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Abstract

The paper presents the first result on nonholonomic systems enjoying Input to
State Stability (ISS) properties. Although it is known that smooth stabilizability
implies ISS, the converse is not generally true. This leaves the possibility of non
smoothly stabilizable systems being ISS with respect to a particular input, after an
appropriate feedback transformation. This is shown to be true for the case of the
unicycle with a dynamic extension, in a particular topology induced by a metric
appropriate for this type of systems. A feedback control law renders the closed loop
system locally ISS in the particular topology. Potential applications include stability
and robustness analysis of formations of mobile robots.

1 Introduction

Input-to-state stability (ISS) [1] is a framework for stability and robustness
analysis that has proved extremely useful in a variety of applications, from
PWM control systems [2] to formation control and robotics [3]. The success
of input-to-state stability as an analysis tool is in part due to its invariance
properties under a large class of system interconnections [1].

Lately there has been related work on applications of input-to-state stability
on vehicle formations [3]. Taking advantage of the invariance properties of ISS,
one can compute error bounds for the vehicles in the formation, which depend
on the formation leader input [4]. When the system dynamics is linear, the
approach provides recursive matrix equations that yield the gains from input
to error, for the whole formation as well as for interconnected subgroups.
However, vehicles are usually modeled as nonholonomic systems. It is thus
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natural to ask if such techniques can be applicable to the case of nonholonomic
dynamics.

The highly nonlinear nature of the problem and the fact that nonholonomic
systems cannot be stabilized by continuous static state feedback [5], make
the problem particularly challenging. Numerous approaches to nonholonomic
stabilization to equilibrium points are based either on discontinuous or time-
varying techniques [6,7]. Although ISS is related to smooth stabilizability,
in the sense that the latter implies the former [8], there has been no result
suggesting equivalence. Motivated by the possibility of establishing local ISS
properties for systems that are not smoothly stabilizable, this paper investi-
gates the case where a vehicle described by unicycle kinematics with a dynamic
extension, is required to follow a moving target. It seems that the dynamic
extension in the vehicle dynamics plays a significant role in the ability to estab-
lish its local ISS properties with respect to acceleration disturbances injected
by the moving target. The approach presented capitalizes on the fact that
these disturbances enter in a linear fashion into the vehicle dynamics. The
stability analysis exploits a topology induced by a particular nonholonomic
metric after an input feedback transformation. With respect to this metric,
the vehicle dynamics are shown to be exponentially stable, opening the way for
the establishment of local ISS properties. Similar nonholonomic metrics have
been used for characterizing shortest paths [9,10] for mobile robots. A singular
perturbation analysis then provides the necessary controller gains that ensure
asymptotic stability (exponential in the new metric) for the nominal system
and input-to-state stability for the perturbed. In the metric-induced topology,
the gain function from disturbance to error is linear, allowing a computation-
ally efficient propagation of the ISS gains through vehicle interconnections as
those described in [4].

The rest of the paper is organized as follows: in Section 2 we give a brief de-
scription of the problem and we introduce the nonholonomic metric. Section 3
introduces the feedback controller and establishes its stability properties using
singular perturbations analysis. In Section 4 the closed loop system is shown
to be locally ISS with respect to acceleration input disturbances. Section 5 ver-
ifies the paper’s results via numerical simulations. Finally, Section 6 elucidates
the contributions of this paper.

2 Problem Description

Vehicles in formation are generally required to maintain a desired distance
and bearing from each other [11]. In such a scenario, a vehicle such as the one
depicted in Figure 1, regulates its distance r and its bearing ϕ with respect to
another, leading vehicle. Let us attach a reference frame at the desired position

2



r

S2
S1

v

ω

θ

(x, y)

ϕ

Fig. 1. A vehicle tracking a moving target.

of the following vehicle, aligned with the desired orientation. The configuration
of the following vehicle with respect to that frame can be specified by the
position offset, (x, y), and the orientation offset, θ. The following vehicle moves
with translational speed v and rotational velocity ω. It is controlled via its
translational acceleration a and rotational acceleration α inputs, respectively.
The dynamics of the following vehicle are given as:

ẋ = v cos θ (1a)

ẏ = v sin θ (1b)

θ̇ = ω (1c)

v̇ = a (1d)

ω̇ = α (1e)

This model is essentially equivalent to the one derived in [12]. Assume now that
a kinematic controller on the following vehicle can specify a reference speed vd

and rotational velocity ωd, in order for the offset (x, y, θ) to converge to zero
asymptotically. These reference velocity inputs have to be realized through the
translational and rotational acceleration inputs, a and α, respectively. Let ev
and eω denote the velocity errors, the difference between the vehicle velocities
and the reference velocity inputs. Then the dynamics can be rewritten as:

ẋ = (vd + ev) cos θ (2a)

ẏ = (vd + ev) sin θ (2b)

θ̇ = ωd + eω (2c)

ėv = a (2d)

ėω = α. (2e)

Since the control specifications are prescribed in terms of desired distance and
bearing, the use of polar coordinates seems more appropriate:

r ,
√

x2 + y2, ϕ , arctan(y/x), eθ , θ − 2ϕ.
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In polar coordinates the system dynamics take the following form:

ṙ = (vd + ev) cos(eθ + ϕ) (3a)

ϕ̇ =
vd + ev

r
sin(eθ + ϕ) (3b)

ėθ = ωd + eω − 2(v + ev) sin(eθ + ϕ) (3c)

ėv = a (3d)

ėω = α. (3e)

Let us consider the regions, S1 = {(r, ϕ, θ, v, ω) | cosϕ > 0} and S2 =
{(r, ϕ, θ, v, ω) | cosϕ < 0} (Figure 1), and restrict our analysis to the do-
main S1 ∪ S2. Note, that by the definition of ϕ, the origin belongs to S1.
When the inputs have to be bounded, the analysis has to be restricted to
Sδ

1 = {(r, ϕ, θ, v, ω) | cosϕ > δ} and Sδ
2 = {(r, ϕ, θ, v, ω) | cosϕ < −δ}, for a

sufficient δ > 0. Due to the invariance of S1 and S2, which will be established
shortly (Section 3.2), it makes sense to define the following metric on S1 and
S2:

Proposition 2.1 The function d1 : Si → R, i = 1, 2 given as:

dc(r, ϕ, θ, ev, eω) ,

√

r2

cos2 ϕ
+ sin2 ϕ+ θ2 + e2

v + e2
ω (4)

defines a metric on Si.

Proof. Function (4) has to satisfy: (i) dc(z) ≥ 0, ∀z ∈ Si, (ii) dc(z) = 0 ⇔
z = 0, ∀z ∈ Si, and (iii) dc(z1 + z2) ≤ dc(z1) + dc(z2), ∀z1, z2 ∈ Si. We will
show that this is true for S1; the case for S2 follows similarly. Properties (i)-
(ii) are straightforward. For (iii), consider any two vectors in S1, z1 and z2.
Then (iii) becomes obvious in Cartesian coordinates by taking the difference
dc(z1+ z2)−dc(z1)−dc(z2). In S1, for this difference to be negative, it suffices
to show that r

cosϕ
− r1

cosϕ1
− r2

cosϕ2
< 0. Substituting:

r

cosϕ
− r1

cosϕ1

− r2

cosϕ2

= −(x2y1 − x1y2)
2

x1x2(x1 + x2)
,

which is negative in S1 since x1, x2 > 0. Similarly it is shown for S2. 2

Figure 2 shows the topology induced by the metric on the (x, y) plane for a
constant θ. Note that this metric is valid on both S1 and S2, but not in S1∪S2.
Our stability results will be expressed with respect to this metric.

The goal in this paper is to establish Input-to-State Stability (ISS) properties
for system (1). Input-to-State Stability is defined as follows [13]:
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Fig. 2. The (x, y)-topology induced by the metric for a constant θ.

