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Abstract— This paper contributes to the area of miniature
legged robots by investigating how a recently introduced bio-
inspired template for such robots can be used for navigation.
The model is simple and intuitive, and capable of capturing the
salient features of the horizontal-plane behavior of an eight-
legged miniature robot. We validate that the model can be
combined with readily available navigation techniques, and then
use it to plan the motion of the eight-legged miniature robot,
which is tasked to crawl at low speeds, in obstacle-cluttered
environments.

I. INTRODUCTION

Legged robots have the potential to traverse a wide range
of challenging terrains, where their wheeled counterparts
may not be successful. Miniature legged robots, in particular,
can also reach areas where larger ones cannot fit. In addition,
they can be manufactured in a fast and relatively inexpensive
manner, thus allowing for deployment in large numbers.
These features create new opportunities in applications in-
volving building and pipe inspection, search-and-rescue, as
well as Intelligence, Surveillance, and Reconnaissance (ISR).

These new opportunities have promoted the development
of a variety of bio-inspired multi-legged robots of small
scale. Examples include the cockroach-inspired hexapod [1],
the three-spoke rimless wheeled Mini-Whegs [2], [3], the
3D-printed robots STAR [4] and PSR [5], and i-Sprawl [6].
Using the Smart Composite Microstructure (SCM) tech-
nique [7], several minimally actuated palm-sized crawling
robots have been fabricated; see for example DynaRoACH [8]
and OctoRoACH [9] (Fig. 1).

Despite the introduction of a large number of small legged
robots, our understanding on how autonomous navigation can
be performed at these scale is still limited. Indeed, with few
exceptions [10], [11], analysis is generally scarce. The few
available robot modeling approaches have been motivated
by car-like robot methodologies. Yet, bio-inspired models
may be more suitable for capturing intrinsic robot behaviors
associated with the legs.

Most of the existing bio-inspired modeling approaches
yield horizontal-plane reduced-order dynamical models. The
Lateral Leg Spring (LLS) model [12]–[14] offers justifica-
tion for lateral stabilization [15], and is used for deriving
turning strategies [16], [17] for hexapedal runners. The most
common configuration of the LLS consists of a rigid torso
and two prismatic legs modeled as massless springs, each
representing the collective effect of a support tripod. The
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Fig. 1. The OctoRoACH, designed at the University of California, Berkeley.
It is 130 mm-long, weights 35 g, and reaches a maximum speed of 0.5 m/s.

Sliding Spring Leg (SSL) model [18] includes the sliding
effects of the leg-ground interaction in hexapedal robots.

However, the dynamic nature of these models presents
challenges to navigation at low crawling speeds. In this
regime, surface forces dominate over inertia effects [19],
[20]—yet, detailed ground interaction descriptions for inte-
gration into a dynamical model are unavailable [21], and
the connection between model parameters and robot control
parameters is unclear [8]. To tackle these issues, a kinematic
template called the Switching Four-bar Mechanism (SFM) is
introduced in [22] and studied in [23]. Motivated by the foot-
fall pattern of the OctoRoACH [9], the model captures the
average behavior of the robot when crawling at low speeds
in a quasi-static fashion, and allows for a direct mapping
between model parameters and robot kinematics.

This paper validates the suitability of the considered
template for the OctoRoACH. The procedure involves the
use of a motion capture system to record three curvature-
parameterized motion primitives: (i) straight line, (ii) clock-
wise turn, and (iii) counter-clockwise turn. Solving a con-
strained optimization problem yields nominal model param-
eter values that make the model’s behavior match experi-
mentally observed robot data, on average. These data-based
primitives are then used in an RRT solver [24, Section 7.2.2]
for finding paths in environments populated with obstacles.

The work in this paper is part of our effort to port naviga-
tion and planning tools into the domain of miniature legged
robots, and extends earlier work [10] by investigating the
potential of bio-inspired models for navigation. The efficacy
of the SFM template in navigation at the miniature scale
opens the way for linking high-level navigation objectives
to control strategies implementable at the physical platform.
In principle, this template-based approach can be applied to
a range of miniature crawling robots.



II. THE SWITCHING FOUR-BAR MECHANISM

The SFM template (Fig. 2(a)) is a horizontal-plane model
consisting of a rigid torso and four rigid legs [23]. The
legs move according to the foot-fall pattern depicted in
Fig. 2(b). As the gait is executed, the torso and the legs form
two alternating four-bar linkages, parameterized by the leg
touchdown and liftoff angles, and the leg angular velocity.
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Fig. 2. (a) The SFM template. It consists of two pairs of legs that
become active in turns, forming two fourbar linkages, {O1A,AB,BO2}
and {O3A,AB,BO4}. d is the distance between the two hip-point joints
A and B, l denotes the leg length, and G is its geometric center. (b) The
foot-fall pattern followed by the model.

