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Abstract— The analysis in this paper applies to robots with
dynamics described by a stochastic differential equation, which
need to navigate in constrained environments. The approach
offers a method to calculate the probability that a feedback
control policy designed for the drift component of the dynamics,
will succeed in allowing the robot to avoid collisions and
converge to its navigation goal in the presence of stochastic
(white) noise. The problem is formulated as an exit problem and
known techniques in the field of stochastic processes are brought
to bear to determine the probabilities that the stochastic process
describing the motion of the robot will “exit” the workspace
through a particular part of the boundary. We motivate the use
of this analysis using a controller constructed using negative
gradient of a navigation function and give the analytic solution
for the case of a constrained but obstacle-free workspace.

Keywords - stochastic differential equations, uncertainty,
probability, exit time

I. INTRODUCTION

There are practical cases of interest where robots are
deployed in real-life environments and are subject to dis-
turbances of a stochastic nature. Wind gusts, water currents
or unstructured terrain, for example, can sometimes be
reasonably modeled only as stochastic processes. Under such
type of uncertainty, a robotic system can be represented as
a stochastic process, the evolution of which is described by
a stochastic differential equation.

Lyapunov analysis tools for deterministic systems have
been extended to the stochastic domain. However, stability
and convergence results are either too strict to establish, or
inadequate for a problem like robot navigation. For example,
to establish almost sure convergence [1] (convergence to
some equilibrium with probability one) one might need
unbounded inputs, or impose unrealistic assumptions on
the structure of the diffusion term in the stochastic dif-
ferential equation; on the other hand, even if convergence
with probability one is established [2] in a case of robot
navigation, one may still have no guarantees that the system
will not hit obstacles on its way to the equilibrium. Weaker
results in the form of convergence to some invariant set or
ultimate boundedness in expectation [3] are subject to similar
limitations.

Instead of searching for a controller that would give
almost sure convergence under unrealistic assumptions on
the diffusion term of stochastic differential equation, one
may wish to work with a controller that can provably
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stabilize the drift part of the stochastic dynamics, and obtain
some formal guarantees on the expected performance of
that controller when implemented on a stochastic system
with the same drift. Such formal performance guarantees
can be obtained in the form of the probability of the robot
hitting a particular section of its workspace boundary; if that
section surrounds the navigation goal, this number gives the
probability of success. In the context of stochastic processes,
this problem falls into the category of exit problems, which
focus on Markov processes evolving in bounded regions and
are concerned with the location at which a sample path
will exit the region and the time at which this is likely to
happen (exit time). Solution methods have a long history,
and different formulations have been developed, both in
discrete and continuous time and space, for different types
of applications ranging from finance to biology and control.

The paper thus suggests an exit location problem formula-
tion as an analysis and performance evaluation tool for robots
with stochastic dynamics that have to move in a constrained
environment. Related work exists in the context of optimal
exit time control problems, although the objective may be
quite different. In one particular formulation [4], [5], one
searches for an optimal control that is supposed to keep the
state of a continuous-time stochastic differential equation
inside a region for up to a predefined expected exit time.
Another problem formulation in the same context [6] focuses
on finding an optimal control to maximize probability of
hitting a particular part of the boundary, is developed for
discrete time Markov control processes, and attacks the
problem of maximizing the probability of reaching a target
set before hitting a non-desired set (cemetery) using dynamic
programming. When the objective is to find a control law that
minimizes a cost while satisfying a probabilistic constraint,
then the problem is referred to as chance-constrained op-
timization. Only convex problems of this type have been
solved efficiently [7], [8], and the suitability of such an
approach on computationally constrained systems is ques-
tionable.

All these formulations develop around an exit problem for
a stochastic dynamical system with inputs. The approach in
[4] is similar to the one in this paper in the sense that it
relies on the solution of a PDE. The control laws derived
in the approaches of [4], [5], however, minimize a spatial
integral of the norm of the control input, so they can be
thought of as giving an answer to the problem of how to
maintain the invariance of a region for up to a given time
with the most “inexpensive” input. The formulation in [6], on
the other hand, would be directly applicable here had it not
been developed for discrete time problems. The main concern



here however is the on-line computational overhead, which
is prohibitive for the applications envisioned in this work,
involving implementations on miniature robotic platforms
with very limited computational capabilities. Indicative of the
level of computational complexity involved, the derivation of
the optimal control law in [4] requires the solution of two
partial differential equations at each time step.