Definition 2.2 (ISS) Consider a system of the form ẋ = f(x, y), evolving in
finite-dimensional spaces Rn with inputs u ∈ Rm that are measurable locally

essentially bounded. Assume that f : Rn × Rm → Rn is locally Lipschitz and

satisfies f(0, 0) = 0. The system is input to state stable if

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ

(

sup
t≥0

‖u‖
)

,

for some β ∈ KL and γ ∈ K∞, and for all t ≥ 0.

3 Closed Loop Stability

3.1 The Singularly Perturbed System

With an appropriate choice of control inputs and sufficiently large gains, (3)
can be transformed into a singularly perturbed system. To this end, let the
reference velocities be defined as:

vd = −
k1r

cosϕ
(5a)

ωd = 2(vd + ev) sin(eθ + ϕ)− kωeθ, (5b)

corresponding to the output of a kinematic controller designed to stabilize
(1a)-(1c). The acceleration inputs are then designed so that the actual veloc-
ities track the reference inputs:

a = −k2e−
r2 sec3 ϕ+ cosϕ sin2 ϕ

r
(6a)

α = −eθ − kαeω. (6b)
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If we let kα = kωkθ, with kθ > 1 and substitute (5b) and (6b) into (3) we
obtain a singular perturbed version of (3), in which the boundary layer system
is given as

1

kω







ėθ

ėω





 = −







1 − 1
kω

1
kω

kθ













eθ

eω





 .

Letting τ = t/ε and ε , 1
kω
, it is easily seen that the boundary layer system

is exponentially stable:

deθ
dτ
= −eθ,

deω
dτ

= −kθeω. (7)

The reduced system then takes the form:

ṙ = (vd + ev) cosϕ (8a)

ϕ̇ =
vd + ev

r
sinϕ (8b)

ėv = a. (8c)

Applying (5a) and (6a) in (8), the closed loop reduced system becomes:

ṙ = ev cosϕ− k1r (9a)

ϕ̇ =
ev sinϕ

r
− k1 tanϕ (9b)

ėv = −k2ev −
r2 sec3 ϕ+ cosϕ sin2 ϕ

r
, (9c)

Equations (9) are exponentially stable with respect to the metric (4). Consider
the Lyapunov function:

Vr(r, ϕ, ev) ,
r2

cos2 ϕ
+ sin2 ϕ+ e2

v. (10)

Its time derivative satisfies:

V̇r = −2k2e
2
v − 2k1

(

r2 sec2 ϕ

cos2 ϕ
+ sin2 ϕ

)

≤ −2min{k1, k2}d2
c(r, ϕ, ev).

From the exponential stability of (7) and (8) it follows that there is a suf-
ficiently large kω, for which (3) is exponentially stable with respect to the
metric (4). An estimate for the required lower bound for kω is derived in the
following Section.
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3.2 Gain Selection for Stability

The stability analysis will be performed for the case of cosϕ > 0. Case cosϕ <
0 can be treated similarly. In the course of the discussion it will become clear
that either one of these regions is made positively invariant through (6a)-(6b).
Consider the following Lyapunov function for the boundary layer system (7):

Vb(eθ, eω) , 1
2
e2
θ +

1
2kθ

e2
ω. (11)

Combining (11) with (10) we define a Lyapunov function for the singular
perturbed system:

V = r2 sec2 ϕ+ sin2 ϕ+ e2
v +

1
2
(e2

θ +
e2ω
kθ
). (12)

Its time derivative, V̇ is:

V̇ = −kθ − 1
2kθ

(eθ−eω)
2−1 + 2kα − kθ

2kθ
(e2

θ+e2
ω)+

ev sin(2ϕ)[sin(ϕ+ eθ)− sinϕ]
r

+ 2k1 cos eθ sin
2 ϕ− k1 sin(2ϕ) sin eθ − 2k2e

2
v

− 2evr sec3 ϕ sin2( eθ
2
)− 2k1r

2 cos eθ sec
4 ϕ.

