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Abstract

We coordinate in discrete time the interaction of two heterogeneous groups of
mobile agents: a group of ground vehicles (ugvs) and a group of aerial vehicles
(uavs). The ground agents interact with each other through time-invariant, nearest-
neighbor rules. They synchronize their velocities through a specific communication
protocol, and maintain cohesion and separation behavior by means of inter-agent
potential forces. Ground vehicles estimate their formation’s centroid using only
locally available delayed information. That same information is transmitted to the
aerial group, which orbits above the ground formation’s centroid, while avoiding
midair collisions. Stability of the ground group motion is established in a Lyapunov
framework. A Lyapunov analysis is also used to ensure that uavs track the ground
group’s centroid.

Key words: Cooperative control, Agents and autonomous systems, Autonomous
robots

1 Introduction

This work is motivated by the need to automate cooperative intelligence
surveillance and reconnaissance (isr) missions, which involve unmanned vehi-
cles (ground and aerial) operating autonomously in order to achieve a common
objective.

Envision a scenario where a safe corridor needs to be established through
hostile terrain. A group of unmanned ground vehicles (ugvs) is sent to clear a
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path through the area. To provide aerial coverage for the ground vehicles, and
to surveil the surrounding area for threats, a group of unmanned aerial vehicles
(uavs) is dispatched. To realize such a scenario, several control objectives must
be met: ugvs must move in unison along collision free paths; uavs need to
establish stable orbits above and around the ugv group, while avoiding midair
collisions.

Several research groups have developed ugv prototypes [1], [2]. Among them,
is the Intelligent Systems and Robotics Center of the Sandia National Labo-
ratories [3]. The typical control objectives in order to coordinate a group of
ugvs to exhibit the type of flocking and schooling behaviors observed in bio-
logical systems, are cohesion and separation in terms of subsystem positions,
as well as velocity alignment [4]. Ideally, ugvs need to achieve these objec-
tives by exchanging local information without using too much communication
bandwidth. Observing these two design constraints facilitates implementation
of the coordination schemes, and enables the latter to scale better with the
size of the group.

In the cases considered in recent literature (cf. [4–7]), information is assumed
to be exchanged and processed instantaneously. But in a realistic scenario,
neither communication nor computation can happen instantly. When nearest-
neighbor interaction is subject to communication delays, performance is ex-
pected to suffer [8], [9]. In previous work [10] we showed that for a particular
model of discrete time nearest-neighbor interaction with delayed information,
synchronization of velocities to a common vector is still possible, irrespectively
of the size of the delay. Parallel efforts [11], [12], [13] are in agreement with
our results.

Cohesion and separation are set as control objectives because on one hand
vehicles need to avoid collisions with each other, and on the other they need
to stay physically close to give the appearance of a group. For collision avoid-
ance, gyroscopic forces have been used as a control input component in uav

systems [14], [15]. In [14] the mobile agents react only to the nearest obstacle
in front of them. In [15] there is formal proof that collision avoidance can
always be achieved for the case of two agents.

Most of the work in uav coordination focuses on single uav missions, or
cooperation within formations of multiple uavs. Visual servoing is proposed
in [16], and in [17], involving remote guidance and collision avoidance respec-
tively. Obstacle avoidance techniques, in cases where agents are equipped with
infrared and visual sensors, are implemented in [18]. Laser range finders are
used in [19] for static and dynamic obstacle avoidance aided by geometric algo-
rithms, while object recognition for camera-based control is suggested in [20].

Reported work on interaction of heterogeneous teams of multiple agents is
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fairly limited. Initial efforts in this direction include cooperation between one
ugv and one uav [1], [16]. Most of the work deals exclusively with either
ground or aerial formations. For the type of isr missions envisioned in the
motivating scenario discussed above, cooperation between teams of mobile
agents of different modalities is required. Depending on the specific vehicle
capabilities, teams can have different team goals, but all should support the
common objective.

This paper extends the work in [10], by enabling the ugv group to not only
synchronize its velocity vectors to a common one, but stabilize the distances
between communicating agents as well. This is done assuming that vehicles
communicate over a tdma-type communication scheme, where each broad-
casts its state information to neighbors in turns. As a result, the neighbor in-
formation each vehicle uses in its control loop is delayed. A Lyapunov analysis
establishes that the cohesion and separation forces introduced do not affect
the convergence of velocity vectors. We develop an algorithm where each ugv

estimates the ground group’s centroid using only local delayed information.
Then we establish a control interconnection between the uav and ugv groups,
by means of a unidirectional (ground to air) transmission of (local) informa-
tion. uavs achieve their objective by “listening” to the broadcast of the closest
ground vehicles. This objective is formalized as stabilization to circular orbits
of different radii over the (moving) centroid of the ground group.

The rest of the paper is organized as follows: in Section 2 we motivate our
control design and outline the control specifications that we meet. We describe
the dynamics of the two distinct groups in Section 3, we refine the control
specifications in view of the equations of motion, and we state the underlying
assumptions. Section 4 presents our control design approach for meeting the
control specifications of the ugv team. We prove that ground vehicle velocities
will be synchronized in finite time (due to the discrete-time nature of the
closed loop implementation) and that inter-vehicle forces will vanish at steady
state. In addition, we demonstrate how ground vehicles are able to estimate
their group’s centroid without using global information. Section 5 describes
how uavs stabilize to circular orbits and track the ground group’s centroid.
In Section 6 we present simulation results that illustrate how the two groups
cooperate and verify the convergence properties of our controllers. Section 7
concludes the paper by summarizing the results presented.

2 Motivation and Problem Statement

In the scenario we envision, ugvs must establish a secure corridor by passing
over a segment of an area, supported by air from a uav group which scans the
area around the ground group in search for possible threats.
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Fig. 1. Representation of the combined intelligence-surveillance- reconnaissance mis-
sion: ground vehicles move in formation while aerial vehicles provide aerial coverage
by scanning the ground using their sensors. The aerial team provides early warn-
ing against threats on the ground. The image is a vr animation of the simulation
scenario realized by the proposed closed loop controllers.

