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Abstract—This paper describes the construction of stochastic,
data-based discrete abstractions for uncertain random processes
continuous in time and space. Motivated by the fact that mod-
eling processes often introduce errors which interfere with the
implementation of control strategies, here the abstraction process
proceeds in reverse: the methodology does not abstract models;
rather it models abstractions. Specifically, it first formalizes
a template for a family of stochastic abstractions, and then
fits the parameters of that template to match the dynamics
of the underlying process and ground the abstraction. The
paper also shows how the parameter fitting approach can be
implemented based on a probabilistic model validation approach
which draws from randomized algorithms, and results in a
discrete abstract model which is approximately simulated by the
actual process physics, at a desired confidence level. In this way,
the models afford the implementation of symbolic control plans
with probabilistic guarantees at a desired level of fidelity.

Index Terms—stochastic processes; discrete abstractions; sim-
ulation relations; randomized algorithms

I. INTRODUCTION

There are multiple robotic systems the evolution of which
exhibits stochasticity and levels of noise that cannot be ig-
nored. Examples of such systems are micro aerial vehicles
(especially when flying near surfaces and are affected by
ground effects) and miniature legged robots [1], [38], ocean
drifters [2], and micro robots navigating in solution [3]. The
motion of robotic systems such as these is better modeled
using continuous or discrete stochastic processes. Stochastic
processes offer an important modeling framework for dynamic
phenomena that exhibit uncertainty [4]. Indeed, the flexibility
and expressivity of stochastic models affords them applications
in a diverse range of fields, from engineering [4], to physics
and biology [5], to finance [6]. Yet, stochastic processes are
notoriously difficult to analyze and design control laws for [7].

Uncertain physical processes are encountered in the study
of complex phenomena such as legged locomotion on gran-
ular media [8], and ground-effect aerodynamic coupling in
quadrotor flight [9]. Detailed modeling of such interactions not
only requires deep understanding of the underlying physics but
leads to mathematical descriptions which may be too cumber-
some for planning and control design purposes. This motivates
the construction and use of simplified abstract representations
of the effect of these complex physical processes on the motion
behavior of systems. Some of these abstract representations
capture uncertainty in a deterministic way; for example in the
form of some slowly-varying disturbance [9], or by having a
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range of case-specific models [10]. Other times, uncertainty is
being modeled in the form of stochastic noise—a formulation
that yields compact mathematical representations [11] in the
form of stochastic differential equation (SDE)s. These continu-
ous in time and space mathematical models may be elegant and
concise, but they are notoriously difficult to analyze in closed
form in multiple dimensions [5]. A question that arises is
whether these models admit further simplification that makes
them amenable to analysis and design, without depriving them
of the ability to make reliable predictions of future behavior.

In this light, symbolic control synthesis methods with their
automated tools for property verification and control synthesis,
appear particularly attractive. There is a mature body of
literature offering a variety of algorithms, primarily based
on fixed-point computations [12], that operate on discrete
abstractions of dynamical systems to yield controllers that
enforce linear temporal logic (LTL) specifications [13], [14]. If
a discrete abstraction is linked to its concrete system formally
through a simulation or a bisimulation relation (i.e. [15]–
[17]; for exceptions, see [18]), then model checkers can be
used for the verification of LTL specifications, and symbolic
controllers can be refined to regulate the concrete system. All
these formal-methods tools for verification and synthesis rely
on the availability of discrete models for the processes at hand.

The application of formal methods to the analysis of
stochastic processes follows a parallel track [19]–[22], typ-
ically leveraging tools for non-probabilistic systems [23];
however, existing literature on abstracting stochastic processes
has a common starting point: a known model of the concrete
stochastic process, usually in the form of an SDE or a Markov
decision process (MDP) [21], [22]. For instance, there can be
a finite-state probabilistic system [24], or an MDP [23], where
the transition probabilities are given, or an SDE with known
diffusion and drift coefficients [25], [26]. In this context,
emphasis has been given on methods that alleviate the curse
of dimensionality by adapting [21] or avoiding [26] state and
input discretization, usually by exploiting stability properties—
although forward completeness [27] does draw from input-to-
state stability concepts. Still, the abstraction process starts with
a fully known concrete model for the stochastic dynamics.
This paper reports on an approach that uses experimental

data from the stochastic phenomenon of interest to construct
a discrete abstraction of the process. There is a pathway that
formally links the underlying physics to abstract models—
phenomenological or based on first-principles—in a way that
is useful for planning, control, and verification. The approach
bears some similarities to existing work [21], [22], in the sense
of producing a Markov chain as a discrete abstraction of the
concrete stochastic process. In order, however, for these low-



2

dimensional representations to make predictions that match
experimental observations, the former have to be populated
with parameter values based on data. Thus, among the key
conceptual differences of this paper to the aforementioned
work is that it works with data instead of a concrete (hybrid
system) model for the underlying physical process, and does
not place the emphasis on the behaviors of the models being
“close,” but rather to one system’s behavior being a subset of
that of the other.

An application area where the ability to predict system
behavior based on a simple stochastic model is particularly
useful, is planning the motion of miniature legged robots [28],
[29]. First-principle models for multi-legged robots are difficult
to obtain, complex, and dependent on a variety of partially
known parameters. The lack of reliable simple models for this
class of robots impedes efforts to analyze their motion behavior
and design motion controllers. The significance of having a
model which cannot exhibit behavior foreign to the stochastic
process it represents, is that one can confidently predict and
reason about future behavior and performance, under different
operating conditions, without additional explicit experimenta-
tion over the whole operating regime.

The paper marks a departure from the norm in the con-
text of deriving finite abstractions, for cases where data are
available about the behavior of the physical process that is
being studied. The reason for this departure is that existing
techniques inadvertently propagate modeling errors through
the abstraction process and eventually leave them unchecked.
The hypothesis here is that the fidelity of the abstraction
can be ensured during modeling process, and uncertainty
from both process and modeling be probabilistically quanti-
fied. So contrary to the prevailing trend in existing literature
which abstracts models of physical processes, this approach
advocates modeling an abstraction of the uncertain process.
For example, if experimental data are available, the typical
approach is to first fit a continuous concrete model to these
data, and then derive a finite abstraction for that model;
alternatively, what is done here is that some uncertain finite
abstraction is formalized first, and then this abstraction is
related to the concrete finite model based on the data. Note that
related literature reserves the terms “concrete” and “abstract”
for detailed high-dimensional, and simplified low-dimensional
models, respectively; here, however, the “abstraction” is low-
dimensional but not “concrete” because it is uncertain, while
the “model” is of the same dimensionality as the abstraction,
but it is concrete in the sense of being completely known.

The paper’s contribution is in (i) determining conditions
under which a discrete model of a stochastic process can be
related through a simulation relation to the stochastic process;
(ii) introducing the concept of (approximate) strong simulation
relations between discrete stochastic processes and a means of
practically establishing them through a data-driven approach,
and (iii) demonstrating the use of the relations on predicting
the behavior of uncertain miniature legged robots in planar
motion planning tasks. A corollary of this analysis is that
in order for a model to partially capture the behavior of the
underlying physics, it has to exhibit more uncertain behavior
compared to the physics it attempts to model.

The methodology combines simulation relations with ran-
domized algorithms to produce data-driven probabilistic dis-
crete abstractions for stochastic processes lacking a concrete
model. It does so in a way that the abstract model can
enjoy formal fidelity guarantees with respect to the physical
processes it describes. Given the simulation relation estab-
lished between the discrete probabilistic abstractions and its
underlying physical process, the resulting model can feed into
existing tools for verification and synthesis [19]–[22]. Using
a body of experimental data, the performance certificates
established for the abstract model can now be extended to
the physics being modeled—at a lower level than that of the
SDE or the MDP typically used as a concrete model.

II. PROBLEM STATEMENT

Terminology and notation follows Rogers and
Williams [30]. Existing concepts and established definitions
from stochastic processes and formal languages are provided
in the Appendix, and whenever the concepts are are invoked,
a reference to the corresponding definition in the Appendix is
provided in a footnote. Whatever stochastic processes-related
symbols and concepts are not defined explicitly in this paper,
can be found in Rogers and Williams [30]. A table of the
notation symbols used in this paper is provided before the
Appendix.

The objective is to construct formal abstractions of stochas-
tic physical processes, in the form of discrete probabilistic
models. To establish a starting point for this process, it is
first assumed that the physical phenomenon of interest is ade-
quately captured by the mathematical model of a (continuous-
space) Markov process1 evolving on some subset E of a
Euclidean space.

The phenomenon of interest is thus captured by a Markov
process X. The process X is in fact a special mapping from
Ω to a function space ET : the space of functions which map
into E, and depend on a variable which takes values in T .
One then writes X ∶ Ω → ET , ! ↦ X(!). (One example of
T is a time domain, a subset of ℝ≥0.) If the valuation map
on functions, �t ∶ ET → E, is defined as �t(f ) ∶= f (t), and
the σ-algebra2 T on E is expressed as T ∶= σ{�t ∶ t ∈ T },
then the function X(!) is understood as an (ET , T )–random
variable, also known as a sample path.

Imagine that X is parameterized by control signals, which
are assumed to be finite functions of time t ∈ T , and of
state x ∈ E. This setup gives rise to a controlled continuous
Markov process (not be confused with a Markov decision
process, which is discrete in space and time and also involves
rewards and discount factors). For the particular class of
controlled Markov decision processes considered here, the
space of control laws is finite. Essentially, the controlled
Markov processes of this paper are finite families of (closed-
loop) continuous Markov processes.