Not being able to afford such solutions, the approach in
this paper circumvents the optimal control design problem
by first suggesting a stabilizing controller (not necessarily
optimal) for the stochastic robot navigation system, which
can be implemented when no constraints on the size of
the control input are imposed. (Same caveats as in cases
in existing literature apply.) Next, a method for computing
the probabilities of success (and failure) in the navigation
problem for the given control law is presented. The method
also involves the solution of a partial differential equation,
but since the process is intended for verification and per-
formance analysis, it is reasonable to assume that it can be
performed off-line. It is indicated that in the special case of a
constrained spherical environment with no internal obstacles,
the symmetry of the problem admits an analytic solution of
the partial differential equation.

Section II sets the problem formulation while section III
suggests a stabilizing controller for the stochastic dynamical
system, in cases where there is no a priori controller to test
the performance of. In section IV we present the main result
which deals with the case of finding the probability of the
sample path exiting through a particular section of the bound-
ary. Section V presents a simple example where analytical
solutions can be obtained, and is followed by section VII
which summarizes the paper and outlines ongoing research
directions.

II. PROBLEM SETUP

In the scope of this work are robotic systems modeled
with stochastic differential equations. In these equations,
the control input appears as drift, and the stochastic noise
component enters as the diffusion term. If such a system
were not subject to the stochastic perturbation, its dynamics
would be written as

ẋ = u(x, t), (1)

where x ∈ W ⊆ Rn is the state and u ∈ Rn is the control
input. The function u : Rn × [0,∞) → Rn is assumed to
be C2 and locally Lipschitz. The robot (1) is assumed to
move in a workspace W which is a bounded, open subset of
Rn. The closed set O ⊂ W represents obstacles (forbidden
regions) in the robot’s workspace. The free workspace is thus
P ,W \O.

Under the assumption of the dynamics being given in the
form of a single integrator, and the obstacle and workspace
sets have spherical outer boundaries (or at least, star-shaped
[9]), it can be shown, that the negated gradient of a particular
function called a navigation function [9]

ϕ(x) =
( ‖x‖2k
‖x‖2k + β(x)

) 1
k

, (2)

can be used in the place of u in (1) to yield asymptotic stabil-
ity for the the closed loop dynamics from almost all initial
conditions and ensure obstacle avoidance, for a parameter
k sufficiently big. In (2), the function β : P → [0,∞) is
defined as

β ,
M∏
j=0

βj ,

with

β0 , ρ2
0 − ‖x‖2

βj , ‖x− xj‖2 − ρ2
j , j = 1, . . . ,M.

With these expressions for βj , the robot’s workspace is
taken to be a ball of radius ρ0, which contains M spherical
obstacles with radii ρj and centers xj , j = 1, 2, . . . ,M ,
k ∈ N is a sufficiently large positive integer and ‖x‖ is the
Euclidean norm on Rn. It is also assumed that the obstacles
are isolated: the regions defined as the sets of states where
some βj is negative, do not overlap; then the workspace
is said to be valid. In the case of a valid workspace, the
controller u(x) , −∇ϕ(x) yields positive invariance for the
level sets of ϕ and gives asymptotic convergence of (1) to
the origin (which is assumed to be the goal configuration).
The robustness properties of such a system under stochastic
disturbance have not been studied, however.

In the presence of stochastic disturbance, the system (1)
should be modeled by a stochastic differential equation. To
construct such a stochastic model, let σ : Rn → Rn×m and
define b : Rn → Rn with b(x) = −∇ϕ(x) for x ∈ P such
that the Lipschitz and linear growth conditions hold:

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ K‖x− y‖,
‖b(x)‖2 + ‖σ(x)‖2 ≤ K2(1 + ‖x‖2),

for x, y ∈ Rn, and K a positive constant. For the n × m
matrix σ, the norm ‖σ‖ is defined as

‖σ‖2 ,
n∑
i=1

m∑
j=1

σ2
ij .

