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Abstract— This paper proposes PbD (Programming by
Demonstration) of the tasks representable as Locally k-Testable
(or LTk) subclass of regular languages, in a system modeled
as a Markov Decision Process. The method uses predicate
abstraction and language identification in the limit to infer a
symbolic task. The learned task is implemented by constraining
the evolution of MDP. Using relatively small training sample,
the approach generalizes to all possible ways of accomplishing
a learned task, unlike inverse reinforcement learning method.
A Grid-world case study validates the results.

Index Terms— Learning by demonstration; imitation learn-
ing; grammatical inference

I. INTRODUCTION

In the process of PbD (Programming by Demonstration),
an expert user provides examples to teach a task to a machine
with a learning algorithm (learner). Latter is expected to gen-
eralize the inferred task to all unseen contexts. A challenge is
how to assure that the learner will infer all possible ways to
accomplish the task. A potential solution is reported here for
tasks exhibiting recognizable patterns. Typical pattern-based
tasks taught using PbD include dancing, or solving Towers of
Hanoi [1]; modeling activity at a convenience store [2]; and
surgical pattern-cutting [3]. In this paper, a task is assumed to
be encoded as a formal language (i.e., a string set formed by
a predefined alphabet [4]) belonging to the class of Locally
k-Testable (LTk) languages [5], which is a subclass of regular
formal languages.

The words (strings) in a LTk language exhibit distin-
guishing patterns in how alphabet symbols are arranged
within each word. When an LTk language encodes a task,
these patterns can capture the logic specification that “a
task finishes when learner does x, . . . ,y avoiding x′, . . . ,y′,
accomplishing g in a finite unspecified time” (e.g. Pick brown
and black objects, place them on shelves avoiding black
objects from going on brown shelf, and brown ones from
going on the black shelf, putting more brown than black is a
LT2 task) or “a task finishes when learner does x with x′, . . . ,
y with y′, accomplishing g in a finite unspecified time”. Using
identification in the limit from positive data [6], the reported
method (called ‘PbD-LTk’) infers such a LTk task using a
finite set of words belonging to the language.

How to guarantee complete task generalization is an open
question for the existing PbD methods. The answer is still
elusive in typical PbD methods such as inverse reinforcement
learning (IRL [7]) [8]. A complete generalization in IRL is
possible only with a large training sample (especially for
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large state space) and an accurate estimate of feature values
(feature counts in IRL). Both the conditions are emphasized
in prevalent literature as difficult to satisfy [9], [10].

If one, however, assumes that the discrete-event dynamics
of some physical system can be adequately abstracted in
the form of a formal language, and the desired task can
be encoded as an identifiable language, then grammatical
inference methods can ensure complete learning in the limit,
assuming representative data has been provided (Theorem 5
and Lemma 2, [11]). The task is guaranteed to be completely
learned, and consequently complete generalized. Therefore,
learner does not loose any option for accomplishing the task.

Methods like IRL require a task representation to have
an approximate form e.g. a linear combination of features
[12], with few exceptions [13]. No particular restrictive
assumptions need to be placed on the learning target in
grammatical inference methods, other than specifying the
language subclass where it needs to belong to. This claim is
defendable in the sense that such an assumption may be at
most as conservative as requiring task descriptions to take
the form of some linear parameterization (combination) of
features. While which type of assumption is more stringent
can be debated, it is also true that the expert employed in
IRL will still require the designer to engineer a broad set of
relevant features to enable an acquisition of a task [8], [13].
Such features are usually associated with the structures of
task model and learning algorithm employed. The features
that may emerge as the part of a symbolic abstraction process
that sets the stage for the application of a grammatical
inference algorithm, can potentially be used for other PbD
methods. In other words, symbolic abstraction of physical
processes combined with grammatical inference does fall
within the general framework of PbD.

Whenever a physical process is modeled in the form
of a discrete computation model—be that an automaton,
discrete-event system, Petri-net, or MDP—there is always the
issue of computational complexity associated with size and
resolution. The more refined a model is, the more complex
it becomes. Just as in existing PbD methods computing a
global solution (a Markov policy) becomes increasingly more
challenging if size of state space increases [10], PbD-LTk is
not impervious to the curse of dimensionality.

