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Abstract—Young children with motor delays lack early mo-
bility rehabilitation applicable to natural and complex envi-
ronments. The goal of this work is to create a novel ”smart”
learning environment that combines socially assistive robots and
rehabilitation technology to promote mobility early on. This
paper outlines the main principles the ”smart” environment is
built upon, the main challenges for creating the environment’s
components, and presents preliminary data on the feasibility of
every component.

I. INTRODUCTION

Infants with Down syndrome achieve their motor mile-
stones significantly later than their typically developing peers
[11, 16, 10], and their immobility lessens the opportunities
for forming early experiences, which in turn may affect
perception, cognition, and language development [2, 4, 6]. Yet,
there is a dearth of appropriate, personalized pediatric mobility
rehabilitation paradigms capable of increasing the dosage of
mobility and applicable to natural and complex environments.
The overarching goal of the research effort summarized here is
the development of such a paradigm. Motivated by evidence
of benefits seen in other areas of motor rehabilitation with
older children [14, 8], the envisioned paradigm blends active
and adaptive socially assistive robotic technologies with inno-
vative and age-specific passive elements, such as a portable
body-weight support device, to boost mobility dosage within
enriched environments.

There are great challenges associated with the development
and implementation of such paradigms. One of them is the lack
of adequate evidence in tests with very young populations, that
would support the hypothesis that social interaction between
children and machines can be expected. Other challenges relate
to the development of the rehabilitation system itself. For
example, no complete theory for adaptive social child-robot
interaction has been established to guide the design of the
system and the adjustment of its parameters.

Driven by the need to address some of these challenges,
this work brings together kinesiology, robotics, computer and
cognitive science to create a novel “smart” early rehabilita-
tion environment. This is the first study to combine socially
assistive robots and other rehabilitative devices into a single
paradigm. The aspects of this work are reported here. First

is the development and integration of several technological
components into a proof-of-concept single robot-assisted early
rehabilitation paradigm. The second is the assessment of
the capacity of this environment for early pediatric motor
rehabilitation, and its potential for broader future use.

II. CHALLENGES

The paper identifies three major challenges:
• What is the most appropriate learning environment to

advance rehabilitation outcomes?
• Is Child-Robot Interaction (CRI) viable at a very young

age? Can we use CRI to motivate very young children to
explore learning environments?

• Can we build “smart” robots in order to have an integral
role in complex learning environments used in early
pediatric rehabilitation?

A. Learning environments supporting rehabilitation outcomes

The environment plays an important role into shaping
behavior: enriched environments that contain high levels of
complexity and novelty have shown to induce experience-
based brain and behavioral changes when explored in high-
dosages [13, 1, 15]. Especially early on in life, the brain is ca-
pable of adapting to, learning from, and ultimately controlling
the environment through neurogenesis and activity-dependent
mechanisms [5, 7] The challenge in this case is that very young
children with motor disabilities often do not have the capacity
to explore their environment due to both limited motivation
and mobility impairments. The amount of experiences they
gain throughout their lifetime is therefore severely more lim-
ited compared to typically developing children, which in turn
affects their learning.

B. Viability of CRI

The fundamental hypothesis that drives this work is that
an early start in rehabilitation is critical. In other words, to
achieve better results in the rehabilitation outcomes, one starts
as early as possible in life, when most brain changes typically
occur and the onset of most developmental milestones is
observed [5]. CRI has not been adequately explored with
children younger than two years of age, and thus there is no



evidence of guaranteed social interaction. In addition, there is
no standard theory to guide the design and configuration of
CRI systems for very young children. For instance, it is not
clear what mathematical models are appropriate, or what CRI
decision-making architectures are effective.

C. Robots in complex pediatric rehabilitation environments

Complex learning environments promise greater benefits
[13, 1, 15]. Complex environments, however, are “noisy;” they
are considered unpredictable and allow less control authority.
That is where one of the major challenges to robot automation
comes about. We need to build robots that are adaptive; robots
that automatically and safely interact with young children in
complex environments, not only in the structured environment
of a research lab but also in the clinic, home, or school.
Automation involves the robots being able to recognize chil-
dren’s behavior and respond. This process has to be accurate,
fast, and safe, otherwise children lose interest and interaction
diminishes. To have real impact, such automation technology
has to be portable, low-cost, and capable of handling the
“noise” in natural home settings—because this is precisely
where high-dosage of training can be achieved.