One set of action items in order to realize such a scenario, is the following:

(1) ugvs synchronize their velocities to a common vector and move in unison.
(2) ugvs spread out, regulating inter-vehicle distances between communicat-

ing vehicles.
(3) ugvs estimate the centroid of their formation.
(4) uavs establish stable orbits around the ugv team centroid.
(5) uavs avoid midair collisions.

The control design approach described in this paper aims at meeting the afore-
mentioned specifications, without discussing in detail how a particular mission
scenario can be be implemented.

3 Overview of Approach

We assume the existence of a communication network over the vehicles, the
topology of which is fixed. The dynamics of the ground vehicles are described
by double integrators, on the premises that ugvs are more maneuverable
compared to aerial vehicles.

ẋi = vi,

v̇i = ui.

In discrete-time these equations take the form

ri(k + 1) = ri(k) + ui(k)T (1)

ui(k + 1) = ui(k) + αi(k)T, (2)
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where T is the sampling period and i = 1, . . . , N is the index of the particular
ugv. To eliminate communication delays due to packet collision when network-
neighboring vehicles transmit simultaneously, we adopt a tdma-type protocol,
where each node is assigned to a specific time slot. All possible communication
links are described by an undirected graph:

Definition 1 The interconnection graph, G = {V, E}, is an undirected graph

with:

• a set of nodes V = {1, . . . , N}, indexed by the agents in the group, and

• a set of edges E = {(i, j) ∈ V ×V}, which contains unordered pairs of nodes

corresponding to agents that can communicate.

Whenever (i, j) ∈ E , we can write i ∼ j. The set of all nodes adjacent to i is
denoted Ni. Vehicles can communicate only with a fixed subset of their group
mates and communication links need not be “live” at all times. Since each
vehicle broadcasts its state information at a particular time step, its neighbors
have to use their most recent information about it until it retransmits. Thus,
information used for control is necessarily delayed.

We design ugv controllers that generate flocking behavior, by steering each
vehicle velocity to the average of its neighbors’. The latter, however, are not
current since they have been communicated to the vehicle some time steps
back. During this velocity alignment process, we constrain the ugvs to use
their own current state only after they have broadcast them to their neigh-
bors, even if it could be readily available. Thus, each vehicle introduces time
delays in its own state information being used by its controller. This is done to
enforce consistency in the use of communicated information, allowing neigh-
boring vehicles to use the same (delayed) information about each other. Such
consistency is critical for the cohesion/separation forces we introduce in the
control laws of this paper to remain symmetric between interacting vehicles.

In [10] we showed that when vehicles update their velocities to the (delayed)
average of their neighbors’, and communicate according to the aforementioned
communication protocol, the velocities of all vehicles still align exponentially
fast. For completeness, the method we proposed in [10] is briefly described in
Section 4.1.

To regulate the distance between communicating ugvs we introduce a quadratic
potential field. In Section 4.2 we build upon the velocity synchronization con-
troller of [10] by including this potential field in the control law, and we
subsequently analyse the stability of the closed loop system in a Lyapunov
framework.

We show that the centroid of the ground formation can be estimated in a dis-
tributed fashion. Similarly to velocity synchronization, each vehicle averages
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the estimates of its neighbors, and propagates this estimate through the quasi-
steady state group dynamics. Collision avoidance for the ugvs is performed
using communicated information exclusively; non-communicating agents are
not aware of each other’s presence. Centroid estimation is subject to the same
communication delays. uavs are assumed to pick up the centroid broadcasts
of ground vehicles, and use it to update their orbiting controller. At steady
state, all ground vehicles have the same centroid estimate, so it does not mat-
ter where the centroid broadcast is originating (Section 4.3).

Every uav orbits over the centroid estimate. The orbit is designed to be circu-
lar at a common altitude, with desired radius di and speed V . As the ground
formation moves, these orbits become spirals. We use unicycle dynamics to
represent the motion of the uavs [21], since the turning radius limitations in
aerial flight cannot be ignored, even at a first approximation.

ẋi = V cos θi (3a)

ẏi = V sin θi (3b)

θ̇i = ωi, (3c)

where i = 1, . . . , M is the index of the particular uav. The control input to
uav i is the angular velocity ωi. In Section 5.1 we design angular velocity
control laws that establish stable circular orbits for the aerial vehicles.

Every uav has a sensing range of radius Rc, within which any other aerial
vehicle is detected and treated as a collision threat. All uavs within distance
Rc from each other perform collision avoidance maneuvers using the maximum
control effort available, ωmax. In Section 5.2 we specify a collision avoidance
direction for each uav, by weighing the effect of each possible collision threat
according to proximity. In Section 5.3 we combine the orbiting and collision
avoidance controllers into a single discrete-time switching control scheme for
each uav.

4 Decentralized UGV control

In Section 4.1 we show how the velocities of ugvs are synchronized by in-
terlacing the control update with a specific communication protocol. For the
augmented system that includes the delayed states, we show that a certain
state transition matrix is ergodic. Under the assumptions made on inter-vehicle
communication, we ensure that vehicles use the same information regarding
each other and thus, inter-vehicle forces are symmetric. The symmetry allows
us to show in Section 4.2, that the convergence of the velocity vectors is not
affected. The same update mechanism that was shown to synchronize the ve-
locities is used to estimate, in a distributed fashion, the group’s centroid in
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Section 4.3.

4.1 UGV velocity synchronization

In discrete time, ugv positions evolve according to (1)-(2). If we include the
time period T , the control law of [22] takes the form

αi(k) =







1

1 + |Ni|



ui(k) +
∑

j∈Ni

uj(k)











1

T
.

Stacking the current velocity vectors ui in vector u, and assuming for the mo-
ment that information is communicated instantly, the discrete-time dynamics
of the velocities of the ugv group in state-space form become

u(k + 1) = {[(I + D)−1(A + I)] ⊗ I}u(k), (4)

where ⊗ denotes the Kronecker product, and A, D are the adjacency and
valency matrices of G, respectively [23].