Let W = {Wt,Ft : 0 ≤ t < ∞} be an m-dimensional
Brownian motion on the probability space (Ω,F ,P) where
Ω is the sample space, F is a σ-algebra on Ω, P is the
probability measure and {Ft : t ≥ 0} is the filtration (i.e. an
increasing family of sub-σ-algebras of F) that satisfies the
usual conditions.1 The stochastic dynamics of the robot can
be described by

dXt = b(Xt)dt+ σ(Xt)dWt,

X0 = x,
(3)

with initial condition x ∈ P . The global Lipschitz and linear
growth conditions ensure [10, Theorems 5.2.5 and 5.2.9] that
the stochastic differential equation (3) has a globally (in time)
defined strong solution {Xt,Ft : 0 ≤ t < ∞} which is

1The filtration is said to satisfy usual conditions if it is right continuous
and F0 contains all P-null sets [1].



square-integrable. Also, strong uniqueness holds for the pair
of coefficients (b, σ).

While the deterministic system ẋ = −∇ϕ(x) is guaran-
teed to avoid obstacles (and the workspace boundary) and
converge to the origin as t → ∞ for almost all initial
conditions, the same cannot be said of the stochastic system
(3). Indeed, under some simple non-degeneracy conditions
on the noise, the process Xt exits the free workspace P
(i.e. hits the boundary or an obstacle) in finite time with
probability one. It is thus of interest to know the probability
of Xt reaching a sufficiently small neighborhood of the
destination (origin) before exiting P .

III. A STABILIZING CONTROLLER

One straightforward extension of a deterministic control
design strategy based on the navigation function construction
of (2) to the case where the robotic system experiences
stochastic disturbances and is governed by dynamics of the
form (3) would yield a closed loop dynamics of the form

dXt = −∇φ(Xt) u dt+ σ(Xt)dWt (4)
X0 = x,

where now the objective is to find a function u that ap-
propriately modifies the deterministic control strategy to
yield almost sure convergence. One solution is to apply
the universal formula of [11] and construct the modifying
function u as follows.

u(Xt) = ξ · ψ (ξ) ,

where, ψ is a smooth function satisfying

ψ(ξ) =


0 if ξ ≤ 0
1 if ξ ≥ 1
0 < ψ(ξ) < 1 otherwise,

∂ψ

∂ξ
≥ 0,

and its argument is ξ = − cv(Xt)
bv(Xt)

+ 1, where

bv(Xt) = −‖∇φ‖2

cv(Xt) =
1
2

n∑
i,j=1

σTσ
∂2φ

∂xi∂xj
.

One possible suggestion for a function ψ that can satisfy the
requirements stated above is given in [12, Theorem 5.1].

The above controller can be shown to stabilize (4), but its
values are not bounded: it is clear that u→∞ as bv(·)→ 0.
On the other hand, in the case of bounded inputs, little can
be said about the stability of the system since the stochastic
perturbation produced by dWt can potentially be unbounded,
even if σ(·) is. The next section treats the case where the
controller is actually given, and the question is how well can
this controller be expected to perform in the presence of un-
bounded stochastic perturbations. One relaxation introduced
is that the system will be considered to have achieved its
objective not if it closes in on the destination asymptotically,
but rather when it enters a sufficiently small neighborhood

of it, at which point of time it is assumed to “stop” and the
process terminated.

IV. PROBABILITY OF EXIT THROUGH A BOUNDARY

This section describes a fairly standard formulation of
exit time problems for stochastic differential equations. We
demonstrate how this framework can can be used to compute
the probability that a sample path Xt corresponding to a
trajectory of a mobile robot subject to noise, reaches a
neighborhood of its destination (assumed to be the origin)
before hitting either the obstacles or the boundary of the
workspace.

To this end, fix an arbitrarily small ε > 0 so that the closed
ball centered at the origin with radius ε, denoted B(0, ε), is
contained in P . Let D , P \ B(0, ε). The boundary of D
can be decomposed into the disjoint union of
• D1 , {x ∈ P : ‖x‖ = ε}, i.e. the boundary of the

closed ball B(0, ε), and
• D2 which is the finite union of the boundaries of the

obstacles and the boundary of the workspace P .
Let τD be the first exit time of the process Xt from D, i.e.

τD , inf{t ≥ 0 : Xt /∈ D}.

We are interested in P(XτD ∈ D1), that is, the probability
that Xt reaches the destination before hitting an obstacle
or the boundary of the workspace. The problem is thus
formulated in terms of an exit problem for a diffusion process
from a domain D.