A. Key Features

With respect to Fig. 2(a), the two leg pairs {AO1, BO2},
and {AO3, BO4} are denoted as right and left pair, respec-
tively. It is assumed that no slipping occurs between the tips
of the legs and the ground, and that only one pair is active
at all times—resulting to a 50% duty factor between legs.

The state of the model is a tuple (xG, yG, θ) ∈ R2 × S,
where (xG, yG) denotes the position of the geometric center
of the model, G, with respect to some inertial coordinate
frame {O}, and θ is the angle formed between the longitu-
dinal body-fixed axis and the y-inertial axis. The evolution
of the state during each step is determined by the kinematics
of the respective active pair. Since each pair is kinematically
equivalent to a four-bar linkage, the motion at every step is
fully determined by one degree of freedom, taken here to be
the angle φ1 for the right pair, and the angle φ3 for the left.

The geometric characteristics of a model path strongly
depend on the values of the model parameters. Different
combinations of touchdown and liftoff angles can produce
very different path profiles, the geometric features of which
are characterized by tools from differential geometry [25].

B. Characterizing the Geometry of a Model Path

Due to the fact that the model involves switching between
two different four-bar mechanisms, the resulting geometric
paths are piecewise differentiable. At the switching point,
however, we observe an instantaneous change in the direction
of motion. To calculate the curvature of such paths, produced
by a specific combination of parameters values, we use

the Gauss-Bonnet Theorem [25, Section 4-5]. In our planar
configuration it results in

L∑
j=0

∫ sj+1

sj

k(s)ds+

L∑
j=0

χj = 2π , (1)

where, L is the total number of steps taken by the SFM
template, sj is the arc length of step j, and k(s) is the
curvature of the curve component produced at each step:

k(s) =
x′y′′ − x′′y′

((x′)2 + (y′)2)
3
2

.

The quantity χj is the instantaneous change in the direction
of motion of G when the model transitions from step j to
step j + 1 (Fig. 3).

χj < 0

χj+1 > 0y

x

Fig. 3. Instantaneous change in the direction of motion when switching
between steps. The sign of the angle is determined by the right-hand rule.

An appropriate number of steps allows the model to
transcribe a closed circular curve, for which

2πR =

∫
c

ds . (2)

Combining (1) and (2) yields

R =

∫
c

ds∑L
j=0

∫ sj+1

sj
k(s)ds+

∑L
j=0 χj

. (3)

Then, the average path curvature produced by specific values
for the touchdown and liftoff angles is obtained from (3) as
kpath = 1/R. In principle, (3) allows one to translate “macro-
scopic” requirements regarding desired path curvatures into
model parameters realizing them; see Section III-D below.

C. Model Properties

Figure 4 graphically presents the set of reachable states
from an initial state q0 ∈ C ⊂ R2 × S at time T , denoted
R(q0, T ), for T = 3 seconds. Without loss of generality,
we pick q0 = (0, 0, 0) in units of [cm, cm, deg], set the
parameters d and l to 13 cm and 3 cm respectively, and
choose the angular velocity of both leg pairs to φ̇RL = 8.02
[deg/sec]. We also assume that all four legs are initiated with
the same touchdown angle (i.e. φtd1 = φtd2 = φtd3 = φtd4 ).

The reachable set gives us insight into the controllability
properties of the model. From the graph produced in Fig. 4,
it follows that this system is accessible [24]. In fact, we
can achieve small-time local accessibility if we restrict the
problem to R2, and treat the orientation θ as a parameter.

III. ADAPTING THE SFM TO OCTOROACH BEHAVIORS

Experimental data is used to identify the SFM parameters
that enable the model to match the average robot behavior.
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Fig. 4. The set of reachable states produced by the SFM template, starting
at the initial state x0 = (0, 0) cm, θ0 = 0o, and for a time span of 3 sec.
Not all possible combinations of touchdown and liftoff angles are shown;
this leads to some small areas not being covered by the paths.