We impose a set of communication rules on (4), which allow each agent to
broadcast only one at a time step. To keep track of ordered transmissions we
use a binary matrix S (henceforth called the communication matrix ), with
rows indexed by the agents and columns indexed by time steps. Each column
of S, denoted Sj , has only one nonzero element sij = 1, indicating that vehicle
i is transmitting at step j. The columns of S are ordered, with the leftmost
column indicating the current time step and the rightmost referring to N − 1
steps in the past. According to the order of transmission, agent i for which
siN 6= 0 is transmitting in the following time step . Thus, as time evolves, the
columns of S shift from left to right, with the rightmost column being recycled
to the left. For example, consider a group of four agents, where at time step k

agent 1 broadcasts. Before agent 1 agent 4 did so, following agent 3 and agent
2. The communication matrices for steps k and k + 1 are

S(k) =













1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0













, S(k + 1) =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













(5)

This construction bears much resemblance to the circulant matrices used
in [24], but unfortunately, these matrices do not satisfy the defining prop-
erties of circulant matrices. (No obvious modification of our protocol was able
to utilize this construction.)
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To enforce these communication rules on (4), augment the velocity vector with
the delayed information as

U(k) ,

[

u(k)T u(k − 1)T · · · u(k − N + 1)T

]T

,

where U(k) is the stack vector of u(k) through u(k−N+1). The state transition
equations for U are

U(k + 1) =










{[(D+I)−1(I+A)]⊗I}S̄

I 0 ... ... 0 0
0 I ... ... 0 0
0 0 I ... 0 0
...
...

...
... 0 0

0 0 0 ... I 0










U(k) , H(k)U(k), (6)

where S̄ is constructed by taking Kronecker products of its columns with their
transposes

S̄ = [S1 ⊗ ST
1 · · ·SN ⊗ ST

N ].

Multiplying the augmented velocity vector with S̄ simply selects the delayed
velocities that are to be used in the update equation at that particular time
step.

Without loss of generality, we order the transmissions according to the index-
ing of the agents. For the example of four agents where S(k) is given by (5),
matrix S̄ has the form

S̄ =
[ 1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]

.

Note that S(k) (and consequently S̄) is N -periodic. We call this period the
communication cycle. Due to the time dependence, and despite the fact that
the nominal system without delays is time invariant, (6) is time varying, and
H is changing between time steps due to the columns of S shifting. In what
follows, we express the first row of blocks of H as

FS̄ =
[

f1 f2 · · · fN

]

.

Matrix H inherits some of the properties of F : it is row stochastic, and is
non-negative. However, it does not have nonzero diagonal elements, and it is
reducible. Without the latter two properties, the results of [22] do not apply,
and stability of (6) cannot be directly established in the same way.

At initial time, k = 0, vehicles do not have any knowledge of their neighbors’
states. We must allow one communication cycle to elapse for all vehicles to
acquire local information over the network. Our asymptotic analysis therefore
begins from time step k = N . The following theorem summarizes the result
of Section 4.1:
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Theorem 2 (Synchronization with communication delays) Consider a

multi-agent system with a time invariant connected interconnection graph G,

and discrete time agent dynamics described by

ri(k + 1) = ri(k) + ui(k)T

ui(k + 1) = ui(k) + αi(k)T.

If only one agent is allowed to broadcast its state information to its network

neighbors at each time step, and agents use their last transmitted own state

in their control laws, then in the closed loop system all velocity vectors will

converge to a common vector.

PROOF. Note that H changes from time step k to k + 1 due to the per-
mutation of the first block of rows, [f1 · · ·fN ]. Matrix H is periodic with a
period of one communication cycle, that is, H(t + N) = H(t). Sampling the
trajectory at multiples of the communication cycle we obtain a sequence of
points in state space. This sequence coincides with the evolution, from the
same initial condition, of the time invariant discrete-time system having the
state transition matrix for one step given by

M , H(N)H(N − 1) · · ·H(1).

Since H(k) is row stochastic and non-negative for every k, M will also be
(row) stochastic and non-negative. For multiples of the communication cycle,
the state transition matrix of (6), is written as

Φ(kN, 1) = Mk.

A direct calculation verifies that:

M =













G1(N) G2(N) · · · GN(N)

G1(N − 1) G2(N − 1) · · · GN(N − 1)
...

...
...

G1(1) G2(1) · · · GN(1)













,

where Gi(1) = fi, and the block elements of each column are given by the
recursive formula

Gi(k) =
∑

j=1

fj(k)Gi(k − j), (7)

where Gi(r) for r < 1 are read from the blocks of H(1) below fi(1) (For
elements generated during the first communication cycle). Using (7), and given
that due to the permutation of S,

fmod(i,N,1)

(

mod(j, N, 1)
)

= fmod(i−1,N,1)

(

mod(j − 1, N, 1)
)

, (8)
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in which mod(·, N, 1) is the modulo function with offset 1, we find that in all
lower diagonal matrix blocks of M , including G1(N), G2(N − 1), . . . , GN(1),
we have fi(1) appearing in the block column i as the last term in the sum
∑

j=1 fj(k)Gi(k − j). All terms in this sum are right multiplied by fi(1) and
involve products of the form fj(1)fi(1). Based on the special structure of fi(1)
every such multiplication will result in either:

• A zero matrix, if the node corresponding to the nonzero column of fj(1) is
not connected to the node of the nonzero column of fi(1) (meaning fji = 0)
or if the nodes are connected,

• in a matrix having nonzero elements in every row of the nonzero column of

fi(1) for which fj(1) has nonzero elements.

Putting it formally,

fjfi =

















0 . . . 0 f1j 0 . . . 0

0 . . . 0 f2j 0 . . . 0

...
...

...
...

...

0 . . . 0
︸ ︷︷ ︸

j−1 times

fNj 0 . . . 0

































0 . . . 0 f1i 0 . . . 0

0 . . . 0 f2i 0 . . . 0

...
...

...
...

...

0 . . . 0
︸ ︷︷ ︸

i−1 times

fNi 0 . . . 0

















=

















0 . . . 0 f1jfji 0 . . . 0

0 . . . 0 f2jfji 0 . . . 0

...
...

...
...

...

0 . . . 0
︸ ︷︷ ︸

i−1 times

fNjfji 0 . . . 0

















In other words, if the corresponding nodes are connected, the product fj(1)fi(1)
will inherit nonzero elements from the nonzero column of fj(1) and place them
in the nonzero column of fi(1).