III. APPROACH

A number of steps are taken to approach the three afore-
mentioned challenges. A dynamic rehabilitation environment
is designed, where both the child and the robot interact and
learn from each other.

A. The learning environment

The environment is enriched with large objects to explore
while working on balance, coordination, and strength. Because
the manipulation of such objects requires actions that are
beyond the children’s level of ability, a body-weight support
device is added to ease mobility and exploration (Fig. 1).
Body-weight support devices are commonly used over tread-
mills to alter gait patterns and target immobility, a method
that evolved from adult rehabilitation. However, this approach
may not be the most appropriate for a developing child where
various mobility strategies are essential (e.g. crawling), and
disregards the benefits from exploring a complex environment
[9, 14]. The body-weight support device used in this study
(OASUSTM; Enliten LLC) has been designed for open-area
multi-level exploration (e.g. crawling over inclined surfaces).

B. Early CRI setup

Two robots, a humanoid (NAOTM; Aldebaran Robotics) and
a wheeled toy robot (DashTM; Wonder Workshop), are chosen
as dynamically adaptive and real-time controllable elements
of the system. The role of the robots is to motivate the child
to manipulate objects and perform complex tasks. This is
done through either social interaction or actual manipulation
(e.g. NAO mimicking human motor actions such as hand
manipulation of table-top surfaces and walking to a goal; Dash
moving fast horizontally and/or climbing inclined surfaces).

Proximity is a way to view the success of such interactions.
For example, if the distance between the robot and the child

Fig. 1. Learning environment and equipment setup for early pediatric
motor rehabilitation. Kinect devices are strategically placed surrounding the
environment.

is decreased or remains the same while, say, Dash is climbing
the incline, this may be an indication that the child is actually
following the robot and performs the task as well.

C. Robot behavior in complex learning environments

Our approach focuses on realizing two main robot function-
alities.

1) Feedback—receiving information about the environment
and child’s actions: A data acquisition and analysis system is
designed to feed (potentially real-time) information about the
child’s actions and objects in an environment. Both types of
information are critical for the robot’s decision-making: how
to respond to changes in the environment, how to direct social
interaction, and how to manipulate objects.

Different types of data are acquired and integrated us-
ing the Robot Operating System (ROS). These data involve
synchronized video from a network of five Kinect sensors,
and tracking coordinates of AR tags placed on the child’s
body (Fig. 2). All the above are used for the child’s activity
recognition.

Fig. 2. Screenshots of the graphical user interface of the software environ-
ment used for data acquisition and preliminary analysis.

Activity recognition in a particular session is supported
by two separate analyses based on the data collected in
previous sessions. The first is a manual, off-line annotation
process of the child’s activities from pre-recorded video. The



second, is the training and tuning of machine learning activity
recognition algorithms based on the annotated data. The goal
is for the configured algorithms to be able to classify activities
in the streaming video of a session in (almost) real-time.

2) Decision-making—response of the robots to develop-
ments in the scene: Activity recognition enables robot sit-
uational awareness which in turn supports decision-making.
The robots decide on what is the most appropriate action on
their part to promote the rehabilitation outcomes, e.g. keep
the child in motion for as long as possible. The decisions
are based on the history of past CRI experiences, and are the
product of yet another machine learning and (discrete-event)
optimal control algorithm. This algorithm is based on a crude
mathematical model that attempts to capture human behavior
through a Markov Decision Process (MDP). In the MDP model,
states are the possible configuration of the child and the robot.
Action set of the MDP model is defined by different activities
of the robot and the child that cause transitions among states.
The fact that direct control is only over the robot’s actions
motivates us to consider activities of the child as outcomes
of such actions in a probabilistic manner. Therefore, we drop
the child’s actions from the action set of the MDP and make
the transitions probabilistic instead. The system is initiated
with some prior regarding those transition probabilities and a
machine learning algorithm updates the transition probabilities
in real-time through observations during the course of CRI via
maximum likelihood notion. The machine learning algorithm
that updates those model parameters needs to produce effective
estimates fast and with very small data. For this reason, the
learning module utilizes a technique used primarily in natural
language processing called smoothing [3] over the empirical
observations.

IV. VALIDATION

A two-year old child with Down syndrome participated in
eight sessions that took place twice a week for four weeks.
The child was able to crawl but not walk. Each session lasted
for one hour. Information on child’s mobility and interaction
was used to validate our approach at all three levels.