A. Model–Robot Relation

The OctoRoACH is designed to follow an alternating
tetrapod gait, as shown in Fig. 5(a). Legs {1, 2, 3, 4} form the
“right” tetrapod, and legs {5, 6, 7, 8} form the “left” tetrapod.
The ipsilateral legs of each tetrapod touch the ground at the
same instant, and rotate in phase with the same angular ve-
locity. The abstract eight-legged model of Fig. 5(b) illustrates
this coupling, based on which we combine ipsilateral legs of
each tetrapod into a single “virtual” leg. This combination
yields the SFM template (Fig. 5(c)), where contralateral
virtual legs (e.g., {O1, O2}) represent the collective effect
of the tetrapod they replace (e.g. {1, 2, 3, 4}) [23].
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Fig. 5. Relating the SFM template to the OctoRoACH. (a) The foot-fall
pattern of the robot, is an alternating tetrapod gait. Legs {1, 2, 3, 4} form
the right tetrapod, and legs {5, 6, 7, 8} form the left tetrapod. (b) An eight-
legged kinematic simplification of the gait mechanism used by the robot.
The ipsilateral legs of each tetrapod are coupled, forming the angles α and β.
This is shown here for the right tetrapod; the left tetrapod operates similarly.
(c) The SFM is recovered by grouping coupled legs within a tetrapod into a
single virtual leg inducing the same displacement. Legs {1, 2, 3, 4} reduce
to the pair {O1, O2}, while legs {5, 6, 7, 8} reduce to the pair {O3, O4}.

B. A Library of Primitive Behaviors

The robot has two motors, each driving the legs on its
own side. The two motor gains, KL, and KR, control
the leg velocities of the left and right side, respectively.
Then, we define three motion primitives: (i) straight line
(SL), (ii) 90o clockwise turn (CW), and (iii) 90o counter-
clockwise turn (CCW); . Table I gives the gains realizing these
primitives. Note that one may choose to work with more
primitives—see [23]. The particular primitives considered
here capture the gross behavior of the robot while keeping
the computational complexity of the navigation problem low.

To specify the target curvatures for the primitives we first
calculate the curvature of the tightest robot turn.1 We exper-
imentally measured it at 0.25 cm−1. The range of motion
is thus prescribed between this turning curvature and zero,
and is partitioned into four sectors. The curvature of the CW
and CCW primitives is set at 0.063 cm−1. The SL primitive
has zero curvature, in theory; however, measurement noise,
robot design errors, and random ground interaction effects,
contributed to a nonzero experimentally measured curvature.
SL paths are therefore associated with curvatures less than
0.01 cm−1 (Table I).

TABLE I
A LIBRARY OF PRIMITIVE BEHAVIORS FOR THE OCTOROACH

Type Description
Motor Target Target
Gains Orientation Curvature

(KL,KR) [deg] [cm−1]

CW Clockwise
(60, 20) θ ' −90o 0.063

90o Turn

SL Straight-Line (40, 40) θ ' 0o ≤ 0.01

CCW Counter-Clockwise
(20, 60) θ ' 90o 0.063

90o Turn

C. Experimental Construction of Motion Primitives

The three primitives of Table I are realized by collecting
open-loop planar position and orientation measurement data.
The measured states comprise the planar position of the
geometric center of the robot (xG, yG), and its orientation
θ; see Fig. 2(a). By convention, positive changes in the
orientation correspond to counter-clockwise angles θ.

We collect data from a total of 250 paths for each
primitive. Data is captured with the use of a motion capture
system at 100 Hz. All trials last 3 sec, and are conducted on
a rubber floor mat surface. The robot is manually set into a
designated start area with an initial state set at (xG, yG, θ) =
(0, 0, 0) [cm, cm, deg]. Initial pose errors are bounded by
data statistics, and are shown in Table II. Note that these
error bounds account for measurement noise as well.

TABLE II
INITIAL POSE ERROR STATISTICS

Type Mean Standard Deviation
[cm cm deg] [cm cm deg]

CW (−0.156, −0.041, 1.23] [0.177, 0.141, 1.37)

SL (−0.007, 0.027, 0.06] [0.234, 0.054, 1.81)

CCW (−0.322, −0.012, 2.50] [0.156, 0.130, 1.23)

Figure 6 provides insight on the choice of the 3 sec
duration for our data collections and the generated motion
primitives. The histogram shows how individual experimen-
tal paths disperse as time elapses. It can be seen that after the
end of the 3 sec period, there is a very high dispersion around

1The tightest CW and CCW turns are achieved by setting the motor gains
to (80, 0), and (0, 80) respectively.