Therefore, the remaining terms in each sum
∑

j=1 fj(k)Gi(k − j) of block
column i below the block diagonal, can only add positive elements to the
nonzero column of fi(1). Using (8), we can verify the existence of a term
of the form fi(1)2 in the Gi blocks above the diagonal of M . This happens
because the fj(k) terms in

∑

j=1 fj(k)Gi(k− j) are equal to the corresponding
blocks fr(1) due to (8), with r taking values in {N − (k− 2), . . . , N, 1}. Given
now that the diagonal block is located in block-row N − (k − 1) some fj(k)
are equal to fi(1).

Since the diagonal element of the nonzero column of fi(1) is always positive
(fi(1) inherits this property from F ), fi(1)2 maintains the nonzero elements of
fi(1). Thus, for every j = 1, . . . , N , we have a nonzero column of M , denoted

10



mi, with the following structure

mi = ∆










fj(1)
...

fj(1)










+ λi, (9)

where ∆ is a N2 × N2 diagonal positive definite matrix, fj is a column of F ,
and λi a nonnegative N2 × 1 vector.

The zero columns of M indicate that the corresponding delayed velocities do
not contribute to the overall dynamics; they have some dynamics of their own
which is decoupled from (6). One can obtain a reduced model by removing
those states from the state model. The reduced system, viewed over multiples
of the communication cycle, has the form

Ū(k + 1) = M̄Ū(k).

After removing the zero columns from M , one column corresponding to a
(possibly delayed) state of different agent is always kept. Based on (9), M̄ has
the following form

M̄ = ∆1 ◦ (FS) + Λ,

where ∆1 is an N ×N matrix with positive elements, ◦ denotes the Hadamard
product, Λ is a nonnegative N × N matrix, and the product of F with the
communication matrix S results in a permutation of the columns of F . With
F being an irreducible matrix, since the underlying interaction graph of the
nominal system is (strongly) connected, M̄ will be too: Λ inserts additional
edges in the underlying graph. With F having all diagonal elements nonzero,
M̄ is primitive [25]. In addition, it is (row) stochastic, because the removal of
zero columns from M does not affect the sum of the row elements. A primitive
and stochastic matrix is ergodic [22] which means that by definition

lim
k→∞

M̄k = 1cT .

This establishes the convergence of the reduced state vector to ξ1, for some
ξ ∈ R. If all current and some delayed states of agents converge to a common
value, all current states also converge.

2

4.2 Group cohesion and collision avoidance

We build on the ugv velocity synchronization controller by adding a compo-
nent that generates attractive and repulsive interaction between vehicles. For
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this to be implemented we have to assume that vehicles communicate their po-
sition along with their velocity. With the introduction of a cohesion/separation
component, f , we transfer the stability analysis to a Lyapunov framework, and
the group dynamics are now given as

R(k + 1) = R(k) + U(k)T

U(k + 1) =










{[(D+I)−1(I+A)]⊗I}S̄

I 0 ... ... 0 0
0 I ... ... 0 0
0 0 I ... 0 0
...
...

...
... 0 0

0 0 0 ... I 0










U(k) +







f(k)
0

...
0







, (10)

where R is the stack vector of current and delayed (up to N − 1 steps back)
agent positions.

The stability analysis is performed by investigating differences of different
quantities between consecutive time steps, expressed in the form ∆f(x) =

f(x)
∣
∣
∣
∣
k

− f(x)
∣
∣
∣
∣
k−1

. Using Taylor expansion, the total difference between time

steps is expressed as

∆f(x) =
∂f

∂x
δx +

∂2f

∂x2
δx2 + · · · + ∂nf

∂xn
δxn . . . ,

where we set δg
(

x(k)
)

= ∂g(x)
∂x

∣
∣
∣
∣
k−1

δx(k).

Conceptually, the interaction component of the input is be related to the
gradient of a quadratic function of the distance ‖rij‖2 between agents i and
j. This quadratic potential function Vij is calculated based on the delayed

information the agents have about each other. The stack vector of (delayed)
relative positions and velocities used in such a calculation is given by

Rij , (B ⊗ I)SR

Uij , (B ⊗ I)SU,

where B is the incidence matrix of G. With rij being the component of Rij

that corresponds to the delayed relative vector between vehicles i and j, we
define the quadratic potential function as

Vij , a(‖rij‖2 − rd)
2, a > 0,

where rd is the desired distance which any vehicle should ideally maintain
from its neighbors. In the sequel, unless explicitly specified, a vector norm is
to be taken as the Euclidean norm. The difference ∆Vij(k) between two time
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steps is

∆Vij(k) = Vij(k)−Vij(k−1) =
∂Vij

∂ ‖rij‖
∣
∣
∣
∣
k−1

δ‖rij‖(k)+
∂2Vij

∂ ‖rij‖2

∣
∣
∣
∣
k−1

δ‖rij‖2(k)

= 2a(‖rij(k − 1)‖ − rd)

(

∂‖rij‖
∂rij

∣
∣
∣
∣
k−1

)T

δrij(k) + 2a







(

∂‖rij‖
∂rij

∣
∣
∣
∣
k−1

)T

δrij(k)







2

= 2a(‖rij(k − 1)‖ − rd)r̂ij(k − 1)δrij(k) + 2a
(

r̂T
ij(k − 1)δrij(k)

)2

= 2a
[

‖rij(k − 1)‖ − rd + r̂ij(k − 1)δrij(k)
]

· r̂T
ij(k − 1)δrij(k),

where r̂ij is the unit vector in the direction of rij. Our assumption that agents
do not use their own state before they broadcast it to their neighbors, ensures
that ∆Vij = −∆Vji. Let us set

fij , 2a
[

‖rij(k − 1)‖ − rd + r̂T
ij(k − 1)δrij(k)

]

r̂T
ij(k − 1)

= 2a
[

‖rij‖ − rd + r̂T
ij∆uijT

]

k−1
r̂T
ij(k − 1),

and define the group’s total potential as the sum of all interconnected agent
potentials

∑

i∼j

∆Vij(k) =
1

2

n∑

i=1

∑

i∼j

fT
ij δrij(k).