We start by introducing some notation. First, let a : Rn →
Rn×n be the matrix a(x) , σ(x)σT (x). Next, let A be the
second-order partial differential operator

A ,
n∑
i=1

bi(x)
∂

∂xi
+

1
2

n∑
i=1

n∑
k=1

aik(x)
∂2

∂xi∂xk
. (5)

The following observation will be central to the calculations:
for any v ∈ C2(Rn) with bounded first and second order
partial derivatives, Ito’s formula [10] gives

v(Xt) = v(X0) +
∫ t

0

Av(Xs) ds+Mv
t , (6)

where

Mv
t ,

n∑
i=1

m∑
k=1

∫ t

0

σik(Xs)
∂v

∂xi
(Xs)dW (k)

s

is a zero-mean martingale. Here, W (k)
t is a component of the

m-dimensional Brownian motion Wt. Finally, we compactly
indicate the initial condition in the stochastic differential
equation (3) by writing Px and Ex to denote, respectively,
probabilities and expectations computed under the initial
condition X0 = x.

Under a fairly mild assumption on non-degeneracy of
noise, the matrix a ensures that Ex[τD] <∞ for all x ∈ D.
Moreover, expectations of the form Ex[f(XτD )] for any
continuous function f : ∂D → R (here, ∂D represents



the boundary of D) can be computed by finding a function
u ∈ C(D) ∩ C2(D) which solves the Dirichlet problem

Au = 0 in D (7a)
u = f on ∂D. (7b)

The following statement is actually a direct consequence
of [10, Proposition 7.2] combined with [10, Lemma 7.4]. We
give its proof primarily for completeness purposes.

Theorem 1: Suppose that for some 1 ≤ ` ≤ n, we have

min
x∈D

a``(x) > 0. (8)

Then, Ex[τD] <∞ for all x ∈ D. If u ∈ C(D) ∩ C2(D) is
a solution to the Dirichlet problem (7) with f : ∂D → R a
continuous function, then

u(x) = Ex[f(XτD )].

In particular, if f = χD1 (the indicator function of D1),1

then
u(x) = Px(XτD ∈ D1). (9)

Proof: We first establish that (8) implies Ex[τD] <∞
for all x ∈ D. Let

b , max
x∈D
‖b(x)‖, a , min

x∈D
a``(x), q , min

x∈D
x`.

Fix ν > (2b/a), and consider a function h ∈ C2(Rn) with
bounded first and second partial derivatives such that h(x) =
−µ eνx` on some open set containing D, where the constant
µ > 0 will be chosen later. Then, for points x ∈ D, it is
seen that

−Ah(x) =
1
2
µ νeνx`a``(x)

(
ν +

2b`(x)
a``(x)

)
≥ 1

2
µν eνqa

(
ν − 2b

a

)
≥ 1,

for µ > 0 sufficiently large. By (6),

h(Xt) = h(X0) +
∫ t

0

Ah(Xs)ds+Mh
t ,

and hence

h(Xt∧τD ) = h(X0) +
∫ t∧τD

0

Ah(Xs)ds+Mh
t∧τD

≤ h(X0)− (t ∧ τD) +Mh
t∧τD ,

where t ∧ τD , min(t, τD). It can be shown that Mh
t∧τD is

a zero-mean martingale, we take expectations and rearrange
to get

Ex[t ∧ τD] ≤ h(x)− Ex[h(Xt∧τD )]
≤ 2 max

y∈D
|h(y)| <∞.

Letting t→∞, we get Ex[τD] <∞.
Now suppose that u ∈ C(D) ∩ C2(D) is a solution to

the Dirichlet problem (7). For n ∈ N, let Dn , {x ∈ D :

1The indicator function can be shown continuous on the boundary, see
remark 2.

infy∈∂D ‖x − y‖ > 1/n}. Then {Dn}∞n=1 is an increasing
sequence of open subsets of D whose union is D. For n ∈ N,
let τDn , inf{t ≥ 0 : Xt /∈ Dn}. Let un ∈ C2(Rn) with
bounded first and second order partial derivatives such that
u = un on some open set containing Dn. Then, by (6), we
have

un(Xt) = un(X0) +
∫ t

0

Aun(Xs)ds+Mun
t

and hence

un(Xt∧τDn
) = un(X0) +

∫ t∧τDn

0

Aun(Xs)ds+Mun
t∧τDn

Noting that un = u on some open set containing Dn, Au = 0
in D and that Mun

t∧τDn
is a zero-mean martingale, we take

expectations to get

Exu(Xt∧τDn
) = u(x). (10)

Since Ex[τD] <∞, we have τD <∞ with probability one.
It is not hard to argue that on the set {τD <∞} (which has
probability one), τDn

↗ τD. Now, since Xt has continuous
sample paths, it follows that Xt∧τDn

→ Xt∧τD , Px-almost
surely. Recalling that u ∈ C(D) is bounded, taking limits as
n→∞ in (10), we get by the bounded convergence theorem

Exu(Xt∧τD ) = u(x).