With a controlled continuous-space Markov process captur-
ing the dynamics of the phenomenon of interest, the question
now is two-fold: (i) what type of discrete, in space and time,

1See Definition 13 in Appendix B.
2See Definition 8 in Appendix B.
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models can serve as abstractions of such stochastic processes,
and (ii) under what conditions can one relate formally such
abstractions to the original processes, in a way that guarantees
that the behavior of the abstraction is necessarily exhibited
by the process too. The shows that relaxed versions of the
formal relations between abstraction and process can be still
be established with the same performance properties but at a
reduced (probabilistic) level of confidence, if due to lack of
information or derivational and computational issues, doing so
analytically becomes impractical.

III. APPROACH

If a discrete probabilistic model of some stochastic physical
process is constructed in a way that conservatively represents
the original physical process, then a strong simulation relation
can be established between process and model, ensuring that
model behavior is a subset of that of the stochastic process.
This inclusion property ensures that control strategies devised
based on the model can be refined on the physical system.
The discussion starts with the assumption that the controlled
continuous-space Markov processes is an accurate and full
representation of the actual physical phenomenon.

In order to make these controlled continuous Markov pro-
cesses amenable to analysis using tools from formal languages,
this paper applies one form of discretization. Both the space
of control signals, and the Markov process’s state space is
discretized. Control discretization is more straightforward, so
the discussion begins with that.

Recall that the space of control laws driving Xt has been
assumed to be a finite collection of bounded functions on ℝ+×
E. To every such function, associate a distinct symbol � and
collect all the symbols in a finite set Σ.
The discretization of the state space of Xt is a little more

involved. It is induced by imposing a certain structure on
 . Imagine “seeding” E with N isolated points, and de-
fine disjoint compact neighborhoods Γ1,… ,ΓN around those
points. Let 1Γi denote the indicator function of neighborhood
Γi. Define ΓN+1 ∶= E ⧵

⋃N
i=1 Γi, and (re)define  to be

the σ-algebra generated3 by the sets Γi in the form  ∶=
σ{Γ1,… ,ΓN ,ΓN+1}. (Mind the subtle appearance distinction
between �, the control symbol, and σ, the σ-algebra.)
Now fix � ∈ Σ, and consider sample paths Xt as collections

of (E, )–random variables (or equivalently, X as a (ET , T )–
random variable), where specifically T = [0, �] ⊂ ℝ+ for fixed
� > 0. If, for example, one considers the path of a robot within
its workspace produced with some fixed control law �, these
sample paths will correspond to random realizations of the
robot’s evolution over a time period [0, �]. For n ∈ ℕ, the finite
collection of (ET , T )–random variables Xn� now defines a
(discrete-time) Markov process {Xn ∶ n ∈ ℕ}. Continuing
with the aforementioned analogy, this Markov process can be
viewed as a probabilistic reachability graph—with the caveat
that the robot’s control law is fixed. By virtue of Γi being
disjoint and each Xn being a function, at time t only a single

3See Definition 8 in Appendix B.

event (e.g., “the robot is at workspace cell Y ”) can occur in
filtration t.4

For i ∈ {1,… , N + 1} and Γi ∈  , label every event
X0−1(Γi) ⊂ Ω with a unique symbol q, and collect all such
symbols in a finite set Q. Formally, this can be done by
means of a surjective function Φ ∶ E → Q, such that
Φ(g1) = Φ(g2) ⟺ ∃ i ∈ {1,… , N + 1} ∶ g1 ∈ Γi ∋ g2.
Pick (q, q′) ∈ Q×Q, and for arbitrary k ∈ ℕ (recall that Xt

is Markov) define the probability measure

�(q, q′) ∶=

ℙ
[

{

! ∈ Ω ∣ Φ
(

Xk(!)
)

= q, Φ
(

Xk+1(!)
)

= q′
}

]

. (1)

This practically defines a probability distribution that expresses
the likelihood of, say, the robot landing at different workspace
regions in after time “step” (of duration �). Indeed, for a given
q ∈ Q, �(q, ⋅) is a probability measure on Q. Let  ∶= 2Q
denote the power set of Q and Π(Q) the family of discrete
probability spaces5

(

Q,, �(q, ⋅)
)

, parameterized by q ∈ Q.
Since X is a controlled Markov process, there can be an

additional parameterization of the probability spaces (Q,, �)
depending on what control law is used to drive the process.
For a finite set of possible control laws, each labeled with a
symbol � ∈ Σ, one obtains a different Markov process for each
�; the dependence is denoted X |� . Subsequently, each � gives
rise to a different family of discrete probability distributions
over Q. Thus given q ∈ Q, the probability distribution �(q, ⋅)
changes depending on �, a fact that is highlighted by writing
the left hand side of (1) in the form ��(q, ⋅).
This paper adopts a definition of deterministic finite au-

tomata that allows only a single state to be initial [31], and
builds on it to define a semiautomaton. The basic difference be-
tween automata and semiautomata is that the latter do not have
marked initial and final states. So if automata specify where
the system starts from and where it needs to go, semiautomata
merely describe how the system can evolve. Given that in the
present context this difference is practically inconsequential—
the marking of states in automata is invoked in the context of
motion planning tasks in Section IV, where there are initial
and goal configurations—the discussion that follows switches
rather casually between automata and semiautomata.

Definition 1 (Probabilistic semiautomaton; cf. [31]–[33]). A
probabilistic semiautomaton A = (Q,Σ,Δ) is a tuple with
components:

Q a finite set of states;
Σ a finite set of input symbols;a
Δ the transition relation.b

4See Definition 11 in Appendix B.
5See Definition 15 in Appendix C.
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a The input set is sometimes referred to as alphabet, action
set or action signature.

b Δ ⊆ Q × Σ × Π(Q) and when (q, �, �) ∈ Δ one writes
q

�
→ �. The semantics of the later is that for discrete

state q ∈ Q, � determines the probability distribution over
the states that may succeed q as Xn evolves. We denote
��(q, ⋅) ∶= �(q, ⋅) |(q,�,�)∈Δ .

A nondeterministic semiautomaton can be associated to each
probabilistic semiautomaton. The difference between the prob-
abilistic semiautomaton A and its associated nondeterministic
semiautomaton An is that in the latter, the information on
transition probabilities is ignored.

Definition 2. Given a probabilistic semiautomaton A =
(Q,Σ,Δ), the nondeterministic semiautomaton associated with
A is a tuple An = (Q,Σ,Δn), where the transition relation Δn
is defined based on Δ, as follows:

(q, �, q′) ∈ Δn ⟺ q′ ∈ arg sup
(

�(q, ⋅) |(q,�,�)∈Δ
)

.

In view of the aforementioned mapping of a (continuous
time and space) controlled Markov process to a family of finite
Markov chains6 —specifically, one finite Markov chain for
a given discrete control input— an uncertain and stochastic
physical processes is linked to a probabilistic semiautomaton
where the family of discrete probability spaces is not yet fixed.

Definition 3 (Discrete abstraction). For � ∈ Σ, consider a
finite family of Markov processes X |� over state space (E, ),
and let {Γi}N+1i=1 be a finite partition of E. With Φ ∶ E →
Q being a surjective function and |Q| = N + 1, such that
Φ(g1) = Φ(g2) ⟺ ∃ i ∈ {1,… , N + 1} ∶ g1 ∈ Γi ∋
g2 , a probabilistic semiautomaton A = (Q,Σ,Δ) is a discrete
abstraction of X |� , if

(q, �, �) ∈ Δ ⟹ ∀ q′ ∈ Q, �(q, q′) |(q,�,�)∈Δ ≡

��(q, q′) = ℙ
[

{! ∈ Ω ∣ Φ(Xt |�)=q,Φ(Xt+T |�)=q′}
]

. (2)

The last clause of (2) is the formal link between the
continuous stochastic process of interest and its discrete prob-
abilistic abstraction. Implication (2) simply states the fact
that the transition probabilities in the discrete abstraction of
a physical process capture the likelihood of the process to
evolve between the corresponding initial and target states.
Any probabilistic semiautomaton that can potentially satisfy
(2) after a modification of its transition relation Δ will be
considered a model for the physical process:

Definition 4. Let A be a discrete abstraction of X |� . Suppose
A′ is a probabilistic semiautomaton whose associated nonde-
terministic semiautomaton is isomorphic to that of A. Then A′

is a model for X |� .

6A Markov chain is a Markov process with a countable state space [30].

The actual physical process X |� is thus considered prac-
tically unknown; one tries to make predictions about its
evolution using a model X′

|�
in the form of a discrete system

that is isomorphic to the process’ abstraction.
Consider now two probabilistic semiautomata A, A′ with

identical set of input symbols Σ, and let R be a relation on
Q×Q′. Relation R may be lifted to Π(Q)×Π(Q′) by means of
weights (if the latter exist). Specifically, for (Q,, �) ∈ Π(Q)
and (Q′,′, �′) ∈ Π(Q′), R lifts from Q to Π (cf. [32,
Definition 15]), denoted (Q,, �) ∼R (Q′,′, �′), if there
exists a function w ∶ Q ×Q′ → [0, 1] such that
(a) ∀ (q, q′) ∈ Q ×Q′, w(q, q′) > 0 ⟹ (q, q′) ∈ R;
(b) ∀ (s, s′) ∈ R and (q, q′) ∈ Q × Q′ such that (s, q) ∈

Δ, (s′, q′) ∈ Δ′, it holds that
∑

q′∈Q′ w(q, q′) = ��(s, q);
(c) ∀ (s, s′) ∈ R and (q, q′) ∈ Q × Q′ such that (s, q) ∈

Δ, (s′, q′) ∈ Δ′, it holds that
∑

q∈Qw(q, q′) = �′�(s
′, q′).