If we define sign(U) ,

(

sign(U1) · · · sign(Un)

)T

, then the vector of cohe-

sion/separation interactions is written as

f(k − 1) , −sign
(

U(k − 1)
)

◦ U(k − 1) ◦ T
n∑

i=1

∑

i∼j

fij(k − 1). (11)

Then we can state the main result of this section:

Theorem 3 (Cohesion and separation with communication delays) The

discrete-time system (10), where f is defined in (11), converges asymptotically

to the set where U(k − 1) = 1c and f = 1c′ with c, c′ ∈ R.

PROOF. Consider the Lyapunov function candidate

W (k) =
n∑

i=1

∑

i∼j

Vij(k) + ‖U(k)‖1 .

Use the fact that ∆‖U(k)‖1 =
∂‖U‖

1

∂U

∣
∣
∣
∣
k−1

δU(k), and express the total difference
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in the velocity term one-norm as

∆‖U(k)‖1 = sign
(

U(k − 1)
)T

H(k − 1)U(k − 1)

− ‖U(k − 1)‖1 + sign
(

U(k − 1)
)T

f(k − 1).

By definition of the force vector, and since U(k − 1)T = δrij(k),

sign(U(k − 1))T f(k − 1) = −
n∑

i=1

∑

i∼j

(
∂Vij

∂‖rij‖
r̂ij

)T ∣∣
∣
∣
k−1

δrij(k).

Write the total difference in the Lyapunov function candidate between con-
secutive time steps as

∆W (k) = 2
∑

i∼j

∆Vij(k) + ∆‖U(k)‖1

= sign
(

U(k − 1)
)T

H(k − 1)U(k − 1) − ‖U(k − 1)‖1 ,

and note that since

‖H(k − 1)U(k − 1)‖1 =
( n∑

i=1

|h1iui|+, · · ·+
n∑

i=1

|hniui|
)T

≥ sign
(

U(k − 1)
)

H(k − 1)U(k − 1),

and H(k − 1)U(k − 1) is a contraction, as shown in section 4.1, one has

0 > ‖H(k − 1)U(k − 1)‖1 − ‖U(k − 1)‖1 ≥
≥ sign

(

U(k − 1)
)

H(k − 1)U(k − 1) − ‖U(k − 1)‖1 ,

which shows that ∆W (k) is nonpositive.

The level sets of W define compact sets in the (Rij , Uij) space, due to con-
nectivity of G. The non-positiveness of ∆W (k) ensures that they are also
invariant. By the discrete version of the invariance principle, (Rij , Uij) con-
verges with time to the set of fixed points of W (k), that is the fixed point of
the map H(k − 1)U(k − 1). Therefore,

U(k − 1) = 1w, (10) ⇒ f = 1w′. 2

4.3 UGV group centroid estimation

The uav team tracks the motion of the ground formation by following the
latter’s centroid. The ugv group’s centroid, c, is generally expressed using
information from all ugvs: c = 1

Ng

∑Ng

i=1 ri. To avoid collecting and processing
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global information, we design a cooperative estimation scheme that allows each
ugv to approximate the group’s centroid coordinates using local information.
Due to the use of delayed information, this estimate does not converge to the
actual centroid, but the error is bounded.

The estimate of the centroid coordinates by vehicle i, denoted ci, is updated
in discrete time as follows

ci(k + 1) =
1

1 + |Ni|



ci(k) +
∑

j∈Ni

cj(k)



+ uiT. (12)

Once ugv i computes ci according to (12), it broadcasts this estimate, together
with its velocity and position. During the initial communication cycle, vehicles
use the average position of their neighboring vehicles as an centroid estimate.

The centroid estimates of all ugvs are stacked to form the augmented centroid
position estimation vector C. Collecting (12) for all vehicles we express the
centroid update rule as

C(k + 1) = H(k)C(k) + U(k)T,

where H(k) is the same matrix used in (6). At steady state, we have U(k) = 1w

with w ∈ R (due to Theorem 3), so the dynamics of C are reduced to

C(k + 1) = H(k)C(k) + 1wT. (13)

At yet another time step,

C(k + 2) = H(k + 1)C(k + 1) + 1wT

= H(k + 1)H(k)C(k) + H(k + 1)1wT + 1wT

= H(k + 1)H(k)C(k) + 2Tw1,

so by induction we have

C(k + N) = H(k + N − 1) . . .H(k)C(k) + (N − k + 1)1wT.

Exploiting the convergence properties of M which are established in Sec-
tion 4.1 we have that H(k + N − 1) . . .H(k)C(k) = 1λ, and since 1wT ∈
span{1} at steady state

lim
n→∞

C(n) ∈ span{1}.

Thus, centroid estimates of all vehicles converge to a common vector. However,
this vector cannot coincide with the actual group centroid, due to the use of
delayed state information in the update rule (13). Nevertheless, this estimate
tracks the true centroid with a bounded error, which ultimately depends on
the size of the group, Ng.
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5 Decentralized UAV control

uavs fly over the ugv formation, providing aerial coverage and early warning
of ground threats Each uav covers a section of surface using their sensors
(cameras, radar, etc) as shown in Figure 1.

For modeling purposes uavs are considered point-mass vehicles. They all fly
at a constant common altitude, and can measure the distance between them
should they find themselves within a certain radius Rc. The translational speed
of each uav is fixed to V, to ensure that aerial vehicles do not stall.

To cover the ugv team from the air, the motion controller of uav i is designed
to make it follow circular orbits of radius di. Each uav has a different di, and
all orbits form co-centric circles, that are apart by a certain distance no smaller
than Rc and not larger than twice the radius of the footprint of a uav ground
sensors (Figure 1).

In discrete-time, assuming that the control input ωi remains constant between
time steps, (3a), (3b) and (3c) become

xi(k + 1) = xi(k) +
V
{

sin
(

θi(k) + ωi(k)T
)

− sin θi(k)
}

ωi(k)
(14)

yi(k + 1) = yi(k) +
V
{

− cos
(

θi(k) + ωi(k)T
)

+ cos θi(k)
}

ωi(k)
(15)

θi(k + 1) = θi(k) + ωi(k)T (16)

where ωi is the control input for uav i, assumed bounded.