Fig. 6. Path dispersion as time elapses. All primitives start at the origin,
and are largely dispersed after the 3 sec trial. The z axis counts how many
paths are inside a particular grid square. Due to the selected grid size, some
paths may appear more than once inside a square. CW paths curve to the
left of the page, while CCW paths curve to the right.

the experimental averages shown with black thick curves in
Fig. 7. Thus, constructing motion primitives that last longer
is not meaningful; the variance in the experimental data
becomes unacceptably high. Capturing the variability due to
the stochasticity inherent to leg-ground interaction is beyond
the scope of this paper. Preliminary considerations appear
in [26], while a detailed account on a method for extending
deterministic models to a stochastic regime for capturing the
uncertainty within the model is reported in [27].

Table III contains the average final state of the robot for
each primitive, while Table IV presents the target and average
observed values for path curvatures and final orientations.
Both averages are very close to their target values, although
individual paths may deviate significantly.

TABLE III
FINAL POSE (AVERAGE VALUES)

Type xG yG θ
[cm] [cm] [deg]

CW 12.928 11.307 −85.02

SL 3.246 23.044 −10.62

CCW −14.183 11.960 90.90

TABLE IV
CURVATURE AND FINAL ORIENTATION (AVERAGE VALUES)

Type
Target Observed Target Observed

Curvature Curvature Orientation Orientation
[cm−1] [cm−1] [deg] [deg]

CW 0.063 0.066 ' −90o −85.02

SL ≤ 0.01 0.009 ' 0o −10.62

CCW 0.063 0.068 ' 90o 90.90

Finally, Fig. 7 shows 50 randomly selected paths (in
magenta) for each primitive. The average of the whole data

set of 250 paths is marked by black thick curves. Note that
the platform tends to veer to the right (see Fig. 7(b)).

D. Parameter Identification
Let WSL, WCW, and WCCW denote the collections of all

experimental planar trajectories of the robot for the SL, CW,
and CCW motion primitives, respectively, and let w denote
an element in these sets. The averages of all elements for
each set are marked with wave

SL , wave
CW , and wave

CCW.
The model parameters to be identified are included in

ζ = [φ̄ td
1 , φ̄ td

2 , φ̄ td
3 , φ̄ td

4 , φ̄ lo
1 , φ̄ lo

2 , φ̄ lo
3 , φ̄ lo

4 , ˙̄φRL] .

Superscript (n) stands for “nominal,” (td) indicates the
model’s touchdown angles, while (lo) denotes liftoff angles,
and ˙̄φRL marks the leg angular velocity, assumed to be the
same for both pairs. To achieve CW turns we allow only the
left pair to be active, while right pair activation only leads to
CCW turns. For SL paths, both pairs are active. As before, we
set d to 13 cm—equal to the length of the actual platform—
and l to 3 cm.

In order to identify the SFM parameters that result in tra-
jectories that remain close to the experimental averages, we
formulate a constrained least-squares optimization problem

min
ζ∈Z
‖pi(ζ)− wave

i ‖2, i ∈ {SL, CW, CCW} , (4)

where || · || denotes the L2 norm, and pi(ζ) indicates the
trajectories generated by the model parameterized according
to the value of the vector ζ. Then, the nominal parameter
vector ζ for each primitive is selected as the solution of (4).

The solution, ζ̂, enables the SFM to produce the trajectories
shown in Fig. 7 with blue thick dashed curves. Table V
contains the numerical values of the components of ζ̂,
allowing SFM to capture on average the behavior of the
system, as shown in Fig. 7. Due to their close matching with
the experimental averages, the nominal SFM trajectories are
used to calculate the values of the observed curvatures shown
in Table IV by applying (3).

IV. NAVIGATION WITH THE TEMPLATE

Having recorded the motion primitives, we combine them
to navigate in spaces populated with obstacles. To solve this
problem, we employ a rapidly exploring random tree [24,
Section 7.2.2] (RRT) solver that uses the constructed primi-
tives in order to generate new vertices. The choice of RRT is
primarily due to its popularity, proven experimental success,
and the availability of off-the-shelf software implementing
the basic algorithms.

The implementation considered here requires no tuning,
but it does not allow for an early termination of a primitive.
This means that a generated SL, CW, or CCW path is imme-
diately discarded if it intersects with the obstacle region, and
that only the end of each primitive can be used to define a
new vertex. Because of this restriction, the algorithm may not
always find a solution. This can be rectified by introducing
a tuning parameter that shortens execution times. As the
number of vertices increases, a path from the initial to the
goal state is found more easily. The trade-off, however, is an
increase in the computation time for the algorithm to find a
solution.
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Fig. 7. Experimental data for the primitives contained in Table I and the respective model output counterparts. The experimental average out of a total of
250 paths for each case is shown in black thick curves, and 50 randomly selected paths of the robot’s geometric center are shown in magenta. The blue
thick dashed curves depict the output of the model parameterized by the nominal parameter values of Table V.

