can be thought of as disturbances or

unmodeled dynamics:

ẋ = fσ(t)(x) + u(t). (4)

The assumption on u(·) : [0,∞)→ Rn is that it is

a measurable and essentially bounded function. Let

‖ · ‖∞ , supt>0{·} denote the essential supremum of

a function over time.

Definition 2 (cf. [24]) Given a compact set D, the

interior of which contains the origin, (4) is said

to be (regionally) input-to-state stable ( iss) in D,

if some Ξ ⊇ D is positively invariant for (4) with

u(t) ∈ U ⊆ Rn, and there exist a KL-class function

β and a K-class function c such that

‖x(t)‖ ≤ β(‖x(0)‖, t) + c(‖u‖∞), (5)

for x(0) ∈ D and u ∈ U .

Now we can state the following robustness

result.

Theorem 2 Let V (x) be a differentiable, positive

definite function satisfying

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),

in a domain D ⊆ Rn that contains the origin, for

some class-K functions α1 and α2, with α1 being

Lipschitz. If there exist class-K functions α, γ, and
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ζ(·), and a switching signal σ ∈ S+
dwell such that on

each of the switching intervals (τi, τi+1] of σ, every

admissible solution in D satisfies

sup
{
∂V
∂x (fσ(t)(x) + u)

}
<
α
(
V (x(τi)) + ‖u‖∞

)
τi+1 − τi

(6)

V
(
x(τi+1)

)
− V

(
x(τi)

)
≤ −γ

(
V (x(τi))

)
+ ζ(‖u‖∞) , (7)

then (4) is regionally iss in D.

Proof : Let Ω0 , {x ∈ D | ζ(‖u‖∞) + ε ≥

γ(V (x))}, where ε > 0 a (small) constant. Denote V0

the value of V (x) for which γ(V (x)) = ζ(‖u‖∞) + ε.

For x(τi) 6∈ Ω0 we can write

V (x(τi+1)) ≤ V (x(τi))− γ(V (x(τi))) + ζ(‖u‖∞)

< V (x(τi))− ε . (8)

Note that for x(τi) /∈ Ω0 such that V
(
x(τi)

)
is sufficiently large, the right-hand side of (7)

becomes negative, ensuring the boundedness of

V
(
x(t)

)
. It follows from the positive definiteness and

radial unboundedness of V that the dynamics is

forward complete. Knowing that between consecutive

switching times V decreases by at least ε, allows us

to define intervals of variation for ‖x(τi)‖:

‖x(τi)‖ ∈
[
α−1

2

(
V (x(τi))

)
, α−1

1

(
V (x(τi))

)]
, (9)

as shown in Fig. 2. The maximum values in the

intervals defined for consecutive switching times τi

and τi+1 are separated by at least ε
L , where L is the

Lipschitz constant of α1. Note that although ‖x(t)‖

might increase between switchings, the interval

bounds have to decrease (Fig. 2) because they

depend on the value of V . We can actually find the

number k of switchings after which one can ensure

that ‖x(τi+k)‖ will be smaller than ‖x(τi)‖:

‖x‖

V

‖x(τi)‖
‖x(τi+1)‖ > ε/L

α1

α2

V (x(τi))

V (x(τi+1))
ε

Fig. 2. The value of V at switching times constrains the norm
of the state at these instants in terms of the inverses of
the bounding functions. The intervals indicated on the
horizontal axis denote the range of possible values for

‖x‖ if a common level set for α−1
1 and α−1

2 is given.

V (x(τi+1)) ≤ V (x(τi))− γ(V (x(τi))) + ζ(‖u‖∞)

< V (x(τi))− ε

V (x(τi+2)) ≤ V (x(τi+1))− γ(V (x(τi+1))) + ζ(‖u‖∞)

< V (x(τi+1))− ε
...

V (x(τi+k)) ≤ V (x(τi+k−1))− γ(V (x(τi+k−1)))

+ ζ(‖u‖∞) < V (x(τi+k−1))− ε
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and summing the inequalities, get V (x(τi+k)) <

V (x(τi))− kε. There is a finite k = ki for which

V (x(τi))− kε < α1(‖x(τi)‖), from which it follows

α1(‖x(τi+ki)‖) ≤ V (x(τi+ki))

< V (x(τi))− kiε < α1(‖x(τi)‖) . (10)

From the right hand side of (10) we get ki >

V (x(τi))−α1(‖x(τi)‖)
ε , and after noting that the

difference between V (x) and α1(‖x‖) is always upper

bounded by α2(‖x‖) we can select ki =
⌈
α2(‖x(τi)‖)

ε

⌉
.