5.1 Tracking the UGV group centroid

Let pi denote the planar position vector of uav i, ci the position vector of the
centroid estimate by uav i, δi the current planar distance between uav i and
ci, and let ηi be a unit vector normal to the velocity of uav i. These quantities
are expressed as follows

pi = [xi yi]
T , ci = [cxi cyi]

T , δi = pi − ci, ηi = [− sin θi cos θi]
T ,

ri =
1

2
‖δi‖2 =

1

2

{

(xi − cxi)
2 + (yi − cyi)

2

}

.
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The derivatives of ri are expressed as

ṙi = (ci − pi)
T (ċi − ṗi)

r̈i = V2 + VδT
i ηiθi − 2ṗT

i ċi + ċ2
i − 2δT

i c̈i. (17)

Note that the first two terms in (17) do not depend on derivatives of ci; the
last three terms do.

The orbiting behavior of uav i around ci is produced by setting

ωi =
1

VδT
i ηi

{

− V2 − q2(ri −
1

2
d2

i ) − 2qṙi

}

, (18)

where q > 0 is a control gain. Then the closed loop dynamics of the distance
between uav i and ci is

r̈i + 2qṙi + q2(ri −
1

2
d2

i ) = gi(ri, ċi, c̈i), (19)

where gi combines all the terms that depend on derivatives of ci:

gi = −2ṗT
i ċi + ċ2

i − 2δT
i c̈i. (20)

For analysis purposes, gi is treated as a disturbance. Thus (19) describes a
critically damped, second order linear system, which is perturbed by gi. At
steady state, the velocities of ugvs are synchronized, implying c̈i = 0. At
steady state, therefore, gi is bounded as

lim sup
t→∞

‖g‖ ≤ 2V ‖ċi‖ + ‖ċi‖2 = 2VC̄ + C̄2 = C̄
(

2V + C̄
)

, (21)

where C̄ denotes the upper bound of the centroid speed (smaller than the
largest ugv initial speed [22]). In state space, (19) reads

ż1i = z2i (22a)

ż2i = −2qz2i − q2z1i + gi(zi, ċi, c̈i), (22b)

where z1i = ri − d2
i .

Consider the following Lyapunov function candidate

W = zT
i Mzi =

[

z1i z2i

]






m1 m2

m2 m3











z1i

z2i




 , (23)

where M is a positive definite matrix. The time derivative of (23) along the
flows of (22) is

Ẇ = z1iz2i(2m1 − 4qm2 − 2q2m3) − 2q2z2
1i

+ (2m2 − 4qm3)z
2
2i + (2m2z1i + 2m3z2i)gi.

17



If we select m1 = q
2
, m2 = −1

4
and m3 = 1

q
we have

Ẇ = −2q2z2
1i −

9

2
z2
2i +

(

−1

2
z1i +

2

q
z2i

)

gi

≤ −min
{

2q2, 9
2

}

(z2
1i + z2

2i) + max
{

1
2
, 2

q

}

(‖z1i‖ + ‖z2i‖) max ‖gi‖ .

The derivative of the Lyapunov function candidate is further bounded by

Ẇ ≤ −min
{

2q2, 9
2

}

‖zi‖2 + max
{

1
2
, 2

q

}√
2 ‖zi‖max ‖gi‖

= −‖zi‖
(

min
{

2q2, 9
2

}

‖zi‖ − max
{

1
2
, 2

q

}√
2 max ‖gi‖

)

.

For Ẇ < 0 we need

0 < min
{

2q2, 9
2

}

‖zi‖ − max
{

1
2
, 2

q

}√
2 max ‖gi‖ , ⇒

‖zi‖ >
max

{
1
2
, 2

q

}√
2max ‖gi‖

min
{

2q2, 9
2

} .

For sufficiently large q,

‖zi‖ >

√
2 max ‖gi‖

9
=

√
2

9
C̄(2V + C̄). (24)

Condition (24) ensures that z1i is ultimately uniformly bounded, which implies
that at steady state, uavs track the ugvs’ centroid. The spiral uav orbits have
therefore radii that close to the desired ones within a bounded error, and the
slower the ugvs and uavs move (expressed by C̄ and V, respectively), the
smaller this error is.

uavs obtain velocity information from broadcasting ugvs, and they can there-
fore use it as an estimate for the centroid velocity. Let ˆ̇ci denote this centroid
velocity estimate that uav i has. Then the uav control input (18) can be
modified as follows

ωi =
−V2 − q2

(

ri − 1
2
d2

i

)

− 2qṙi − β̂i

VδT
i ηi

, (25)

where β̂i , −2ṗT
i
ˆ̇ci + ˆ̇c2

i is used to denote the estimate of βi , −2ṗT
i ċi + ċ2

i .
By defining γi , −2δT

i c̈i, the closed loop dynamics (19) is rewritten as

r̈i + 2qṙi + q2(ri −
1

2
d2

i ) + (β̂i − βi) − γi = 0. (26)

Being a linear (nominally) stable system, (26) is bounded-input- bounded-
output with respect to input (β̂i − βi) − γi (or iss if viewed in a nonlinear
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context) . Note, in addition that at steady state: lim supt→∞ ‖(β̂i − βi) − γi‖ =
0. Thus, Lemma 4.7 of [26] ensures that ri → 1

2
δ2
i , which means that the

center of every uav’s circular orbit converges to its estimate of the ugv group
centroid exponentially.

In discrete time, the stabilizing control law (25) is written

Ωi(k + 1) =
−V2 − q2

(

ri(k) − 1
2
di(k)2

)

− 2q
(

ri(k)−ri(k−1)
T

)

− β̂i(k)

Vδi(k)T ηi(k)
, (27)

where

β̂i(k) = −2 (pi(k) − pi(k − 1))T (ĉi(k) − ĉi(k − 1))

T 2
+

(

ĉi(k) − ĉi(k − 1)

T

)2

.