Figure 1 depicts an example of a weight function for a
pair of related states (s, s′). Assume state s belonging to
semiautomaton A, and s′ to A′. The weights intuitively express
a way of redistributing the probabilities over the states that
are successors of s in A, to their related successors states of
s′ in A′. Note that each pair of related states can have its
own weight function. The weight functions essentially serve

s

t u

v

t′ u′

v′

s′

1
3

2
3

1
2

1
21/3

1/6

1/2

a a

b
b

c c
c

Fig. 1: A weight function associated with related states (s, s′). The
numbers on the graphs’ edges mark the probabilities that the process
will evolve along this route under control input a. The dashed arcs
link the successors of states s and s′ on the same input a, according
to the given relation. The weight function assigns positive numbers
to each of these links in accordance to conditions (a)–(b)–(c) above.

to as a means to express how the probability distributions in
one model can be reshaped in another model when these two
models are linked through a (strong) simulation relation:

Definition 5 (Simulation relation; cf. [33]). A relation R on
Q ×Q′ is a (strong) simulation iff ∀ (q, q′) ∈ R and � ∈ Σ

q′
�
→ �′ ∈ Δ′ ⟹ ∃ q

�
→ � ∈ Δ ∧ � ∼R �′ .

Then A = (Q,Σ,Δ) strongly simulates A′ = (Q′,Σ,Δ′).
Checking whether a relation between two probabilistic
(semi)automata is a strong simulation relation is equivalent
to solving a maximum flow network problem [34], and has
been reduced to a linear program [35]. Indeed, the proof of
the next statement is constructed in the spirit of treating the
strong simulation verification problem as a linear program.
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Theorem 1. Let A = (Q,Σ,Δ) and A′ = (Q′,Σ,Δ′) be two
probabilistic semiautomata whose associated nondeterministic
semiautomata are isomorphic.7 Let � denote the isomorphism
and assume there exist s ∈ Q and �(s) = s′ ∈ Q′ with in-
coming transitions from all states but no outgoing transitions.
Construct a relation R ⊂ Q ×Q′ such that ∀ q ∈ Q,
(i)

(

q, �(q)
)

∈ R, and
(ii)

(

q, �(s)
)

∈ R.
If ∀ � ∈ Σ, the following two conditions hold
1) ��(s) ≤ �′�

(

�(s)
)

, and
2) ��(q) ≥ �′�

(

�(q)
)

, ∀ q ∈ Q ⧵ {s}
then relation R is a strong simulation relation and A strongly
simulates A′.

Proof. Fix � ∈ Σ. Identify the precursor of s ∈ Q in A,
that is, a q ∈ Q such that (q, s) ∈ Δ, and consider all
states {u1,… , uN+1} reachable from q in A. Without loss of
generality, take s ≡ uN+1. For i ∈ {1,… , N +1}, denote
�i = �� i the probability that q jumps to ui on �.
Due to the isomorphism between the associated nondeter-

ministic semiautomata of A and A′, there will be �(q) ∈
Q′ and {v1,… , vN+1} states in Q′ such that for any i ∈
{1,… , N + 1} we have

(

�(q), vi
)

∈ Δ′. Once again, assume
s′ ≡ vN+1. Denote �′i the probability that �(q) transitions to
vi on �. There are 2N + 1 elements of R pairing one ui with
one vi: , |{(ui, vi) ∈ R ∶ (q, ui) ∈ Δ ∧ vi = �(ui)}| = 2N + 1.
(This is because there are N + 1 elements due to clause (i)
and another N due to (ii).) Associate a weight wj to each
one of those 2N + 1 elements of R, with the convention
that for i ∈ {1,… , N + 1} it is w(ui, vi) = wi > 0 and
w(ui, �(uN+1)) = wN+i > 0.
One way to lift R to Π(Q) × Π(Q′) is to have

�i = wi +wN+i (3a)
�′i = wi (3b)

for any i ∈ {1,… , N + 1}, and in addition

�N+1 = w2N+1 (3c)

�′N+1 =
2N+1
∑

j=N+1
wj . (3d)

Denote the vector of weights

w ∶=
(

w1,… , w2N+1
)

and construct the probability (distribution) vector

b ∶=
(

�′1,… , �′N , �1,… , �N , �′N+1, �N+1
)

.

Now the set of equations (3) can be written in matrix form

Aw = b

7See Definition 17 in Appendix C. To particularize to semiautomata, ignore
the conditions on the initial and final states.

where matrix A has the following structure

A ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

IN×N 0N×N 0N×1
IN×N IN×N 0N×1
01×N 11×N 1
01×N 01×N 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

with In×n being the n× n identity matrix, 0n×m the n×m zero
matrix, and 01×n, 11×n denoting n-dimensional column vectors
of zeros and ones, respectively. Note that (3c) and (3b) are
decoupled from the other equations; this system reduces to

[

IN×N
11×N

] ⎡

⎢

⎢

⎢

⎣

wN+1
⋮

w2N

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1 − �′1
⋮

�N − �′N
�′N+1 − �N+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

The last row in (4) is dependent on the ones above: the
sum of rows 1 through N gives row N + 1. Therefore there
is always a unique solution to (4):

wN+1 = �i − �′i w2N+1 = �′N+1 − �N+1 .

However, there are constraints: �i and �′i are probabilities,
and weights wi cannot be negative. For this solution to be
admissible, therefore, the following inequalities should hold:

�i − �′i ≥ 0 ⟺ �i ≥ �′i
�′N+1 − �N+1 ≥ 0 ⟺ �N+1 ≤ �′N+1 .

Conditions 1) – 2) of the theorem are thus established.

To ground Theorem 1 in context, assume that semiau-
tomaton A represents the stochastic dynamics of the physical
phenomenon of interest (the transition probabilities of which
cannot be known precisely), and that A′ corresponds to a
hypothesized probabilistic model of that uncertain process.
The special states s and �(s) = s′ play the role of sink
or “coffin” states in A and A′ respectively; they are states
where system trajectories go when the process terminates
(e.g., in case of the process attempting but failing to make
a particular transition). What Theorem 1 implies is that if
the model is constructed in a way that is isomorphic to the
actual physics (recall that what is unknown about the physics
is the transition function, not the states or input alphabets),
then a relation can always be defined in such a way that the
physics simulates the model, provided that the model is more
conservative: the probability of a transition from a state of
the model to fail is higher than that the probability in the
actual process (�′N+1 > �N+1); similarly, the probability of
successful transition to another state in the model must be
lower compared to the actual physics (�′i < �i). When the
physics simulates the model, this means that the model is not
endowed with more behaviors than those that can be observed
in an actual experiment.

Theorem 1 does not provide direct ways of checking or
enforcing the validity of the conditions when �i (the proba-
bility distributions of the physical process) are unknown. If
these distributions can be approximated, then it is natural to
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ask whether simulation relations between discrete stochastic
processes can still be established in a probabilistic sense.

The next section aims at making two points. The first
is that, indeed, there are principled ways of approximating
those distributions, and setting the parameters of the model
in such a way so that strong simulation relations between the
model and the physical process it represents can be ensured
probabilistically at any confidence level, given enough data.
The second point is that strong simulation relations between
physics and model are relevant and useful in the application
space of planning and navigation for miniature legged robots.

IV. CASE STUDY: MINIATURE LEGGED ROBOTS

Process noise does not always scale down with size, and an
example of this can be found in the motion of miniature legged
robots. Whereas the uncertainty of ground-robot interaction is
noticeable yet manageable in larger meter-scale wheeled and
legged robots, for legged robots with form factor in the order of
a few inches (Fig. 2a) contact forces have a dramatic effect on
motion behavior [28], [29]. The deviation after a few seconds
of open-loop motion is comparable to body lengths (Fig. 2b).

(a) A 3D-printed hexapod (b) motion path diffusion

Fig. 2: Miniature legged robots are susceptible to noisy ground
interactions and exhibit clearly stochastic motion behaviors: (a) A 3D
printed biologically-inspired miniature multi-legged robot. (b) When
starting from within an initial region open loop robot paths going
straight, left, and right start to disperse rapidly.

The goal of this section is to demonstrate how discrete
stochastic models in conjunction with simulation relations can
be utilized to predict the probability of successful completion
of navigation tasks on the robotic platforms of Fig. 2. The par-
ticular robot is an open-source 3D-printed miniature hexapod
robot design developed at the University of Delaware. The
design specifications and CAD files for this robot are freely
available at https://www.thingiverse.com/thing:4084997 .

A. The physics
In this case, the physical process (which in principle in-

cludes all robot-ground physical interactions during locomo-
tion) is known only partially, and primarily through experi-
mental observations. For the case of the robot of Fig. 2a, it
is assumed that the underlying physics is a Markov process8
X |� , for � ∈ Σ ≔ {l, s, r}, where l, s, and r stand for left,
straight, and right, respectively. The process has state space
(E, ), probability space (Ω, ,ℙ), and is adapted9 to some

8See Definition 13 in Appendix B.
9See Definition 12 in Appendix B.

filtration {t}. The transition probability function of X |� is
denoted p� . Both p� and ℙ, are in general unknown.

What is given is a body of data D =
⋃

ΣD� , where each D�
is a collection (bundle) of sample paths Xt(!) |� all starting in
the neighborhood of a common initial state and taking values
in E, for t ∈ T ≔ [0, � ] ⊂ ℝ≤0 and fixed � > 0 (see Fig. 2b ).
Each Xt(!) |� is a realization of the process for one of the
three available inputs �. Let card(D�) denote the cardinality
of the path bundle D� , and let M ≔ card(D�). Each path
bundle can be seen as an element of the product σ-algebra

M =  ×⋯ × 
⏟⏞⏞⏞⏟⏞⏞⏞⏟
M times

and the associated product measure ℙM can be defined on
Ω×⋯ ×Ω. Since each sample path is a measurable mapping
! ↦ Xt |� , one can think similarly of a path bundle as a
mapping ΩM → EM where ! ↦ D� for ! ∈ ΩM .