TABLE V
IDENTIFIED MODEL PARAMETERS

Type φtd,n1 φtd,n2 φtd,n3 φtd,n4 φlo,n1 φlo,n2 φlo,n3 φlo,n4 φ̇RL
[deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg/sec]

CW 32.72 4.19 0 0 −55.28 −83.81 0 0 7.56

SL 56.72 45.84 68.18 70.47 −51.78 −62.66 −57.70 −55.41 9.00

CCW 0 0 26.28 1.37 0 0 −55.66 −80.57 8.65

V. RESULTS

We implement the solver in four illustrative simulation
scenarios. The initial state varies for each case (see Table VI)
but the environment (depicted in Fig. 8) stays the same.
Similarly, the goal is set at qd = (xd, yd, θd) = (220, 220, 0)
[cm, cm, deg] and remains unchanged. Due to the constraints
of the problem and the discretization induced by the solver,
reaching exactly qd is unlikely. Thus, we accept as successful
all paths that end within a radius of 10 cm around (xd, yd),
with a final orientation in the range between −30◦ and 30◦.

TABLE VI
INITIAL STATES FOR CASE STUDY SIMULATIONS

Case (a) (b) (c) (d)

xG [cm] 40 120 120 120

yG [cm] 10 10 10 10

θ [deg] 0 0 −45 45

With respect to Fig. 8, the actual obstacles are marked
in blue, while light gray is used to denote the portion of
the configuration space where the boundary of the model
touches, or crosses the boundary of the obstacle (“grown
obstacle”). We use magenta to color the branches of the
constructed trees, and we finally highlight in red the sequence
of primitives that leads from the initial to a neighborhood of
the desired state, marked with a large black circle.

Figure 8 suggests that the solver finds a solution for all
cases presented. Note, however, that paths may become very
curvy toward the end due to the desired final orientation we
have chosen. This behavior is exacerbated by the execution
time of primitives being fixed. The solver always chooses

the full primitive length, even if this may not be necessary.
Allowing the primitives’ execution time to vary can improve
the quality of paths, but it will increase computational
complexity and time required to find a solution. This trade-
off is currently being investigated.

Our current work also addresses the experimental imple-
mentation and validation of the computed paths shown in
Fig. 8 on the robot. This is, however, a challenging task
since the high variability observed in the behavior of the
robot renders successful completion of the desired paths
unlikely; our previous work in [10] illustrates this point for
a morphologically similar robot. For the robot considered
here, the current low-level hardware does not allow for
integration of on-board sensors (e.g. a compass and IMU)
for state feedback, hindering the on-board implementation
of feedback control policies.

VI. CONCLUSIONS

We demonstrate that the SFM template can be effectively
used for navigation of miniature legged robots such as the
OctoRoACH, when the platform operates in a quasi-static
fashion at low crawling speeds. Combining this kinematic
template with a generic RRT solver yields reasonably good
performance in terms of finding a path from an initial to a
final state within cluttered environments. The paths produced
respect the kinematic constraints of the robot, with minimal
modifications and tuning.

Motion capabilities and mobility constraints are captured
in the form of motion primitives, and encode basic motion
behaviors: straight line, 90o clockwise and counter-clockwise
turns. The parameters of these primitives are given by the
solution of a constrained optimization problem, formulated
on a set of experimentally collected data from observed robot



0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(a)

0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(b)

0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(c)

0 40 80 120 160 200 240
0

40

80

120

160

200

240

x [cm]

y
[c
m
]

(d)

Fig. 8. Navigation scenarios for different initial states. The first case differs in the position, while the last three start at the same point, but with different
initial orientations. Obstacles are at the same location for all cases. Irrespective of the initial state though, we were always able to find a solution. The
curvy final part in cases (a), (c), and (d) is due to the desired final orientation being set in the interval [−30, 30]o; the effect can be remedied by letting
the execution time vary.

paths. The returned solution minimizes the deviation of the
model output from the average of the observed trajectories
for a given type of behavior. Then, the solver uses these
primitives as atomic motion behaviors for the system.

Extensions of the work presented here involve low-level
hardware modifications, integration of sensors (range sen-
sors, compass and IMU) to provide on-board state feedback
for the experimental validation of the generated navigation
strategies, investigation of the trade-off introduced by letting
the primitives’ execution time vary, and experimenting on
different terrain types to identify the range of parameters
which are robust to terrain changes.
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