5.2 Aerial collision avoidance

Our approach is similar in spirit to that of [14] and [15]. If at time step k two
or more uavs in risk of colliding, they modify their angular velocities ωi at
time step k + 1 as follows

ωi(k + 1) = ωmax sign







∑

j:‖µij‖<Rc

ξT
(

µij(k) × ui(k)
)

‖µij(k)‖2






, (28)

where µij = ri − rj denotes the relative position vector of uav i with respect
to uav j, and ξ is the unit vector in the vertical direction. Control input (28)
differs from the one of [14] in that

• ωi assumes only two values −ωmax, ωmax during evasive maneuvers.
• Every uav within range is taken into consideration, by averaging over all

uavs j within Rc distance to uav i.
• The cross product in (28) weighs each neighbor’s contribution according to

proximity.

We note that no formal proof for collision avoidance involving multiple agents
is currently available for this type of gyroscopic inputs, except for the analysis
in [15] for the two-agent case.

Let us illustrate how (28) performs in the following examples where, for sim-
plicity of representation, only two agents are involved in a near collision event.
Near collision configurations between any two agents can be categorized into
twelve different classes, according to relative positions and angular velocity.
We will only discuss a small subset of these cases here.
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ui(k)

ωj(k)

µij(k)

ωi(k)

uj(k)

µji(k)

ωmax(k + 1)

ωmax(k + 1)

Fig. 2. Adjustment of angular velocities for collision avoidance in the case of two
approaching vehicles which have angular velocities along same directions. Symbol
⊙ denotes directions of angular velocities pointing out of the figure plane, whereas
⊗ denotes directions into the figure plane.

Figure 2 shows uavs i and j approaching each other at time step k while
having aligned angular velocities in the same direction. Their distance satis-
fies ‖µij(k)‖ = ‖µji(k)‖ ≤ Rc. To avoid collision, uavs adjust their angular
velocities to

ωi(k + 1) = ωmax sign







ξT
(

µij(k) × ui(k)
)

‖µij(k)‖2






= −ωmax,

ωj(k + 1) = ωmax sign







ξT
(

µji(k) × uj(k)
)

‖µji(k)‖2






= −ωmax.

The resulting angular velocities will both have direction into the figure plane,
steering the two uavs away from each other.

ωmax(k + 1)

ωi(k)

µij(k)

ui(k)

µji(k)
uj(k)

ωmax(k + 1)

ωj(k)

Fig. 3. Adjustment of angular velocities for collision avoidance in the case of two
approaching vehicles which have angular velocities along different directions. Symbol
⊙ denotes directions of angular velocities pointing out of the figure plane, whereas
⊗ denotes directions into the figure plane.

Figure 3 shows uavs i and j approaching each other at time step k with
opposite angular velocities. Their distance is ‖µij(k)‖ = ‖µji(k)‖ ≤ Rc. To
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avoid collision the uavs adjust their angular velocities to

ωi(k + 1) = ωmax sign







ξT
(

µij(k) × ui(k)
)

‖µij(k)‖2






= ωmax,

ωj(k + 1) = ωmaxsign







ξT
(

µji(k) × uj(k)
)

‖µji(k)‖2






= ωmax.

The resulting angular velocities both have directions out of the figure plane,
suggesting that the uavs start to increase the distance that separates them.

Out of the total twelve possible one-on-one collision configurations, there are
two where the cross product appearing in (28) is zero. In these cases uavs
assume maximum angular velocities of the same direction, by default.

5.3 Combined control law

The two control law expressions given in (27) and (28) are combined into a
switching control scheme. In discrete-time, the input of uav i is adjusted as

• If ‖µij‖ > Rc, ∀j = 1, . . . , M , and no collision is imminent,

ωi =







max{Ωi,−ωmax} if Ωi ≤ 0

min{Ωi, ωmax} if Ωi > 0
(29)

• If j : ‖µij‖ < Rc and a collision might occur,

ωi = ωmaxsign




∑

j:‖µij‖<Rc

ξT (µij × ui)

‖µij‖2



 . (30)

Since the execution of (27) can be interrupted by a (finite time of) collision
avoidance maneuvers, the exponential stability results of Section 5.1 do not
hold, and we settle with uniform ultimate boundedness for the tracking errors.

6 Simulation Results and Discussion

We test the proposed controllers in a number of simulation examples. In the
simulation examples, (1) and (10) represent the position and velocity dynam-
ics of ugvs, respectively. In the examples, the ugv group consists of seven
vehicles, starting at random initial conditions in a [−1.7, 1.7] m interval for
longitudinal and latitudinal position, and [−1, 1] m/s for speed along random
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directions. We select a desired inter-vehicle distance Rd = 1 m. To improve
performance and decrease the risk of collision (recall that ground vehicles use
delayed position information), agents estimate the current position of their
neighbors using the delayed state, propagating it through the dynamics for
the period of the delay. In the first simulation test, the ugv group communi-
cates over a complete communication graph.

uav dynamics is represented by (29) and (30). The uav group consists of
four vehicles (Figures 4 to 6). uavs start with random initial conditions in a
[−4.89, 2.89] m interval for their position, and V = 50 m/s for their speeds
with random velocity orientation. For uavs 1, 2, 3, 4 the desired radius d is set
to 0.2432, 0.4865, 0.7297, 0.9730 m respectively. The common sensing range
for collision avoidance is Rc = 1.7513 m.

Figures 4 through 10 represent an abstract realization of the scenario described
in Section 1. Figure 4 shows an overhead snapshot of the initial configuration of
the seven-vehicle ugv group communicating over a complete interconnection
graph, while four uavs fly above them. There are no communication links
between the uavs.
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Initial configuration

Fig. 4. Initial configurations of uav and ugv groups. Both vehicles are assumed as
point masses. The disconnected nodes and arrows (labeled 1 - 4) denote random
initial positions and orientations, respectively, for the uavs. ugvs 1 through 7, start
at random initial positions and velocities in the neighborhood of the coordinate
frame origin, and are all connected to each other by communication links, shown in
the figure as line segments. The x and y coordinates are in meters.