Note now that as ‖x(τi)‖ decreases, ki decreases too,

since α2 is a class-K function. Therefore, for all i > 0

the integer

k , k0 =
⌈
α2(‖x(0)‖)

ε

⌉

corresponds to a number of switching times sufficient

to bring the state closer to the origin for any

switching instant τi ≥ 0.

We can thus guarantee that states at switching

instants with indices that are k apart satisfy

‖x(τi)‖ − ‖x(τi+k)‖ > k ε
L , where L is the Lipschitz

constant of α1. Within k switching intervals, say from

τi to τi+k, ‖x(t)‖ may increase by at most

ρi = α−1
1

(
2TD
τD

α
(
2α2(‖x(τi)‖)

)
+ 2α2

(
‖x(τi)‖

))
+ α−1

1

(
2TD
τD

α(2‖u‖∞)
)

(11)

compared to ‖x(τi)‖, but will eventually be reduced

by at least εk
L with respect to ‖x(τi)‖ (Fig. 3).

τk τ2k τ3k

εk
L

εk
L

εk
L

εk
L

‖x(0)‖

ρ0

ρ1

ρ2

β(‖x(0)‖, t) + c(‖u‖∞)

‖x(t)‖

Fig. 3. The construction of the comparison functions for the
proof of Theorem 2.

Given that ε+ ζ(‖u‖∞) = γ(V0), it follows that

ε ≤ γ
(
α2(‖x(0)‖)

)
+ ζ(‖u‖∞), and therefore

‖x(0)‖+ εk
L + ρ0 ≤

‖x(0)‖+ k
L

(
γ
(
α2(‖x(0)‖)

)
+ ζ(‖u‖∞)

)
+ ρ0 .

Combining with (11) and after some manipulation,

‖x(0)‖+ εk
L + ρ0 ≤ ‖x(0)‖+ k

Lγ
(
α2(‖x(0)‖)

)
+ α−1

1

(
2TD
τD

α
(
2α2(‖x(0)‖)

)
+ 2α2(‖x(0)‖)

)
+ k

Lζ(‖u‖∞) + α−1
1

(
2TD
τD

α(2‖u‖∞)
)
.

With ρi being a class K function of ‖x(τi)‖, and with

‖x(τi+k)‖ unable to increase, it follows that {ρi}ni=0

is a monotonically decreasing sequence. Therefore,

the sequence ‖x(τnk)‖+ kε
L + ρn is decreasing at an

accelerating rate, and that rate never falls below ε
LTD
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(Fig. 3). It follows that the function

[
‖x(0)‖+ k

Lγ
(
α2(‖x(0)‖)

)
+ α−1

1

(
2TD
τD

α
(
2α2(‖x(0)‖)

)
+ 2α2(‖x(0)‖)

) ]
e

εt
LTD

+ k
Lζ(‖u‖∞) + α−1

1

(
2TD
τD

α(2‖u‖∞)
)

always bounds the evolution of ‖x(t)‖ from above.

The first term in the above is a class KL function

of the form β(‖x(0)‖, t), while the two next form a

class K function of ‖u‖∞.

III. Case study

This section aims at demonstrating the

application of Theorems 1 and 2 to the stability

analysis of a physical systems that have been studied

in recent literature [26]. Specifically, the discussion

illustrates how numerical calculations—not explicit

solution of differential equations—and the use of the

comparison principle, allows the construction of the

bounding functions appearing on the right-hand side

of the conditions of the aforementioned theorems.

The dynamics of a jet engine compressor which

is to be controlled using a self-triggered control

strategy is [26]:

ẋ1 = −x2 − 1.5x2
1 − 0.5x3

1 (12a)

ẋ2 = x1 − u , (12b)

where x1 represents the mass flow, x2 is the pressure

rise, and u is the throttle mass flow, which is

the input. If states x1 and x2 could be monitored

continuously, then it is known [26] that control law

u =
0.75x6

1 − 1.5x5
1 + x4

1(2.5x2 − 3) + x3
1(3x2 − 3.5)

x2
1 + 1

+
2.25x2

1 + x1(2x2
2 − 3x2 + 0.5) + 1.5x2

x2
1 + 1

(13)

globally asymptotically stabilizes the system. It is

also indicated that the continuously-controlled closed

loop system admits a Lyapunov function

V (x) = 1.46x2
1 − 0.35x1

(
x3

1 + 3x2
1 − x1 + 2x2

x2
1 + 1

)

+ 1.16

(
x3

1 + 3x2
1 − x1 + 2x2

x2
1 + 1

)2

(14)