Now letting t → ∞, the bounded convergence theorem
(again) together with the fact that u = f on ∂D gives the
desired result.

Remark 2: Under the assumption that D1 ∩ D2 = ∅, the
indicator function χD1 is continuous on the boundary. The
function is defined as, χD1 : {D1 ∪ D2} → {0, 1}, where

χD1(x) =

{
1 if x ∈ D1,

0 if x ∈ D2.

The function χD1 is continuous at any point c ∈ {D1∪D2}
because if D1 ∩D2 = ∅, then, that for every ε > 0, ∃δ > 0
such that ∀x ∈ {D1 ∪ D2},

|x− c| < δ =⇒ |χD1(x)− χD1(c)| < ε.

V. EXAMPLE

To see how the results of the previous sections apply, con-
sider a point robot in a bounded, two-dimensional obstacle-
free workspace. The feedback law for this system is given
in the form of the negative gradient of a navigation function,
which stabilizes it in the case where σ ≡ 0. When σ 6= 0,
however, neither convergence nor obstacle avoidance can be
guaranteed for the dynamics.

Assume that the position of the robot is prescribed by the
coordinates x , (x, y) and let its dynamics be of the form

dx = −K ∂φ

∂x
u dt+ σxdW1

t (11)

dy = −K ∂φ

∂y
u dt+ σydW2

t (12)

where, σx = σy = 1 on x ∈ R2\{(0, 0)} and σx ≡ σy ≡ 0
for x = (0, 0), φ is the navigation function, K is the gain



(K ≥ 1, K ∈ N) and, u is assumed to be a “modifying”
function, which we will later use to compensate for diffusion
term.

Consider workspace of radius R and a small ball of radius
ε close to origin.

B(0, R) = {x ∈ R2 : ‖x‖ < R};
B(0, ε) = {x ∈ R2 : ‖x‖ < ε};

x = (x, y) ∈ B(0, R), ‖x‖ =
√
x2 + y2.

For simplicity assume R = 1, Then, a trivial navigation
function can be given as

φ(x) = x2 + y2,
∂φ

∂x
= 2x,

∂φ

∂y
= 2y.

A. Stabilizing controller

Using method presented in section III, we can find a
control law for the presented system (11)-(12).

For unity gain K = 1, the system can be written as,

dx = − x

x2 + y2
dt+ dW1

t ,

dy = − y

x2 + y2
dt+ dW2

t ,

If we use V = φ = x2 + y2 as a Lyapunov function
candidate, then according to [1]

LV = −1 < 0,

where, L denotes the (stochastic) Lie directional derivative
of a function (in this case, same as A defined in (5)). This
implies that the stochastic system is asymptotically stable
with probability one [11]. However, it should be noted here
that the drift term which functions as the controller for the
robot becomes unbounded as x2 + y2 → 0.

B. Probability of reaching the neighborhood of the origin

The method presented in this section allows to analyze the
performance of the controller without saturating the input or
assuming it to be unbounded. To see what would be the effect
on the stochastic dynamics of a controller designed based on
the unperturbed nominal system, take u = 1. Then the partial
differential equation that is used to compute the probability
of reaching a small neighborhood of the origin can be given
according to (7) as

−2Kx
∂u

∂x
− 2Ky

∂u

∂y
+

1
2
∂2u

∂x2
+

1
2
∂2u

∂y2
= 0

u |∂B(0,ε)= a, u |∂B(0,1)= b.

In this particular example, due to the symmetry of the prob-
lem, it is easier to express and solve the partial differential
equation in polar coordinates: Assuming u(x, y) = f(r, θ),
the partial differential equation can be represented as

Lf(r, θ) =
1

4K
∂2f

∂r2
+
(

1
4Kr

− r
)
∂f

∂r
+

1
4Kr2

∂2f

∂θ2
= 0,

where ε < r < 1. The boundary conditions are

f(ε, θ) = a, f(1, θ) = b, for a 6= b.