In Figure 5, we see uavs 2, 3 and 4 having successfully avoided collision. Their
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tracks (shown as dotted curves), reveal that uavs 2 and 4 have performed
collision avoidance maneuvers. Right after uav 4 avoided uav 2, it came close
to uav 3, which triggered a subsequent collision avoidance maneuver in the
opposite direction on the part of uav 4.
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Fig. 5. Collision avoidance maneuvers of uavs. Vehicle paths are shown as dotted
curves. At initial time uavs 1, 2, and 3 engage in obstacle avoidance maneuvers.
Then, after a time period, 2 and 4 avoid each other. Immediately after, uav 4 needs
to avoid collision with uav 3.

The configuration resulting after executing the simulation test for 3000 time
steps is shown in Figure 6. Figure 8 shows that after this time, the ugvs’
relative positions are stabilized. From Figure 10 it can be seen that right
before the 3000th time step, uavs 2 and 4 just tried to avoid collision but
still came very close, as revealed by the sudden depression in the value of
inter-vehicle distance appearing around that time.

By the 3000th time step, the velocities components of the ugvs have converged
to common values (Figure 7). Figure 9 shows that interaction forces have
converged to zero, indicating that the agents’ potentials have been locally
minimized.

Figures 11 through 15 illustrate a second simulation scenario, where ugvs are
not all connected to each other by means of communication links. Figure 11
shows the initial configuration of a ugv group, where the interconnections be-
tween vehicles (communication graph edges) are represented by line segments.
The communication graph is connected but not complete. Note the distribu-
tion of initial, individual ugv centroid estimates around the actual centroid
in the vicinity of point (−0.13, 0.25).
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Fig. 6. Configuration of the ugv and uav groups after 3000 time steps. Ground
vehicles have formed a symmetric polygonal formation, and aerial vehicles complete
spirals tracking the centroid of the ground group. Before the 3000th time step, uavs
2 and 4 come close to collision (compare with Figure 10).
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Fig. 7. Evolution of velocity components of the vehicles in the ugv group, along the
x and y direction. Different curves correspond to different vehicles. Convergence for
both x and y components is achieved after 1500th time step.

A few time steps later, these individual ugv centroid estimates converge (Fig-
ure 12).
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Fig. 8. Evolution of inter-vehicle distances between communicating ugvs. No dis-
tance among the ugvs comes close to zero, verifying collision avoidance. The ground
group reaches steady state formation with relative positions stabilized.
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Fig. 9. Evolution of forces between communicating ugvs. Vehicle artificial potentials
are locally minimized, causing the associated potential field terms to converge to
zero.

The purpose of Figure 13 is to show that under the current scheme where no
proximity sensing capabilities are assumed for the ugvs, unless vehicles com-
municate explicitly they cannot ensure that collision between them is avoided.
These vehicles are simply not aware of each other’s existence. In Figure 13,
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Fig. 10. Evolution of distances between uavs. Note that the distance between uavs
2 and 4 comes close to zero just before the 3000th time step. This behavior is
indicative of the fact that gyroscopic inputs can not guarantee collision avoidance
in a multi-vehicle setting.
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Fig. 11. Initial configuration of the ugv group, in the scenario where the communi-
cation graph is not complete. The ⋆ marker in the vicinity of point (−0.13, 0.25)
marks the location of the actual ugv group centroid. The remaining ⋆ markers
show the distribution of the vehicles’ initial estimates of this centroid.

ugvs 2 and 7 do not communicate; there is no graph edge incident to both
these two nodes. Thus, it is quite possible that they find themselves “dan-
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Fig. 12. A few time steps after initialization, individual ugv centroid estimates
converge to a common point, indicated by the overlapping ⋆ markers around
(−0.07, 0.27) .

gerously” close to each other. Such a phenomenon is possible not only at the
steady state but also during the transient period. With the introduction of
proximity sensing capabilities, one can consider adjacent nodes in (11) (i ∼ j)
not only those that correspond to communicating vehicles, but also those that
are associated with vehicles within a certain distance from each other. This
eliminate the phenomenon observed in Figure 13, but introduces time-varying
inter-vehicle network dynamics and brings about interesting new problems
that are, nevertheless, beyond the scope of this work.

After 3000 time steps, the ugv team is at the steady state configuration of
Figure 14. The vehicle centroid estimates are very close to the actual centroid.
Figure 15 illustrates how the velocity components of uavs converge to common
values along the x and the y direction.

7 Conclusions

In this paper we present a methodology for coordinating the motion of a group
of ugvs and a group of uavs, by means of decentralized controllers that
use partial and delayed state information. The control objectives achieved
by these controllers include the synchronization of ground vehicle velocity
vectors, regulation of inter-vehicle distances between communicating ugvs,
distributed estimation of the ground team’s centroid, asymptotic tracking with
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Fig. 13. A snapshot of the configuration of the ugv group in the scenario where the
communication graph is not complete, during the transient period. Vehicle velocities
are already aligned and the centroid estimates are very close to the actual group
centroid near (12.3, 5.6). Vehicles 2 and 7 do not communicate and are not aware
of each other’s position. They do not generate an inter-vehicle potential force that
could maintain a distance between them. .
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Fig. 14. Steady state configuration of the ugv team in the scenario where the
communication graph is not complete. Centroid estimates and actual centroid co-
ordinates (around (44.7, 22.1)) are very close. Velocity vectors are synchronized.
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Fig. 15. Convergence of velocity components along the x and y directions for the
case of a communication graph that is not complete.

bounded errors of the ugv centroid by aerial vehicles, and establishment of
stable orbiting behaviors for uavs with collision avoidance capabilities. The
latter aspect of uav motion is not guaranteed under the current scheme of
gyroscopic-based collision avoidance maneuvering.

Compared to our earlier work [10], in this paper we establish a controlled
interaction between heterogeneous groups, we introduce potential-based cohe-
sion and separation forces to regulate inter-vehicle distances, and we establish
the stability of the closed loop dynamics, that ensure coordinated motion,
for each group individually. A communication protocol which accommodates
time delays, inter-vehicle cohesion and separation forces, and a velocity syn-
chronization scheme are combined into a switched control and communication
strategy, that is shown to yield asymptotic stability within a Lyapunov frame-
work.
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