Using the fact that |eθ| ≤ π
2
, implying cos eθ ≥ 0 and |eθ| ≥ |sin eθ|, we can

bound V̇ as follows:

V̇ ≤ −kθ − 1
2kθ

(eθ − eω)
2 − 1 + 2kα − kθ

2kθ
(e2

θ + e2
ω)

− 2min{k1, k2} cos eθ(e2
v + r2 sec4 ϕ+ sin2 ϕ)

+ 2max{1, k1}|eθ| cosϕ(1 + |ev |
r
)(|sinϕ|+ r2 sec4 ϕ).

From the local Lipschitz continuity of g(x) = x2 it follows that there exists a
positive constant L such that |r2 sec4 ϕ| ≤ L|r sec2 ϕ| = Lr sec2 ϕ, from which
we can extend the bound of V̇ :

V̇ ≤ −kθ − 1
2kθ

(eθ − eω)
2 − 1 + 2kα − kθ

2kθ
(e2

θ + e2
ω)

− 2min{k1, k2} cos eθ(e2
v + r2 sec4 ϕ+ sin2 ϕ)

+ 2(1 + L)max{1, k1}|eθ| cosϕ(1 + |ev|
r
)(|sinϕ|+ r sec2 ϕ+ |ev|).

Lemma 3.1 The term ev
r
is upper bounded by a positive constant c.

Proof. Boundedness of ev
r
follows from the stability of (9). If 1

k2
is treated

as a singular parameter then (9) is transformed to a boundary layer system
dev
dτ
= −ev and a reduced system:

ṙ = −rk1 ϕ̇,= −k1 tanϕ,

7



which is also exponentially stable. Therefore, for a sufficiently large k2, the ori-
gin of (9) is exponentially stable. The time scale decomposition of (9) induced
by the increased k1 ensures that |ev| reduces much faster than r, making the

ratio |ev |
r
converge to zero exponentially. This exponential convergence implies

that there are positive constants, c and m such that

|ev|
r
≤ ce−mt ⇒ |ev|

r
≤ c, ∀t ≥ 0.

2

Using the bound on |ev |
r
suggested by the aforementioned Lemma, we can

obtain the following bound for V̇ :

V̇ ≤ −λmin(Q)d
2
c(r, ϕ, ev, eθ, eω) (13)

where λmin(·) denotes the minimum eigenvalue and matrix Q is given as:

Q ,







1−2kα−kθ
2kθ√

2(1 + L)max{1, k1}

√
2(1 + L)max{1, k1}(1 + c)

2min{k1, k2} cos
(

eθ(0)
)





 .

It remains to show that Q is positive definite. It is reasonable to assume
k2 > k1, since k2 has to be selected sufficiently large. A sufficient condition for
Q to have positive eigenvalues is

kα >
max{1, k1}2 sec

(

eθ(0)
)

kθ(1 + c)

k1

+
1

2
(kθ − 1).

Then the smallest eigenvalue is:

λmin(Q) = −
1

4
+

kα

2kθ
+ (1+L)k1 cos

(

eθ(0)
)

+
[

16kθ[2(1 + c)2max{1, k1}2kθ

−(1+L) cos
(

eθ(0)
)

k1(1+2kα−kθ)]+[1+2kα+
(

4(1+L)k1 cos(eθ(0))−1
)

kθ]
2

]1/2

.

With respect to metric dc, V vanishes exponentially. Using the Comparison
Lemma, we conclude for λ ≡ λmin(Q):

dc

(

r(t), ϕ(t), ev(t), eθ(t), eω(t)
)

≤ 2kθV
(

r(t), ϕ(t), ev(t), eθ(t), eω(t)
)

≤ 2kθV (0)e
−λt ≤ 2kθdc

(

r(0), ϕ(0), ev(0), eθ(0), eω(0)
)

e−λt.