A. Feasibility

Outcome: The system was used successfully by the child
and the environment afforded him significant opportunities for
exploration.

Specifically, the child explored the objects of the learning
environment and used the body-weight support device at all
eight sessions (Fig. 3). Indeed, the child was able to perform
all complex tasks, like climbing an inclined platform and
ascending the staircase. The assistance of the body-weight
support device promoted the onset of new motor behaviors
that had not been observed before.

B. Effectiveness

Outcome: The child’s exploration was due in a great part
to his interaction with the robots.

Fig. 3. Snapshots of the child performing complex motor tasks in the
environment using the assistance from the body-weight support device. The
child was able to explore inclined surfaces (top), and independently perform
new motor actions on the horizontal such as standing and walking (bottom).
The child was not able to independently stand and walk otherwise.

During all sessions, the child interacted with both robots
most of the time, but in different ways. Specifically, the subject
was engaged into a game of chase aimed to increase his
mobility, but he seemed to do so more with Dash than with
NAO (Fig. 4). NAO afforded manipulative actions by the child
that were cause-and-effect (e.g., kicking and pushing to throw
the robot down and see it standing back up) and more complex
in nature (e.g., kicking requires coordination of more body
segments and maintaining balance).

C. Potential

Outcome: Adaptive robots may be potentially used in
complex learning environments.

1) Feedback: Environment and child behavior information
was successfully collected from all Kinect sensors in real-time.
The child’s actions are currently used to train machine learning
algorithms that will be used to identify overall system state and
support robot control. However, consistently receiving tracking
coordinates from the AR tags has been challenging for two
main reasons: first, the size of the tags on the subject’s limbs
was too small to provide adequately regular measurements,
and the child frequently removed the straps where the tags
were attached to. The latter challenge was later addressed
through a special “tag suit,” worn by the subject on the last
session (see Fig. 3). The former challenge persists. Even
with the tag suit, tracking the tags on the limbs has been
problematic, whereas the bigger tags placed on the subject’s
trunk were considerably easier to track. Alternative solutions
using motion capture systems have been explored without
significant success primarily due to occlusions. Work on the
limb tracking issue is ongoing.

With respect to child recognition, we present preliminary
results on action classification from a sample of annotated
videos (N = 13 videos) using established algorithms [17]. In
particular, we extract appearance and motion features along
dense trajectories, as shown in Fig. 5, we then encode feature
descriptors by aggregating first and second order statistics



Fig. 4. The child’s movement path (shown in white) in the environment
while interacting with the robots. Most of his mobility can be attributed to
the chasing of Dash. Left column pictures involve trials of the child moving
without the assistance from the body-weight support device whereas right
column with the assistance of the device. Each row of pictures is from a
different session in the series of sessions.

using a Fisher Vector [12] and finally classify the videos using
linear Support Vector Machine (SVM) classifiers. The actions
of interest are associated with the major motor milestones that
typically developing children acquire during their first year of
life: sitting, crawling, standing, and walking. These are actions
that the system needs to recognize—ideally in real-time. For
example, if the child spends too much time in a stationary
position such as sitting, the system should recognize that, and
decide on an action that will elicit a mobility response from
the child, such as crawling—since the target is to keep children
moving and exploring.

We trim the videos into segments, with each segment
containing one of the four actions of interest. The final number

Fig. 5. Visualization of dense trajectories [17] extracted from a video sample.
Red dots correspond to trajectory positions in the current frame. Each moving
point is tracked for 15 frames.

of instances per action were: 6 for crawling, 15 for sitting,
18 for standing, and 23 for walking. With available video
footage from five cameras, the total number of video segments
available for training and testing the action classification
method is 310. Since these videos were collected in complex
natural environments, occlusions, multiple entities (people and
robots) simultaneously moving, and viewpoint variations make
the task of action classification challenging. To this end, we
split the videos into five different training and testing groups in
two different ways. First, we randomly use 80% of the videos
belonging to each class as training data, and leave the rest
for testing. In the second way, we randomly split videos into
training and testing sets as before, but now making sure that
all videos corresponding to a single action are in the same
group (either used for training or testing). The average action
classification accuracy over 5 random splits generated using
the first method is 72.6%, while the second method yielded
63.1%. The action classification accuracy is expected to be
better in the first setup, since it is easier for the algorithm to
classify a testing video in case it has seen the same behavior
instance from another view during training. Still, in both cases
the action classification accuracy is above chance level.