If the state space E consists of spatial transformations,
e.g. rigid body motions, then it will be a Lie group;10 and
if in addition uniformity over E is assumed, for example
that the physical space has the same terrain characteristics,
constant elevation, etc., then the group action would apply
uniformly to all points of the physical workspace of the robot.
The significance of these assumptions is that they allow D
to contain a single bundle of sample paths Xt |� , one for
each � ∈ Σ; one would not need a separate data set for
each potential initial condition. Without loss of generality,
it is assumed that the common starting neighborhood of all
observed sample paths surrounds the group’s identity element.

The average of all sample paths in bundle D� is a curve
denoted X̄� (examples of which are be the thick green curves
in Fig. 2b). Formally, X̄� ∶ T → E is a map for which

X̄�(s) ≔ E
[

�s(Xt |�)
]

, s ∈ T , Xt |� ∈ D� .

With a slight abuse of notation, we use just Xs |� to denote
�s(Xt |�), until we switch to canonical processes.
Each X̄� serves as the representative of bundle D� , and can

be regarded in itself as a spatial transformation taking the Lie
group’s identity element to the average of X� |� for all sample
paths in bundle D� . These representatives will henceforth be
referred to as motion primitives.

B. The abstraction of the physics
Based on the available motion primitives X̄� , and given an

initial condition, a discrete reachability tree can be constructed
for the unknown stochastic process Xt. In particular, the
average paths X̄� can be concatenated according to the group
action: for �1, �2 ∈ Σ, if one assumes that motion primitives
X̄�1 and X̄�2 have end points g�1 , g�2 ∈ E, respectively, then
the concatenation X̄�2X̄�1 is understood as a spatial transfor-
mation that maps the identity to g�2 g�1 . If the selected initial
condition is some g0 ∈ E, then the result of executing the
motion primitive X̄�2 after X̄�1 is a rigid body transformation
to g�2 g�1 g0.

10In the present case study, E = SE(2)—see Appendix D.
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(a) Hexapod in constrained space (b) RRT path for turning a corner

Fig. 3: Planning motion primitive-based paths for the hexapod of
Fig. 2a. (a) The hexapod is placed at an intersection of a scaled-down
model of a city [36], with the intention of running in open loop a
sequence of motion primitives in order to make a left turn. (b) The
primitive-based randomly-exploring random tree (RRT) constructed
for this mission with the selected path to a goal disk-shaped region.

To make this idea more concrete, consider a case where a
robot is operating in a constrained planar environment, where
the obstacle-free space has uniform characteristics. The goal
is for the robot to reach a region F ⊂ E, starting from an
initial condition that is distributed around g0 ∈ E according
to density P0. There are multiple ways of planning that motion;
one that is convenient for the purposes of the analysis here is
the use of a primitive-based RRT [37]. This reachability tree
has nodes where g0 is mapped under concatenations of motion
primitives in Σ (Fig. 3).

Let the nodes of the reachability tree be N in number. The
indexing convention is that node 1 is the root of the tree
(at g0); node N is the single leaf node at gN−1, which is
inside the target region. With the addition of a sink node,
these N nodes “seed” E = SE(2) (see Section III) and
form the finite set Q with |Q| = N + 1. The collection
of disjoint compact neighborhoods {Γi}Ni=1, together with
ΓN+1 ∶= SE(2) ⧵

⋃N
i=1 Γi, partition SE(2) into N + 1 blocks.

Neighborhood Γ1 is a $-content tolerance region11 around
g0 ; assuming that distribution P0 of initial conditions is
known, this region can be constructed to contain exactly the
$ percentile of initial conditions at a 
 confidence level.
Neighborhood ΓN is the desired target area for the process in
E. The remaining neighborhoods will be similarly defined as
tolerance regions; the following section gives more details.

Definition 6. Let a (symbolically) controlled continuous
Markov process X |� with state space (E, ) over a finite set
of control symbols � ∈ Σ be characterized by a transition
probability function p�(dy, t + dt |x, t) = Pt+dt(x, dy; �) with
known initial distribution P0. Then a discrete abstraction of
X |� is a probabilistic automaton A = (Q, q1,Σ,Δ, QF ), with
components described as follows:

Q the set of states;a
q1 ∈ Q the initial state;b
Σ the finite set of input symbols;c
Δ the transition relation;d
qN ∈ Q the final state.e

11See Definition 14 in Appendix B.

a The N nodes of the reachability tree gi, and the elements
of Q ⧵ {qN+1}, are linked through a bijection E → Q ⧵
{qN+1}, where gi ↦ Φ(gi) = qi+1. Each qi ∈ Q ⧵ {qN+1}
is a representative of a compact neighborhood Γi ⊂ E
around a node. State qN+1 is a representative of ΓN+1 =
E ⧵

⋃N
i=1 Γi and is a “sink” state in the sense that there

is no outgoing transition from that state.
b The initial state q1, is associated with the root of the
reachability tree at g0 ∈ E.

c The input set contains a symbol for each one of the control
inputs (e.g., the motion primitives).

d Δ ⊆ Q × Σ × Π(Q) where (qi, �, �) ∈ Δ implies that for
any qj ∈ Q ⧵ {qN+1}, and for a fixed � ∈ (0, T ],

� = ��(qi, qj) = ∫E
P� (g, dg′) 1Γj (g

′)

= ∫g∈Γi ∫g′∈Γj
p
(

X� |� = g′
|

|

|

X0 |� = g
)

dg′ dg . (5a)

For A it holds that

∃ qk ∈ Q ⧵ {qN+1} ∶

∫g∈Γi ∫g′∈Γk
p
(

X� |� = g′
|

|

|

X0 |� = g
)

dg′ dg

> ∫g∈Γi ∫g′∈Γj
p
(

X� |� = g′
|

|

|

X0 |� = g
)

dg′ dg

⟹ ��(qi, qj) ≔ 0 . (5b)

It is assumed that for every qi ∈ Q and � ∈ Σ, it is
(qi, �, qN+1) ∈ Δ, and

��(qi, qN+1) = 1 −
N
∑

k=1
��(qi, qk) . (5c)

e The final state is associated with the leaf of the reachability
tree that is inside F , that is, qN = Φ(gN−1).

From (5) it follows that for a given � ∈ Σ and qi ∈
Q ⧵ {qN+1}, there exist a transition from qi to some qj ∈
Q ⧵ {qN+1} only if ��(qi, qj) is maximal over all pairs
(qi, qj). Transitions to other states are considered unintentional,
associated with failure, and are redirected to the sink state
qN+1.
Probabilistic automaton A is a finite representation of the

stochastic process at hand and it abstracts it accurately, albeit
this abstraction not concrete: distributions �� are unknown,
and with the exception of first and last neighborhoods, i.e. Γ1
and ΓN , all other regions have not been specified. The next
section describes how to make the model concrete.

C. The model for the abstraction

Given an (uncertain) discrete abstraction A of a finite
family of continuous Markov processes X |� , and a body of
data D consisting of observations of the underlying physical
process, a finite empirical model A′ can be constructed. The
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discrete abstraction A and the finite model A′ are two proba-
bilistic automata with isomorphic associated nondeterministic
automata.12

Definition 7. Consider the probabilistic automaton A =
(Q, q1,Σ,Δ, Qf ) of Definition 6. A model for A is a probabilis-
tic automaton A′ = (Q, q1,Σ,Δ′, QF ), which is isomorphic to
A and whose transition relation Δ′ satisfies the following three
conditions: for every � ∈ Σ ,
1) (q, �, �′) ∈ Δ′ ⟺ (q, �, �) ∈ Δ
2) ∀j ≠ N + 1, ��(qi, qj) > 0 ⇒ 0 < �′�(qi, qj) < ��(qi, qj)
3) ��(qi, qN+1) < �′�(qi, qN+1) .

It follows directly from Theorem 1 that A′ is strongly
simulated by A. Motion plans synthesized based on A′ can
be executed on A with a probability that is at least as high as
their probability in A′. Utilizing a procedure for Probabilistic
Model Validation (PMV) [38], the probability distributions of
A′ can be determined from observations of X |� so that A′ is
simulated by A. The inclusion of the behavior of A′ into that
of A guarantees the assertion above.