B(0, 1)

u(x) = 0

u(x) = 1
B(0, ε)

Au(x) = 0

Fig. 1. The figure shows the problem setup explained above, with a = 1
and b = 0. Solution of the PDE, Au = 0 gives the probability of reaching
a boundary close to origin before hitting the other.

Because of symmetry, the partial differential equation
reduces to an ordinary differential equation. Letting f(r, θ) =
R(r) yields

1
4K

R′′(r) +
(

1
4Kr

− r
)
R′(r) = 0.

Then the solution of this ordinary differential equation can
be given as

f(r, θ) = R(r) = a+ C1

∫ r

ε

e2Ks
2

s
ds, (13)

where
C1 =

b− a∫ 1

ε
e2Ks2

s ds
.

To find the probability of reaching a set arbitrarily close
to origin, let us assume ε = 0.01, and that the system (11)-
(12) is initiated within a ball of radius 0.5 around the origin.
The function f has to be choosen to be an indicator function
according to (9), with a = 1 and b = 0. Then, the probability
that the system reaches the goal set before hitting the obstacle
boundary is found to be P(0.5,θ)(XτD ∈ D1) = 0.349, for
K = 1 using numerical approximation of integrals appearing
in (13).

It should be noted that this probability increases with the
control gain K:

K = 2 : P(0.5,θ)(XτD ∈ D1) = 0.6599

K = 3 : P(0.5,θ)(XτD ∈ D1) = 0.8907.

VI. SIMULATION RESULTS

We performed simulations of the system (11)-(12), with
φ(x) = x2 + y2 and rest of the parameters according to
section V-B. The simulations were performed in MATLAB R©.
One hundred sample paths were computed for values of K =
1, 2 and 3. It should be noted that K is here just a scaling
factor and acts as a controller gain; higher values of K uses
larger inputs.

Each simulated path was checked for intersection with
either of the outer or inner circles, of radius R = 1 and
ε = 0.01 respectively, and stopped upon intersection. Paths
that do not intersect within six simulation seconds were



ignored, thought of as possibly resulting in either success
or failure. With initial condition (x, y) = (0.3, 0.4), and
r = 0.5, 100 sample paths were simulated for 6 seconds
for each K using dt = 10−4. We found that 40% of sample
paths touched the center circle of radius 0.01 (succeeded) for
K=1, while 62% out of 100 did so for K = 2, and 88% for
K = 3. The theory predicted these probabilities at the levels
of 0.349, 0.6599 and 0.8907 respectively. It should be noted
that for higher number of trials the accuracy of the solution
converges to the theoretical value, as well as the accuracy of
numerical simulations increases with smaller discretization
time [13]. For example, for K = 1 and dt = 10−5 seconds,
the percentage of successful sample paths is indeed 35% for
100 simulations of 6 seconds.

Two sample paths are shown in figure 2. This simulations
may abstractly represent the planar motion of a UAV affected
by wind disturbances, or a AUV under effect of water cur-
rents. The probability of reaching the goal before hitting the
restricted region for a given initial position can be computed
using the presented method.

In cases with obstacles, the PDE may not be solvable
analytically, but existing numerical methods suffice. In a
simple, one obstacle case, the system becomes an elliptic
PDE with variable coefficients. For the methods of solutions
of such PDEs we refer to [14], [15].

VII. CONCLUSIONS

Existing stabilization methods may not be applicable to
the problem of robot navigation when the dynamics are of
stochastic nature. Controller designs under the assumption of
unbounded inputs can be used to establish asymptotic stabil-
ity with probability one. If the assumption of unbounded
inputs is unreasonable, then the possibility of disturbances
with arbitrarily big magnitude makes a formal guarantee
of convergence with collision avoidance elusive. Then, the
performance of the system can be analyzed in terms of
the probability that its controller succeeds in bringing the
system within an arbitrarily small neighborhood of the target
position. The analysis takes the form of an exit time problem,
and solutions in general require the solution of a partial
differential equation which can be performed off-line in
principle. In cases where the problem has symmetries and
the environment in which the robot moves is not cluttered,
analytic solutions might also be possible.
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