Figure 6 illustrates the confusion matrices for two random
splits. In this instance, the figure shows the action classifier
being unable to recognize the crawling, since the number
of annotated samples was very small (just 30 videos cor-
responding to six different crawling instances). Future work
will examine the success of the same algorithms to accurately
recognize actions from bigger samples.

2) Robot decision-making: The learning component of the
CRI framework that was set up has shown promise in terms
of adaptation and customization to different human subjects,
in support of an future automation loop closure. We used
an MDP model for human behavior as a response to robot
action, in the context of a basic “game of chase” between
robot and child. An instantiation of such an MDP model is
shown in Fig. 7. Robot actions are modeled as transitions.
The transition label set is {f, s, b}, with f representing a
decision that the robot makes to move “forward” and toward
the child, s is a decision to stay still, and b expresses a decision
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Fig. 6. Action classification preliminary results. Diagonal entries of confusion
matrices show the number of correctly classified action instances per action
class with respect to ground truth annotations. (Top) Results for a random
training/testing split generated by using 80% of video samples for training
and the rest for testing. (Bottom) Results for random training/testing split
using 80% of video samples for training and the rest for testing, with videos
corresponding to different views of the same action instance being used in
the same set.

to move backward. States are labeled with two letters; the
first describes the process that the robot is in after making a
decision labeled in {f, s, b}, and the second represents how
the child is responding to the ensuing robot behavior. Symbol
F stands for the robot moving forward (toward the child), S
denotes the state where the robot stands at a constant distance
from the child, and B represents the condition where the robot
moves backward and away from the child. Labels G and N
mark the child’s response, with G expressing the fact that the
child is making progress toward the rehabilitation goal—in
this case, to remain in motion—and N marks the absence of
progress. Positive rewards will thus be assigned to the states
that have a G component in their label, and negative or zero
rewards will be assigned to the remaining ones.

The MDP model is originally initialized with a transition
graph in which the robot actions can only trigger deterministic
transitions between states that preserve the second state label.
For example, action b at the state labeled (F,N) is causing a

transition to state (B,N). Thus the MDP of Fig. 7 is initialized
with the blue transitions only. But when a robot action is
observed to trigger a transition, say from state (F,N) to
state (F,G)—the red arrow in Fig. 7—then transition f at
state (F,N) becomes nondeterministic, and different transition
probabilities are assigned to blue and red jumps according
to empirical data. This process will in principle continue
until the evolving MDP converges to some true hypothesized
probabilistic model of this particular CRI.

Fig. 7. An MDP capturing aspects of CRI.

A serious challenge in this application space, however, is
that the set of available observations is typically very small,
and as a result, a naive method for updating transition probabil-
ities, say Maximum Likelihood Estimation (MLE), will produce
a poor MDP model. For this reason, smoothing algorithms [3]
are adapted and applied to this problem, as an attempt to
overcome the scarcity of learning data [18]. Simulation results
with the aforementioned model have so far supported the
hypothesis that smoothing can be advantageous as a learning
mechanism for populating the unknown parameters of this
MDP [18].

V. CONCLUSIONS

This paper describes the design and feasibility of a novel
robot-assisted learning environment that has the potential to
be used in future pediatric rehabilitation. As part of the
development of such an environment, a remotely actuated
playground has been developed to allow complex and rich
interaction between children, toys, and robots. In parallel, a
visual sensor network has been implemented and operated with
a dual purpose: to record data for assessment of rehabilitation
outcomes, and for providing (hopefully, real-time) feedback
for the automation system to guide the robot in support of
these rehabilitation objectives. The initial realization of this
combined sensing and computation framework has shown
promise with (a) preliminary evidence of affording exploration
by the child, and (b) data suggesting the viability of the
framework for early CRI. This preliminary work shows the
capabilities of the system as it was tested with one child
with motor delays. A larger sample size of participants and
of different diagnoses in the future will be beneficial in
confirming the rehabilitative effects due to exposure to our
environment.



The ultimate goal is to enable high-dosage pediatric re-
habilitation in natural and complex environments that could
take place outside the structured setup of an academic lab
or clinic. We envision “smart” environments that are robot-
assisted but not human-sterile. The intention is not for the
automated CRI system to become the sole form of interaction
for the young child. Instead, it is envisioned that judicious
rehabilitation environment designs can serve as catalysts for
peer-to-peer and other forms of (human) social interaction.
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