Section II outlines a gap in existing literature. Section III
introduces the problem, while Section IV describes the
method PbD-LTk claimed to fill gap. Section V offers
comparison with IRL for validation, explaining limitations
of solution. Section VI concludes the paper.



II. BACKGROUND

The learning method in this paper is introduced in the con-
text of PbD [14]. A set of system trajectories is understood
here as a behavior. A task refers to particular subset of a
behavior, and this subset is taken as satisfying a particular
specification. A complete generalization of learned task is
very challenging [8]–[10], even with a large training set
and a function approximation in the task (linear in feature
space). Explicit user intervention have been devised [8], [10]
to minimize the task solutions missed by the learning algo-
rithm. Necessitating the continuous feedback may impose
a condition (continuous availability of user) impracticable
for many applications, e.g. assistive robotics for elderly
or subjects with special needs. This paper attempts to use
the task models with a structure that can be exploited to
ensure generalization without linear approximation, through
established grammatical inference methods [11].

III. PROBLEM STATEMENT

A. Technical Preliminaries

An alphabet Σ is a finite set of symbols [4]. Σ∗ refers to
set of all strings of any finite length. A string is any finite
length sequence of symbols, w = σ1σ2 . . .σn ∈ Σ∗, σi ∈ Σ,
i ∈ N. A formal language L ⊂ Σ∗ is a set of strings. The
grammar G is a set of rules for constitution of strings in L,
s.t. L(G) = L. Symbols o and n mark beginning and end of
a string respectively. |C| is the cardinality of a finite set C.
u · v or uv denotes the concatenation of strings u and v. The
concatenation of two string sets C1 and C2 is C1 ·C2 = {uv|u∈
C1,v ∈ C2}. A DFA (Deterministic Finite-state Automaton)
over alphabet Σ is a tuple A , (Q,ΣΣΣ,T, I,F) comprising a set
Q of states, an extended alphabet ΣΣΣ=Σ∪{o,n}, a transition
function T : Q×ΣΣΣ→ Q which can be expanded recursively
(i.e. T (q,σw) = T (T (q,σ),w),σ ∈ Σ,w ∈ Σ∗), initial states
I, and accepting states F . The symbols {o,n} mark the
beginning and end of strings accepted by A. The language
accepted by A is L(A) =

{
own ∈ {o} ·Σ∗ · {n} | T (q,w′) ∈

F , q∈ I, I = {o},w′=wn
}

. It is known that such a language
is regular [4].

A k-factor is a k length contiguous subsequence of a
string own [5]. A string extension function fsek : Σ∗ →
Fin({o}·Σ∗ ·{n})1 is a function mapping a string w to the k-
factors of own, e.g. for w = acb, fse2 (w) = {oa,ac,cb,bn}
(If |w| < k, then fsek (w) = w) [11]. A sub-regular language
is a regular (string-extension) language, with characteristic
string patterns, for which the membership of a string can be
decided by using a set of k-factors (grammar).

LTk is a class of sub-regular languages [5]. Language L
is LTk if there is some k ∈ N such that for all w1, w2 ∈ Σ∗,
if fsek (w1) = fsek (w2) then w1 ∈ L ⇐⇒ w2 ∈ L [5]. GkLT =
{{fsek (w)} | w ∈ L} denotes a (string-extension) grammar
comprising the sub-grammars made of k-factors, generating
LTk language L = L(GkLT) (cf. [11]). The k-factors of a

1Fin(B) denotes the set of finite subsets of set B. |w| is the count of
concatenated symbols that make w.

LTk string are exactly similar to those in one of the sub-
grammars for the language. An example of LT2 grammar
is G2LT =

{
{oa,ac,cn}, {ob,bc,cb,cn}, {oa,ac,cb,bn}

}
with 3 sub grammars. The strings comprising 2-factors in
these sub grammars belong to L(G2LT), e.g. oacn, obcbcn,
and oacbn.