Given the controlled continuous Markov process
(

Ω, ,ℙ; {Xt |� ∶ t ∈ T }
)

capturing the physics, take X′
|�

as the canonical [30] controlled continuous Markov process
(

E,  ,ℙ′;�t ∶ t ∈ T
)

with ℙ′ = ℙ ◦X−1
t , satisfying

E[X′
t |�] = X̄� t ∈ T . (6)

Fixing � ∈ Σ, let measure ℙ′� belong to a family of probability
measures  ′� (e.g., ones giving rise to a family of Gaussian
processes with mean X̄�) and be parameterized by a vector
�� of model parameters taking values in some bounded set
Ξ� so that

⋃

�∈Ξ ℙ′�(��) =  ′� . Thus the law of process X′
t ,

namely P ′ = ℙ′◦ (X′
t )
−1, depends implicitly on �� . Picking a

measure ℙΞ� on Ξ� induces a measure on  ′� and produces
a distribution of processes X′

|� . The idea now is to sample
ℙΞ� and use data D in order to identify probably approximate
near optimal fits for �� so that A′ is strongly simulated by A
with probability 1 − � at confidence level 
 .
The PMV-based parameter selection method reported here

does not depend on the choice of ℙ′Ξ� nor on the specifics
of X′

|� . (See Example 1 for a particular implementation of
X′

|� .) Without yet particularizing X′
|� , and having defined

Γ1 and ΓN (Section IV-B), one completes the definition of
the neighborhood regions by referencing the given reachability
tree (e.g. Fig. 3) and identifying the sequences of motion
primitives X̄�1 ,… , X̄�k that connect the tree’s root to any node
gi other than the final.
Reachability graph being a tree, implies that every node

gi has a unique parent denoted gparent(i) from which it can
be reached via some specific X̄� . Now for i = 1,… , N ,
each Γi is defined as the element of  coinciding with the
$-probability content (a, ') tolerance rectangle of ℙ′� , when
gparent(i) is assumed uniformly distributed in Γparent(i). In other
words, if j denotes parent(i), then Γi will be the smallest subset

12See Definition 4. For the isomorphism, refer to Definition 17 in Ap-
pendix C.

of E for which

�′�(qi, qj) ≔

∫g∈Γj ∫g′∈Γi
p′
(

X′
� |� = g

′|
|

|

X′
0 |� = g

)

dg′ dg ≥ $ . (7)

Note that the left hand side of (7) depends on �� due to ℙ′� , as
the latter determines the distribution of g′ = X′

� |� g over E.
If necessary, one can potentially pick different $ for different
�, making the probability content of each tolerance region
explicitly dependent on � and write it as $(�). Selecting
$(�) sufficiently small ensures that all Γi neighborhoods are
disjoint.

Ideally �′� is independent of (qi, qj); that is, execution of
� results in the same transition probabilities to target and
sink states uniformly on A′. Such a property facilitates the
construction of A′ as well as the estimation of reachability
probabilities over different paths on A′. This happens if

(

X′
� |�

)−1 (Γi) =
(

X′
� |�

)−1 (Γj) (8)

for all i, j ∈ {1,… , N} and � ∈ Σ. Section IV-E demonstrates
how (8) can be enforced for the particular case study at hand
through a particular choice of the underlying probability space
(Ω′, ′,ℙ′). Such choices of (Ω′, ′,ℙ′) are likely to require
an explicit dependence of $ on �.

The center of each neighborhood Γi is the associated
reachability tree node gi−1. For an arbitrary pair (qi, qj) giving
��(qi, qj) ≠ 0, center qj = gj−1 will naturally coincide with
E
[

ℙ◦ (X′
� |�)

−1
]

when X′
0 |� = qi = gi−1.

Example 1. For the planar motion with the motion primitives
X̄� of Fig. 2b for � ∈ {l, r, s}, gi can be assumed an element
of SE(2) (Fig. 5) and X̄� is in the role of a planar rigid body
transformation. Note that the translation component of these
transformations can be parameterized in the form of circular
arcs with primitive-specific radii, in terms of a, the arc length,
and ', the absolute orientation of the frame which the circle
containing the arc is tangent to at the origin (Fig. 4). The
rotation component can still be expressed in terms of a rotation
angle �, around the z axis. In that light, we take (a, ', �) to
be the (new) canonical parameterization of E.
The uniqueness of this parameterization is that under the

assumptions about how noise is injected in the motion of the
system (see Appendix A), disturbances in � enter with those in
' in affine form, greatly facilitating the analytical propagation
of uncertainty. For example, as illustrated in Fig. 4, if one
assumes that a frame g moves along a circular arc (thick
curve) of length a and of rotation ' relative to the horizontal
tangent, it will end up at the end point of the arc, (x, y)
pointing in the tangent to that point direction, which is equal
to 2� . In this way, translation and rotation appear coupled,
but the third (rotational) degree of freedom is restored by
considering an independent rotation in place at (x, y) which
will give g ∈ SE(2) its final orientation, �.
For a given primitive motion �, take the three variables

(a� , '� , ��) parameterizing E, to be independent, normally
distributed random variables parameterized by � ∈ Σ, with
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(b) right turn

Fig. 4: Parameterization of primitives in terms of arc length and
rotation, and explicit relations between Cartesian coordinates (x, y)
and proposed parameterization (a, '): (a) Left turn. (b) Right turn.

means X̄�(�) and variances �� . A benefit of this parameter-
ization under the assumptions made is that �� rotations in
transformation gi−1 simply add to '� to provide the initial
(orientation) conditions for the subsequent transformation
gi. Once the effect of �� is incorporated in this way, the
pose distribution propagation analysis can proceed in two
dimensions in between primitives.

Since each Γi ⊂ E is associated with a specific �, it can be
defined in this case as the rectanglular (a� , '� , ��)-tolerance
region translated to qi = gi−1 (see Fig. 5a for an illustration
of the tolerance region in the (a� , '�) subspace). When one
changes the position parameterization in E from (a, ') to
the Cartesian (x, y), the rectangular tolerance regions deform
and appear as in Fig. 5b, which depicts a transition from
a neighborhood Γ1 to a neighborhood Γ2 along a left-turn
primitive X̄l. Starting from X′

0 |l = g0 = q1, the end location
X′
� |l is distributed about g1 = q2 according to ℙ′◦ (X′

� )
−1 —a

binormal distribution in the (a, ') plane (Fig. 5a) appearing
as a banana distribution (cf. [39]) in Fig. 5b.

The banana-like distribution of Fig. 5b is in fact the convo-
lution of ℙ′◦ (X′

� )
−1 with a uniform distribution  over Γ1.

Specifically, for the initial conditions of the primitive X′
� |l it is

assumed that X′
0 ∼  (Γ1). Justification for this choice is given

next in Section IV-D as it discusses the process for tuning the
parameter vector � for the model automaton in order to be

(a) X−1
t (Γi)

g0(= q1)

Γ1

X̄l

Γ3

g2(= q3)

P′ ◦ (X ′τ )−1

(b) Γ1 → Γ3

Fig. 5: The effect of workspace parameterization on motion primi-
tive distributions: (a) In the a–' space, events (outcomes of a (a, ')
sampling experiment) can be independent and normally distributed,
and the Γi regions can be defined as rectangular tolerance regions; (b)
A Cartesian parameterization deforms the Γi regions—here a transi-
tion from region Γ1 to region Γ3 via a left-turn primitive is a random
experiment resulting in a distribution P ′

� (g, dg
′) = ℙ′◦ (X′

� |l)
−1 of

poses around X̄lg0 that resembles the “banana” distributions of [39].

strongly simulated by the discrete abstraction A.

D. Model parameter selection
The macroscopic kinematics of bio-inspired multi-legged

robots like the one in Fig. 2a can be modeled using a one-
parameter mechanical abstraction called the Switching Four-
bar Mechanism (SFM) [40]. (Details about this kinematic
model, and a new stochastic extension of it, can be found in
Appendix A.) In this paper, the cartesian position configuration
variables of the SFM abstraction are re-parameterized in terms
of a and ' as depicted in Fig 4. Under the assumption
that random disturbances are injected at leg touchdown, and
perturb the system normally over (arc) translation a and pivot
rotation ' relative to the initial pose, the end-point uncertainty
after the execution of a motion primitive X̄� is captured by
ℙ′◦ (X′

� |�)
−1. The latter is parameterized in terms of �, and

the main goal of this section is to set � to some �� in order to
match the variability observed in experimental observations.

In general, given � and �, and depending on the sample !′
drawn from Ω′, a sample path X′

t (!
′; �) |� originating in some

Γi has a certain probability of hitting Γj , given by �′�(qi, qj) in
(7). This probability depends on the choice of model parameter
�, which controls the dispersion of sample paths about X̄� .
Since measure ℙ′� of the model process is known, �′�(qi, qj)
can, in principle, computed accurately. For the process X |�
describing the actual physics, however, the probability of
hitting Γj from Γi is unknown. Under the assumptions of
workspace uniformity introduced in Section IV-B, the statistics
of transition of X |� from Γi to Γj is captured by that of
transitioning from Γ1 to X̄�Γ1 upon �. Analogously, X |�
missing its target neighborhood is an event

Ω� ≔
{

! ∈ Ω ∶ X0(!) ∈ Γ1, X� (!) |� ∉ X̄�Γ0
}

∈ 

that has probability �� ≔ ℙ(Ω�). Given that what is desired is
for the physics X to simulate the model X′, this probability
places an upper bound on the probability of events in which
experimental data (observations of X |�) disagree with model
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predictions (based on X′
|�). In other words, the model should

not allow paths to miss their target neighborhood on a �
transition with probability more than �� . The challenge is
that ℙ is unknown and thus �� cannot be computed; it may,
however, be empirically approximated based on data.

In order for A to simulate A′, Theorem 1 implies that
model transitions from some Γi to some other Γj should have
probability of success at most as those of the actual physics.
The theorem’s condition on transitions to discrete states other
than the sink is rewritten in terms of �′� and �� as

�� < 1 − �′�(qi, qj) ∀ � ∈ Σ , ∀qi, qj ∈ Q ⧵ {qN+1} (9)

meaning that the probability of the model failing to transition
on � from qi to qj is larger than that of the actual physics,
which is �� . Recall that �′� is implicitly a function of �, and
so it can be adjusted to satisfy (9). This adjustment needs to
work for all (qi, qj) ∈ Q, and therefore the explicit dependence
of �′� on this pair will be dropped for notation convenience.
Rewriting (9), define

G(�) ≔ �� + �′�(�) < 1 (10)

and set

�∗ ≔ arg sup
�∈Ξ

�′�(�) subject to �� < 1 − �′�(�) (11)

as the solution that maximizes the left hand side of (10). Given
that �� is unknown, one now asks how small should �′� be
made through the choice of �∗ to satisfy the above inequality
without being overly conservative? An answer to this question
can be provided by randomized algorithms.