4 Acceleration Perturbations

This Section will establish the ultimate boundedness of the closed loop system
(2)-(5)-(6) with respect to perturbations on the inputs (a, α), in the topology
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induced by (4). The bound on the state of the closed loop system is expressed in
terms of a K class function of the magnitude of the disturbances. This implies
that the system is (locally) input-to-state stable in the particular topology.
Let the closed loop system (2)-(6) be perturbed by acceleration disturbances
δ , (δa, δα)T :

ṙ = (v + ev) cos(eθ + ϕ) (14a)

ϕ̇ =
v + ev

r
sin(eθ + ϕ) (14b)

ėv = a + δa (14c)

ėθ = −kωeθ + eω (14d)

ėω = −eθ − kα + δα (14e)

The time derivative of the Lyapunov function (12) will have two new terms:

V̇ = −kθ − 1
2kθ

(eθ−eω)
2−1 + 2kα − kθ

2kθ

(e2
θ+e2

ω)+
ev sin(2ϕ)[sin(ϕ+ eθ)− sinϕ]

r
+ 2k1 cos eθ sin

2 ϕ− k1 sin(2ϕ) sin eθ − 2k2e
2
v

− 2evr sec3 ϕ sin2( eθ
2
)− 2k1r

2 cos eθ sec
4 ϕ+ 2evδa +

eωδα
kθ

,

and can be bounded from above as follows:

V̇ ≤ −λd2
c + 2evδa +

eωδα
kθ

≤ −λd2
c +

√
2max{2, 1

kθ
}dc ‖δ‖2 .

For a constant parameter ζ ∈ (0, 1), we can then have:

V̇ ≤ −λ(1− ζ)d2
c + (

√
2max{2, 1

kθ
} ‖δ‖2 − λζdc)dc

which is negative, provided that dc ≥
√

2 max{2, 1
kθ
}

λζ
‖δ‖2. Treating (14) as a

perturbed system, we have that:

dc ≤ dc(0)e
−λt +

√
2max{2, k−1

θ }
λζ

‖δ‖2

implying that (14) is ISS with respect to the input δ and the norm induced
by the metric dc.

5 Numerical Validation

In this section we verify the ISS properties of the dynamic model (2) with
respect to the metric chosen. In the simulation scenario, the initial condi-
tions for the system are set to (x, y, θ, v, ω) = (0.1, 0.1,−π

2
, 0, 0) (Figure 3).
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The controller gains were set to k1 = 1, kω = 5, k2 = 100k1, and kθ − 2.
The system is perturbed by sinusoidal acceleration disturbances of the form
δa = 50 sin(100t) and δα = 50 cos(100t). Under these initial conditions and
disturbances, the control scheme proves to be robust, ensuring convergence of
the system state to the origin. The acceleration disturbances force the vehicle
to chatter along its path however stability is maintained.
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Fig. 3. Vehicle path.

Figures 4 and 5 show explicitly the effect of these disturbances on the position
and velocity, errors of the vehicle respectively. Figure 6 shows the evolution of
the metric dc along the trajectory of the vehicle, indicating clearly the initial
transient phase where it the metric is decreasing and then the steady state,
where it is ultimately bounded.
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Fig. 4. The effect of acceleration disturbances on position.

6 Conclusion

In this paper we establish a local ISS property with respect to acceleration
disturbances, for unicycle dynamics typically describing nonholonomic vehi-
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Fig. 5. The effect of acceleration disturbances on velocity errors.
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Fig. 6. The evolution of the metric along the trajectory.

cles. This is made possible in a topology induced by a particular nonholonomic
metric, after the application of a (discontinuous) feedback input transforma-
tion. Beyond possible applications of the ISS property to the stability and
robustness analysis of vehicle formations, this result shows that in a particu-
lar topology and with an appropriate choice of input transformation, systems
that are not feedback linearizable or smoothly stabilizable may still enjoy ISS
properties. To this point, it remains unclear whether the kinematic subsystem
can also be rendered ISS. It seems though, that it is not the nonholonomic
nature of the system, but rather the way in which inputs are introduced into
the model equations that is more critical to establishing ISS properties with
respect to these signals.
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