The self-triggered strategy of [26] suggests that

instead of interrogating the sensors monitoring x1

and x2 at the fastest rate possible, one can instead

sample them at specific time intervals only, and

still stabilize the system by applying piecewise

constant inputs based on the most current state

measurements. The system is switching, since the

control input applied during these intervals is

piecewise constant. Thus we write

ẋ1

ẋ2

 =

 −x2 − 1.5x2
1 − 0.5x3

1

x1 − u
(
x1(τi), x2(τi)

)
 = fσ(t)(x) ,

and we assume for this example that τD = 10−3

seconds and TD = 1 second. The time intervals

between successive samplings, called inter-execution

times are explicitly given in [26, (IV.29)], and

adapted to the notation used in this paper. According
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to [26], the switching instants should satisfy

∆τi ,
29x1(τi) + d

(
x(τi)

)
5.36 d

(
x(τi)

)
x1(τi)2 + d

(
x(τi)

) , (15)

where ∆τi , τi+1 − τi, and d(x) =√
x2

1 + (x
3
1+3x2

1−x1+2x2

x2
1+1

)2. In [26] it is shown

that the self-triggered strategy preserves the

stability and performance of the continuous-time

controller without requiring continuous monitoring

of the system state. If a self-triggered policy is

implemented, with e(t) , x(t)− x(τi) denoting the

measurement error, then the following bound on the

function in (14) can be established:

V̇ ≤ −0.74 · 108‖x‖4 + 0.90 · 108‖x‖2 ‖e‖2 . (16)

In [26], iss arguments are used to establish that

the self-triggered policy still ensures the monotonic

decrease of the Lyapunov function, by selecting inter-

execution times that do not allow e to grow enough to

make the right-hand side of (16) to become positive.

The following sections show how this result can be

verified through the use of Theorem 1, stability can

still be preserved when these inter-execution time

deadlines are missed, and in addition, robustness to

sustained state-update delays can be also established

formally using Theorem 2.

3.1. Asymptotic stability

Assume now that due to some communication

problem, sensor measurements after t = 2 seconds

may be intermittently reported to the controller with

an (additional) time delay of one inter-execution time

period, i.e., the controller receives a new state update

after twice the time the theory dictates. We will use

Theorem 1 to show that even if the sign-definiteness

of (16) is no longer guaranteed, the stability of the

closed loop system is not affected.

According to [26], the measurement error e

affords the following differential inequality d
dt ‖e‖2 ≤

2‖e‖(‖H‖ ‖x‖+ ‖G‖ ‖e‖), where H and G are

matrices which are functions of x and e, defined

in [26]. In [26], these matrices are maximized

within the domain Ωx , {x | V (x) ≤ 27.04}; here,

for convenience, we define D to be the largest ball

contained in Ωx, that is, D , {x ∈ R2 | ‖x‖ ≤ 2.34}.

Based on (16), one can verify that V cannot

increase in D for ‖e‖ ≤ 4.6, making Ωx positively

invariant for U = {e | ‖e‖ ≤ 4.6}.

With ‖H‖ and ‖G‖ bounded in D, we

can write d
dt ‖e‖2 ≤ ‖e‖max{2 · 2.34 ‖H‖, 2‖G‖}(1 +

‖e‖). Using the comparison lemma in conjunction

with the fact that at the end of an inter-

execution interval we are guaranteed 0.90‖e‖2 <

0.74 · 0.332‖x‖ (see [26]), we obtain ‖e(t)‖ ≤ 1−

exp
(

0.5307 t
τi−1−τi

)
. Thus, after a time interval which is

twice as long as the time-triggered policy of [26]

suggests, the measurement error cannot be bigger

than ‖e‖max = 3.575. Armed with this knowledge, we

can return to (16), and write

V̇ ≤ −0.74 · 108‖x‖4 + 0.90 · 3.575 · 108‖x‖2 ⇒

≤ −106 V 2 + 7.15 · 109 V , (17)
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where the over- and under-approximations of ‖x‖ by

V are obtained numerically, using extremum seeking

methods. Invoking the comparison lemma again, we

get

V (t) ≤ b V (x(τi))
b e−bt + a[e−bt − 1]V (x(τi))

(18)

where a < 0 and b > 0 are constants. Interestingly,

using 0.90‖e‖2 < 0.74 · 0.332‖x‖ in (16), we find that

a faultless self-triggered control policy following the

delay, will need just 2.322 · 10−5 seconds to counter

the increase in V (t) during the delay and ensure

V (τi+1) ≤ 0.77V (τi).

Now we can constructively show how the

conditions of Theorem 1 are satisfied. Starting with

(3), and assuming that 2 max ∆τ + 2.322 · 10−5 ≤

TD, we find that

V
(
x(τi+1)

)
− V

(
x(τi)

)
≤ −0.33 · V

(
x(τi)

)
≤ −24.42 ‖x‖ .