Let Γ� denote the $-probability content tolerance (a, ')-
rectangle of ℙ′� when X0 |� ∈ Γ0. Then the empirical average
of the probability of violation on the data bundle D�

�̂� ≔ 1
M

∑

Xt|�∈D�

[

1 − 1Γ�
(

X� |�
)

]

will be a random variable that is expected to tend to the actual
�� as M → ∞. For a small accuracy parameter " and at
confidence level 
 , the Chernoff bound [41]

M ≥ 1
2"2

ln 2



(12)

suggests conservatively just how big M should be in order for
�̂ to be "-close to � with probability 1 − 
 .

If a closed-form expression of �′� as a function of � is
available, then the selection of � may be straightforward. More
often than not, however, the relationship is not explicit; then,
randomized algorithms can once again be used to select an
appropriate set of model parameters � in the spirit of (12).

Specifically, consider a finite sample {�l}M
′

l=1 ⊂ Ξ, satisfy-
ing E[�l] = �� . One may now be tempted to relax the search
over the whole Ξ in (11) into a search for �∗ over this finite
collection of �l by requiring somewhat more conservatively
that ∀D� ∈ M

�̂′� ≔ max
1≤l≤M ′

�′�(�l) < 1 − (�̂�(D�) + ") . (13)

Yet this will come at a price: one has to accept that there
will be a set of model parameters, the effect of which is not

going to be represented adequately by any member of the
finite collection {�l}M

′

l=1. This subset of Ξ is assumed to have
measure �, and ideally this � is comfortably small. Also note
that the last quantifier is important: it signifies the implicit
requirement that the model parameter �∗l which realizes the
maximum �̂′� should work not only for the bundle D� provided
as “training” data, but for any path bundle.

Parameterizing the model with a value taken from {�l}M
′

l=1,
denote Γ�(�l) the 
-confidence and $-probability content
tolerance region of ℙ′�(�l) when X0 |� is assumed distributed
uniformly in Γ1. Then for

�̂� l ≔ 1
M

∑

Xt|�∈D�

[

1 − 1Γ� (�l)
(

X� |�
)

]

(14)

one can reasonably claim that �̂� l ≥ �̂� as long as the
variance of P0 is smaller than that of  (Γ1). Keeping 
 and $
constant for all neighborhoods {Γi}Ni=1 allows to generalize the
statement �̂� l ≥ �̂� to all such neighborhoods and nodes of
the reachability tree, and consequently, states q ∈ Q ⧵ {qN+1}
of probabilistic automaton A′. Then the condition for A to
simulate A′ is satisfied by construction. What is more, defining
the model’s transition probabilities as in (13) ensures that
A′ is not overly conservative while being simulated by A.
Thus, a specification for selecting the model parameters �l
can be formulated, by combining (13) with (14) in a way that
elucidates how the simulation relation condition depends on
sample sizes M and M ′ and the choice of �l:

�̂′� + �̂� l < 1 − " ⟺ max
1≤l≤M ′

�′�(�l)

− 1
M

∑

Xt|�∈D�

1Γ� (�l)
(

X� |�
)

+ 1 < 1 − " . (15)

A randomized algorithm now maximizes the left hand side,
making the above inequality condition as tight as reasonably
(with respect to sample sizes) possible.

Corollary 1. With confidence 1 − 
 , the quantity

Ĝ ≔ max
1≤l≤M ′

{

�′�(�l)−
1
M

∑

Xt∈D�

1X̄�Γ� (�l)(X� |�)
}

+1 (16)

is a (Type 3) probably approximate near maximum of G(�) to
accuracy " and level � if

M ′ ≥
ln 2

ln 1

1−�

and M ≥ 1
2"2

ln 4M
′



.

Proof. Direct application of [42, Algorithm 1].

Proposition 1. If Ĝ is a probably approximate near maximum
of G(�) to accuracy ", level �, and confidence 
 , then the
probability of A simulating A′ is at least 1−� with that same
confidence.
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Proof. With confidence 1−
 and at level � one writes G(�) >
Ĝ + ", which in turns leads to

G(�) > Ĝ + " ⟹ G(�∗) > Ĝ + " ⟺ �� + �′�(�
∗)

> max
1≤l≤M ′

�′�(�l) + 1 −
1
M

∑

Xt∈D�

1X̄�Γ� (�l)(X� |�) + "

= �̂′� + �̂� + " .

By definition [42] of a (Type 3) maximum,
Pr

{

� ∈ Ξ ∶ G(�∗) > Ĝ + "
}

≤ �, which is identical to
Pr

{

� ∈ Ξ ∶ �� + �′�(�) > �̂
′
� + �̂� + "

}

≤ �, implying that

Pr
{

� ∈ Ξ ∶ G(�) > Ĝ + "
}

≤ � .

With confidence 1 − 
 , therefore, there is 1 − � probability to
have �̂′� + �̂� + " ≥ �� + �′�(�), and given that 1 > Ĝ + �
(see (15)) it follows that (9)—which is the condition for the
simulation relation—holds with probability 1 − �.

With this mathematical machinery in place, a value of
0.3 for the probability of violation �� is arbitrarily selected
as acceptable—since the same probability is adopted for all
primitives, the subscript is henceforth dropped. The objective
now is to select �� so that the empirical estimate �̂� is no
more than " above the target, with confidence 
 and at level
�. Parameters ", 
 , and � are (arbitrarily, again) set at 0.25,
0.1, and 0.25, respectively, and with that, Corollary 1 and
Proposition 1 would guarantee a 75% (i.e. 1 − �) chance that
the robot physics A will simulate the probabilistic automaton
model A′ (a statement made with 60% (i.e. 1− �) confidence,
given the accepted probability of violation).

To this end, a data set D composed of three data bundles D�
of size M = 460 each is collected with the robot of Fig. 2a.
Each bundle is associated with the robot performing straight,
left turn, and right turn maneuvers starting from a common,
fixed initial location, and are labeled s, l, and r, for straight,
left turn, and right turn, respectively, yielding Σ = {s, l, r}. The
means (ā� , '̄�) associated with each D� are calculated and
used to tune in a least-squares way the SFM mean displacement
parameters [40] so that X̄� = E

[

�s(Xt |�)
]

. Although (6)
cannot be guaranteed to be satisfied exactly, one can still
ensure that E[X� |�] and E[X′

� |�] are not statistically different.
From this point, a PMV procedure is initiated to find �∗� in

the form of standard deviations (ã� , '̃�), for which no more
than 30% (� = 0.3) of sample paths in any experimental data
bundle may fall outside a 90% inclusion tolerance region Γ
around X̄� . This randomized optimization process yields the
values reported in Table I, where the data bundle standard
deviations (ã� , '̃�) are listed as well for comparison (results
can vary given the randomized nature of the optimization):

The distributions ℙ′◦ (X′
� |�)

−1, parameterized with the val-
ues in the left two columns of Table I, after convolved with a
uniform distribution over the region of origin yield tolerance
regions Γi of the form similar to that of Fig. 5b. Indeed,
starting uniformly from a rectangular a-' tolerance region Γ0
with 90% inclusion centered around the starting configuration,
and with the �∗� values of Table I, the data bundles D� result
in containment percentages in Γ2, Γ4, and Γ3 regions (each

�∗� D�
� ã′� '̃′� �̃′� ã� '̃� �̃�
s 0.01608 0.1827 0.3616 0.01573 0.1005 0.3616
l 0.01400 0.1980 0.2593 0.01440 0.2170 0.2593
r 0.01232 0.1460 0.2545 0.01359 0.1613 0.2545

TABLE I: PMV results for the model primitive standard deviations
�∗� (left) juxtaposed with the data bundle D� statistics (right).

corresponding to motion primitives s, l, and r), which are
83.91%, 81.21% and 78.82%, respectively. In comparison, the
probability that the model X′

� |� predicts for landing in Γi for
i ∈ {2, 3, 4}, with initial configurations uniformly distributed
in Γ1 (see Fig. 2b) but without noise in the �� dimension,
is �′�(�

∗
�) = 0.6344, ∀ � ∈ Σ. When the uncertainty in ��

is incorporated (which needs to happen whenever a motion
primitive is concatenated with another) these probabilities drop
to �′s(�

∗
s ) = 0.2730, �

′
l
(�∗l ) = 0.3197, and �

′
r(�

∗
r ) = 0.3100 (see

Fig. 7). The computation of �′� , which generally involves the
integration of non-standard numerically approximated proba-
bility distributions, is straightforward is not necessarily trivial.
On a 2.4 GHz Quad-Core Intel Core i5 processor with 16GB
of memory, it can take a total of up to 35 minutes in a
Mathematica implementation. It is noteworthy, however, that
a computation such as the one detailed above is performed off
line, and only once per each control law � ∈ Σ. For once �′�
is calculated, and under assumptions similar in nature to those
made in the description of Example 1 and the beginning of
Section IV-A, any future instance of application of � directly
inherits the results of that earlier computation.

Fig. 6: The tolerance regions reachable from a starting configuration,
and the distribution of experimentally produced primitive end-points
(red crosses) executed from the same initial robot pose. The black
dots on the boundary of the regions mark the vertices of polygonal
numerical approximations of the tolerance regions, while the dots in
the interior show the position of X′

� |� . The green arcs from the initial
pose on the left to each X′

� |� endpoint illustrate X̄� .

Once all �′� are computed, estimating the probability of tran-
sitioning from state q to state q′ becomes as straightforward
as multiplying the transition probabilities along the path that
connects q to q′ (see Fig. 7).

E. Experimental validation
Recall the robot navigation scenario introduced in Sec-

tion IV-B. The robot is a six-legged bio-inspired crawler
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shown in more detail in Fig. 2a, and the experimental testbed
environment is shown in Fig. 3a. The motion planning GOAL
area is marked with a disk in Fig. 3b, and reaching it requires
the robot to make a sharp left turn while staying in the road
boundaries of the setup in Fig. 3a. Figure 3b shows a primitive-
based RRT path to the goal region.

A rectangular tolerance region for this joint distribution
is mapped in the Euclidean (robot work)space E through
primitive X̄� as a distorted trapezoid like that shown in Fig. 6.
The size of this tolerance region is naturally dependent on the
variances of the a and ' distributions assumed for the model.
These variances will be the model parameters selected through
the optimization process outlined in Section IV-D, and the key
parameter ultimately determining the size of the regions is the
probability of violation �� . For the purpose of this case study,
tolerance intervals with 90% containment are used.

The three primitives (in the form of paths X̄� ⊂ E) can now
be used by an RRT planner to connect nodes in a tree joining
START to a neighborhood within GOAL; a typical output of such
a planner can be seen in Fig. 3b. Based on this planner output
the process model A′ is constructed, yielding the probabilistic
automaton shown in Fig. 7.

1 2
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11
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87

0.63

0.63

0.63

0.32

0.31

0.31

0.27

0.32

0.32 0.31

0.68

0.69

0.73

0.69

0.68

0.69

0.37

0.37

0.68

0.366

Fig. 7: The graph of probabilistic automaton A′, which serves as
a model for the abstraction of the stochastic process that generated
the sample paths in Fig. 6 when it executes sequences of motion
primitives realizable on the RRT tree of Fig. 3b. Node 12 is the sink.

Trials Primitive sequence traversal success probabilities
Bundle # size s sl slr slrl slrll

MAXIMUM THEORETICALLY ALLOWED∕EXPERIMENTALLY OBSERVED

1 105 1.00∕0.88 0.55∕0.30 0.18∕0.09 0.03∕0.00 –
2 199 1.00∕0.70 0.45∕0.24 0.13∕0.06 0.04∕0.02 0.01∕0.00
3 159 1.00∕0.78 0.57∕0.27 0.24∕0.13 0.08∕0.08 0.01∕0.00
4 95 1.00∕0.69 0.51∕0.29 0.21∕0.12 0.08∕0.08 0.02∕0.00

model – 0.63 0.20 0.06 0.02 0.01

TABLE II: Comparison between the probabilities of succes-
sively hitting Γi along an RRT path between model predictions
(last row) and four experimentally observed path bundles.

A total of 558 experimental trials of the RRT solution of
Fig. 3 are executed, grouped into four data bundles as shown
on the two left columns of Table II. The remaining columns of
Table II index the different prefixes of the primitive sequence

from initial to goal configuration and give two pieces of
information about the samples in each data bundle: the bottom
number is the empirical (observed) probability with which
the paths in the data bundle hit the corresponding Γi region
starting from the initial configuration; the top number is the
theoretically maximum probability of success on hitting that
region, given that PMV allows for 30% probability of violation,
i.e., three in ten experimental observations not to agree with
the model. The latter figures were obtained by multiplying the
transition probabilities found in the path that is associated with
each control sequence in Fig. 7. The data of Table II confirm
(a) that the model predictions on the probability of the robot
successively hitting the different target regions on the RRT
tree follow the trend observed in the experimental data and
(b) that the model predictions remain consistently conservative
compared to experimental observations, at least until the tail
of the cumulative hitting distribution where the data samples
become prohibitively small to provide meaningful statistics.

V. CONCLUSION

For a partially known physical process that exhibits stochas-
tic behavior, it is possible to construct an abstraction in the
form of a probabilistic automaton. The parameters of the
probability distributions for the transitions in this automaton
can be tuned based on experimental observations, in a way
that this abstract model is strongly simulated by the physical
process—even if a concrete model for the actual physics is not
available. Such an abstract model is more conservative than
the actual physics in terms of the probability of transitioning
between states, an attribute that allows the designer to have
confidence that control strategies synthesized based on the
model will be at least as probable of succeeding in the real
system as they are predicted to do in the abstract model.

NOTATION USED

Δ transition relation
Γ compact neighborhood of some point

 confidence level
1Γ indicator function of Γ
ℙ probability measure
 σ-algebra on E
T σ-algebra on ET
 σ-algebra
t filtration
 ′ class of distributions for the continuous model
ei basis vector of the Lie algebra on SE(2)
g element of the Lie algebra on SE(2)
A probabilistic semiautomaton
An nondeterministic semiautomaton
Ω sample space
! sample point
ΩM product sample space
Φ morphism for {Γi}
�lo leg lift-off angle
�td leg touchdown angle
Π set of discrete probability spaces
�t valuation map



13

�� probability of violation for executing input �
Σ finite input symbol set (alphabet)
� input alphabet symbol
∼R relation on distributions
$ percentile of population in tolerance region
A probabilistic automaton
D� bundle of sample paths from same initial point
E range of a stochastic process
ET space of functions from T to E
F target region
G randomized optimization cost function
g crawler pose: element of the Lie group SE(2)
gi reachability tree node and neighborhood Γi+1 center
M cardinality of the sample path bundle D�
p probability law of stochastic process
P0 distribution of initial conditions
Pt transition semigroup
Q finite set of discrete states
R relation between discrete states
W stochastic process jump rate
X continuous stochastic process
X |� stochastic process controlled by �

APPENDIX

A. The stochastic SFM model
For miniature legged robots like the one shown in Fig 2a

that move quasi-statically (e.g., at relatively low speeds and
excluding flight phases), a particular kinematic model, called
the SFM [40] (see Fig. 8), can serve as a low-dimensional
kinematic abstraction of the actual physics of the motion. The
particular abstraction has proven particularly convenient in the
sense that it affords closed-form (Fig. 8b) analytic descriptions
of state propagation (i.e. for yaw Δ� and geometric center
displacement GG′). There is experimental evidence that this
model can reasonably describe the quasi-static motion a variety
of different miniature crawling robots [43].

If the end-points of the virtual legs of the model—for
instance, those marked with red dots in Fig. 8a—are assumed
to be hinged on the ground and the legs rotate about those
hinges, then the mechanism will propel itself forward. The
rotation of the model’s (virtual) legs, which generate motion
for the model, is parameterized in terms of touchdown �td

s
(initial) and lift-off �lo

s (final) angles. Touchdown angles define
the configuration of the four-bar mechanism at the beginning
of a step, while lift-off angles mark the configuration where
the active group of legs (solid thick line segments adjacent
to contact points) are losing contact with the ground (at the
red points), and the other pair of legs which was previously
in flight (dashed line segments) now reacquiring contact (at
the green dots). Depending on whether the lift-off angles are
chosen to be opposite of the touchdown angles or not, the
mechanism can be made to displace its geometric center along
a straight line segment or a circular arc (Fig. 8b), motivating
the macroscopic robot path representation of Fig. 4.

Let the pose of the SFM model be g(�s) ∈ SE(2), where
s = 1 when AO1–BO2 (Fig. 8b) are on the ground and �1 is

yL

yRy

xO

G′

xR
G

xL

∆θ

RGG′

(a) SFM propagation

O1

O2

G

G′

A

A′

B′

B

φtd
1

φtd
2

φlo
1

∆θ

x

y

ω

ω′

φlo
2

C ′ C

(b) Kinematics

Fig. 8: To produce bio-inspired locomotion gaits, the legs of each
side and across the left and right sides of a multi-robot platform
have to be coupled, either mechanically or electronically. The SFM
kinematic model groups the coupled legs on each side of the legged
platform that are in contact with the ground, and abstracts them into
a single virtual leg per side. In this form, the ground, legs, and torso
of the robot form a closed kinematic chain which is modeled by a
single degree-of-freedom planar four-bar mechanism parameterized
by one of the virtual legs angle relative to the robot’s body [38].

assumed driving the mechanism, and s = 3 otherwise. The
pose evolution over a single step can be parameterized in
terms of �s instead of time t; the function �s(t) can bring
time back into the picture, if necessary. The limits of the
range of �s during a stride, i.e., the associated touchdown
and lift-off angles can be selected through an optimization
algorithm [40] so that the evolution of the model matches—
e.g., in a least-squares sense—to the experimentally observed
averages X̄� . Assuming therefore that an appropriate choice of
geometric model parameters ensures E[X� |� ] = g(�lo

j ), this
process yields a deterministic model that evolves on the same
reachability graph captured by automaton A that represents the
model of the physics (e.g., the RRT of Fig. 3b).

Under appropriate assumptions on how noise can perturb the
evolution of this deterministic model, a particular stochastic
process can arise:(a) stochastic uncertainty is injected in the
motion of the system only at leg touchdown instances, while
the stance phase remains noise-free and deterministic; and
(b) injected noise characteristics are Gaussian. Under these
two assumptions, the pose of the SFM model, g, is distributed
according to a density function p′, the evolution of which
obeys a forward differential Chapman–Kolmogorov equation
of a particular form [5]. This particular form dictates that g(�s)
is a random variable that evolves deterministically during a
step, and jumps randomly when leg pair AO3–BO4 succeed
pair AO1–BO2 (or vice-versa) in ground contact, i.e., when
�s = �lo

s . This particular form of the forward Chapman–
Kolmogorov has no diffusion term, and the transition rate is

W (g′ ∣ g, �s) = lim�→0
1
� p

′( g′, �s + � ∣ g, �s)

≔
⎧

⎪

⎨

⎪

⎩

0 �s ≠ �lo
s

1
√

2� &
exp

(

‖g−g′‖2

2&2

)

�s = �lo
s ,

where & is a positive constant parameter and ‖ ⋅ ‖ is an
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appropriate metric on SE(2). With that, the propagation of
the model’s pose during a single step becomes a continuous
stochastic process, characterized by a forward differential
Chapman–Kolmogorov equation on SE(2) where the transition
probability function p′ evolves according to [44]

)p′
(

g,�s∣g0,�tds
)

)�s
= ∫

[

W
(

g ∣ g′, �td
s

)

p′
(

g′, �s ∣ g0, �td
s

)

−W
(

g′ ∣ g, �s
)

p′
(

g, �s ∣ g0, �td
s

)]

dg′

− d
dt

[

p′
(

g◦ exp(te1)
)

p′
(

g◦ exp(te2)
)

p′
(

g◦ exp(te3)
)

]

|

|

|

|

|

|t=0

⋅
(

g−1 )g)�s

)∨
. (17)

This equation characterizes a process with sample paths having
drift and jumps (cf. [5, Fig. 3.2(b)] and note that here
the jumps actually occur at regular intervals). There is one
equation of the form (17) when legs AO1–BO2 are on the
ground, and another when AO3–BO4 are on the ground. The
stochastic model dynamics exhibit switching between the two
equations when leg lift-off occurs.