For (2) we can bound the right-hand side of (17) by

4.17 · 1010 V (t) and then use (18) to arrive at

sup
t∈(τi,τi+1]

V̇ ≤ 2.19 · 1014 TDV (x(τi))
τi+1 − τi

×[
7.15 · 103e−7.15·109TD + (1− e−7.15·109TD )V (x(τi))

]−1

It follows from Theorem 1 that the system

maintains its stability properties if state update is

delayed by one inter-execution interval, as long as

the delay is not sustained, and the system resumes

its self-triggered policy after the state update. An

illustration of the effect of such a delay after t = 2

seconds is shown in Fig. 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.02

0.04

0.06

0.08

0.10

t HsecL

V

Fig. 4. The effect of a delay in the state update under a self-
triggered control regime. The vertical solid lines mark
the inter-execution times. The sensor fails to inform
the controller about the state of the system at the
time instant marked by the dashed line which was the
intended inter-execution time. Instead, the sensor takes
twice that time to report the state measurement. Because
of this delay, the value of the V increases temporarily,
but not sufficiently so that it surpasses the value it
had the last time the state was updated—marked by
the vertical line over 0.06. Once the communication
is established again between sensor and controller, V
decreases monotonically.

3.1.1. Input-to-state stability

In [26] the self-triggered system was shown to be

robust—in an iss sense—with respect to stochastic

measurement noise and impulse input disturbances.

Here we will demonstrate with the help of Theorem 2

that it is also robust with respect to sustained inter-

execution delays.

Consider the closed loop system (12)–(13), with

(13) implemented through the self-triggered policy of

inter-execution times suggested by (15). Assume now

that due to some time of persistent communication

problem, all inter-execution times after the first

second of operation are prolonged by 15%. The result

of this delay is an increase of the measurement
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Prepared using asjcauth.cls



11

error beyond the point at which 0.90‖e‖2 ≤ 0.74 ·

0.332 ‖x‖2 that the self-triggered policy targeted.

Note that using the same bounds computed in

Section 3.1,

log(1 + 0.045‖x‖2) ≤ 0.045 ‖x‖2 ≤ V (x) ≤
√

74 ‖x‖2 ,

where it can be seen that log(1 + 0.045‖x‖2) is

Lipschitz. Starting from (16), and with some

manipulation, we arrive at

sup
t∈(τi,τi+1]

∂V
∂x

(
fσ(t)(x) + u

)
≤ 0.45·108

τi+1−τi (V + ‖e‖∞)2

which establishes (6). For (7), recalling (16) which

holds during a regular inter-execution time interval,

we can use the upper and lower bounds on V to

obtain

V̇ ≤ −89.05 · 104 V 2 ⇒ V (t) ≤ V (τi)
1 + 89.05 · 104 V (τi)

,

for t ∈ (τi, τi + ∆τi]. After τi + ∆τi we can still

have V̇ ≤ 0.90 · 108 ‖e‖∞V , on which the comparison

lemma applies with the above bound in the role of

initial condition, to yield

V (τi+1)− V (τi) ≤ −V (τi) + c1 ec2 ‖e‖∞ ,

where c1 = 7.15 · 103 and c2 = 1.35 · 107. Thus, (7) is

established.

Figure 5 shows the actual effect of a persistent

15% delay in state updates on top of the inter-

execution time. The latency starts occurring after

t = 1 seconds.

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

t HsecL

V

Fig. 5. The effect of a consistently 15% longer inter-execution
interval in a self-triggered control regime. The vertical
solid lines mark the regular inter-execution times, and
the dashed ones indicate the delayed ones. During the
first part of the inter-execution interval, the function
decreases as predicted, but the prolonged time between
state updates causes an eventual increase toward the end
of the interval. The amplification is remains bounded
and the maximum values of the function between state
updates reduce with time but do not converge to zero.

IV. Conclusion

There can be classes of stable systems switching

with dwell time, or not switching at all, for which

existing uniform asymptotic stability conditions are

violated. These systems can still be shown to

be asymptotically stable, for a selected switching

signals; this entails the relaxation of the conditions

imposed on the derivative of some (common)

Lyapunov-like function. Essentially one just needs to

ensure that the function decreases measurable by the

end of each switching interval. This type of stability

conditions are difficult to establish analytically,

however, in practical examples of interest they can

either be guaranteed by design, or found to hold

numerically. The stability relaxation presented in

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls



12 Asian Journal of Control, Vol. 00, No. 0, pp. 1–13, Month 0000

this paper also admits an input-to-state stability

extension.
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