Quantization of touchdown and lift-off angle configurations
can lead to three basic motion primitives: straight motion, left
turn, and right turn [40]. The model parameters are tuned
[38] for each primitive so that the kinematic behavior matches
the experimentally observed robot motion (Fig. 2b) when the
same primitives are realized on the physical robot. The drift
component of the platform’s dynamics alone, as expressed by
the second term on the right-hand-side of (17), would produce
deterministic motion for the SFM.
When the model executes a (single) motion primitive � with

initial condition in Γi for some i ∈ {1,… , N}, it has some
finite probability of landing in any one Γj ∈ {Γ1,… ,ΓN+1}
for j ≠ i. (Failure to transition outside the original neigh-
borhood after executing the primitive is considered a failure,
and by default it maps to ΓN+1 instead.) The probability of
transitioning from Γi to Γj , denoted �′�(qi, qj), is now encoded
in (17) and quantified as follows:

�′�(qi, qj) = ∫gi∈Γi ∫gj∈Γj
p′
(

g, �lo
s ∣ g0, �

td
s

)

dgj dgi . (18)

B. Stochastic processes
Definition 8 (σ-algebra [30]). Let S be a set. A collection 
of subsets of S is called an algebra on S if it is closed under
the finitely many set operations:

S ∈ 
B ∈  ⟹ Bc ≔ S ⧵ B ∈ 
B, C ∈  ⟹ B ∪ C ∈  .

 is a σ-algebra on S if for any countable family of sets {Bn}
with Bn ∈  for any n ∈ ℕ, it holds

⋃

n Bn ∈  . If  is a class
of subsets of S, then the σ-algebra generated by , denoted
σ(), is the smallest σ-algebra on S that contains . ⋄

Definition 9 (Probability space cf. [32]). A probability space
is a triplet (Ω, ,ℙ) where Ω is a set (typically called sample
space),  is a σ-algebra on Ω, and ℙ is a function from  to
[0, 1] such that ℙ[Ω] = 1 and for any collection {Ci}i of at
most countably many disjoint elements of  , it is ℙ[∪iCi] =
∑

i ℙ[Ci] (ℙ is a probability measure). ⋄

Definition 10 (Stochastic process [30]). A stochastic process
with time-parameter set T , state-space (E, ) and probabil-
ity space (Ω, ,ℙ) is a collection of (E, )-valued random
variables.

Definition 11 (Filtration [30]). A filtration on probability
space (Ω, ,ℙ) is an increasing family {n ∶ n ∈ ℕ}
satisfying 0 ⊆ 1 ⊆⋯ ⊆ ∞ ≔ σ

(

∪nn
)

⊆  . ⋄

Definition 12 (Adapted process [30]). A process X = {Xn ∶
n ∈ ℤ} carried by (Ω, ,ℙ) is said to be adapted (to the given
filtration) if, for every n ∈ ℤ+, Xn is Fn-measurable.

Definition 13 (Markov process, cf. [30]). Let {Pt} denote a
family of kernels Pt ∶ E× → [0, 1] such that for any bounded
measurable function f on E, it holds:
1) for t ≥ 0 and x ∈ E, Pt(x, ⋅) is a measure on  with

Pt(x,E) ≤ 1;
2) for t ≥ 0 and Γ ∈  , Pt(⋅,Γ) is -measurable;
3) for t ≥ 0, x ∈ E, and Γ ∈  ,

Pt f (x) ∶= (Ptf )(x) = ∫E
Pt(x, dy) f (y) .

A Markov process X with state space (E, ) ⊆ (ℝn, 2ℝn ), is
an E-valued stochastic process
(

Ω, {t ∶ t ≥ 0}, {Xt ∶ t ≥ 0}, {Pt ∶ t ≥ 0}, {ℙx ∶ t ≥ 0}
)

adapted to filtration {t}, such that for 0 ≤ s ≤ t, x ∈ E,
Ex

[

f (Xs+t) ∣ s
]

= (Ptf )(Xs) , ℙx a.s. ⋄.

Definition 14 (cf. [45]). Consider a probability space
(Ω, ,ℙ), and let X be a Markov process with state space
(E, ), for t ∈ [0, �] = T , and with initial condition X0 = x.
For process X, and for M ∈ ℕ, a $-content tolerance region
S
(

X(!1),… , X(!M )
)

at confidence 1−
 ∈ (0, 1) is a statistic
over (T )M taking values in  , for which the probability that
ℙx

(

(Xt)−1(S)
)

≥ $ is at least 1 − 
 . ⋄

In other words, one has confidence 1 − 
 that region S
contains at least $ percentile of the population of the sample
paths of X that start from x ∈ E when ℙ is the measure on
Ω. Usually the parameters of the probability measure ℙ are
unknown. For example, in cases where ℙ is Gaussian [46],
[47], the mean, or the variance, or both, can be unknown;
different estimates of the region are obtained for each case.

C. Finite automata
Definition 15 (Discrete probability space [32]). A probability
space (Ω, ,ℙ)13 is discrete if  = 2Ω and for all C ⊆ Ω,
ℙ[C] =

∑

x∈C ℙ[{x}]. ⋄

13See Definition 9 in Appendix B.
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It follows that in a discrete probability space there can
only be countably many elements with positive probability
measure [32].

Definition 16 (Semiautomaton; cf. [31]). A semiautomaton
(SA) is a triple A = (Q,Σ, T ) where Q is a finite set of states,
Σ is a finite alphabet, T ∶ Q × Σ → 2Q is the transition map
which can be expanded recursively in the usual way. ⋄

In general, T maps to a set, in which case we say that
A is non-deterministic in transitions. We write T (q, �) ↓ if
T (q, �) ≠ ∅, and T (q, �) ↑ otherwise. A run in A on some
word w = �(0)�(1)… ∈ Σ∗, is a finite sequence of states
� = q(0)q(1)q(2)… ∈ Q∗ such that q(i+1) ∈ T (q(i), �(i)). In this
case we say that � is generated by w.
The transition map in A can be made total by adding a state

in Q called sink, such that for all other states q ∈ Q for which
there exists a symbol � ∈ Σ that cannot trigger a transition
from q, namely T (q, �) ↑, we augment the transition relation
with T (q, �) = sink. By definition, we set T (sink, �) = sink, for
all � ∈ Σ. Total semiautomata are those in which the transition
map is total.

Definition 17 (Automata isomorphism [31]). Let A =
(Q, q0,Σ,Δ, QF ) and A′ = (Q′, q′0,Σ,Δ

′, Q′F ) be two automata
with the same input alphabet Σ. An isomorphism � ∶ Q→ Q′
is a function satisfying
1) �(q0) = q′0;
2) q ∈ QF ⟹ �(q) ∈ Q′F ;
3) ∀ q ∈ Q, ∀ � ∈ Σ, �

(

Δ(q, �)
)

= Δ′
(

�(q), �
)

. ⋄

This definition is naturally extended to semiautomata by
dropping conditions 1) and 2).

D. Planar motions
The Euclidean motion group SE(2) represents rigid-body

motions on the plane. It consists of elements of the form

g =
[

cos � sin � x
− sin � cos � y
0 0 1

]

.

The group operation is denoted ◦ and for SE(2) it is essentially
matrix multiplication. Spatial velocities of rigid-body motions
are expressed in the form

g ∶= g−1ġ =
[

0 �̇ ẋ cos �−ẏ sin �
−�̇ 0 ẋ sin �+ẏ cos �
0 0 0

]

and form the Lie algebra se(2) associated with SE(2). Both
SE(2) and se(2) are of dimension 3, and are parameterized by
x, y, and �. In this context, the exponential map exp ∶ se(2) →
SE(2) becomes the typical matrix exponential.
The Lie algebra se(n) is locally identified with ℝn using the

map ∨ ∶ se(n)→ ℝn, e.g.,

g ↦

(

�̇
ẋ
ẏ

)

∶= (g−1ġ)∨ .

Similarly, the map ∧ for n = 2 takes elements of ℝ3 to se(2):
∧

(

�̇
ẋ
ẏ

)

∶=
[

0 �̇ ẋ
−�̇ 0 ẏ
0 0 0

]

.

The basis {e1, e2, e3} for se(2) can be generated by applying
the ∧ operator on the nominal basis of ℝ3:

e1 =
[

0 −1 0
1 0 0
0 0 0

]

e2 =
[

0 0 1
0 0 0
0 0 0

]

e3 =
[

0 0 0
0 0 1
0 0 0

]

.

For an analytic function f ∶ SE(2) → ℝ, the right Lie
derivative along g ∈ se(2) is expressed as

(g̃rf )(g) = d
dt

{

f
(

g◦ exp(tg)
)}

|

|

|t=0
.
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