1) Identification from Text: presentation of language L is
a function pr :N→ L⊆Σ∗ that indexes all elements of L. The
process creates the text for L - txtL, a sequence of words from
L separated by the terminal symbols n,o. txtL(i) denotes ith
string in the sequence. The initial segment of the text that
includes strings txtL(0) to txtL( j) is called a demonstration
(of length j + 1) and is denoted txtL[ j], e.g. txtL[5] = acn
oaccbnoabbcnoacnoaccbn . We consider only positive
text here, i.e., strings txtL(i) belong to L (some variants
use strings that are not from the language). An inductive
inference machine (IIM) φ accepts increasingly large initial
segments of a text (txtL[i]) and outputs a hypothesis after
each input, identifying target language in the limit (cf. [15]).

B. Symbolic abstraction of MDP behavior

An atomic proposition is a logic predicate evaluated on a
system state. It can be either action based 〈a specific motion
primitive is executed〉, or sensor based 〈sensed information
(e.g. size) satisfies a requirement〉, or location based 〈learner
is in a specific region〉. The set of atomic propositions is AP.
A literal is an atomic proposition or its negation, and sen-
tences are conjunctions of literals where each atomic proposi-
tion appears at most once, (e.g. α =(r1∧r2∧(¬r3)), ri ∈AP)
[16]. SAP denotes the set of sentences. The reported method
uses the sentences evaluated on system states, as language
symbols, to abstract the information about system dynamics.

An Markov Decision Process (MDP) M =
(S,A ,TM,{PM}, γ,D(IS),LM,R) can be either continuing
(evolution does not terminate) or episodic (evolution stops
on reaching terminal states which completes an episode,
and then re-initializes) [17]. comprising states S, actions
A , a transition function TM : (S × A ) 7→ 2S, transition
probabilities PM , a discount factor γ , a distribution D(IS)
over initial states IS, labeling function LM : S→ SAP, and a
reward R : S×A→R. H (s) = {a ∈A | TM(s,a) ∈ S,s ∈ S}.
LM enables the symbolic abstraction by mapping states to
corresponding sentences. A control policy π : S→ A governs
the evolution of M\R. A continuing MDP w/o reward
represents the interaction between learner and environment,
M\R = (S,A ,TM,{PM},γ,D(IS),LM).

C. Problem Statement

A demonstrator trains a learner on a task expressible as a
LTk language, L = L(GkLT) with state labels as alphabet (i.e.
Σ = SAP). We assume that the learner has this information
about the task.

The problem is stated as follows: From the trajectories
{(si

0,a
i
0),(s

i
1 . . .(s

i
j,a

i
j)}e

i=1 ,s j ∈ S,a j ∈ A , i, j,e ∈ N given
by demonstrator, learner perceives state labels {LM(s j) =
α j ∈ Σ = SAP, s j ∈ S}, creating the strings (symbolic tra-
jectories of labels) txtL(i) = α0α1α2...αy, i,y ∈ N,αy ∈ Σ.



TABLE I
COMPONENTS OF A TASK, A = (Q,ΣΣΣ,T, I,F)

Q
{

q = 〈w,g〉|w = σ1σ2 . . .σt ∈
Σ∗∪{o} ·Σ∗∪{o} ·Σ∗ · {n}∪Σ∗ · {n},σi ∈ Σ, i ∈
N, 0≤ t ≤ (k−1), g ∈ Fin

(
fsek ({o} ·Σ∗ · {n})

)}
Fin
(
fsek ({o} ·Σ∗ · {n})

)
denotes all the possible sets of

k-factors of the strings in set {o} ·Σ∗ · {n}. A state is a
tuple of a string w and a set g of k-factors of an arbitrary
string.

ΣΣΣ Σ∪{o,n}
T 2
{
〈w,g〉 ∈ Q|S f 1(w) 6=n

}
×ΣΣΣ\{o}→ Q

T (〈w,g〉,σ) = 〈w′,g′〉,w′ = S f (k−2)(w) ·σ ,g′ =
{S f (k−2)(w) ·σ} 1≤ t < (k−1)∧g = {w},w ∈ {o} ·Σt−1

{w ·σ} t = (k−1)∧g = {w},w ∈ {o} ·Σt−1

g∪{w ·σ} t = (k−1)∧g = {w}∪g′′,w ∈ {o} ·Σt−1

g′′ ∈ Fin
(
Σk)∪ /0

A LTk string own,w = σ1σ2..σk...σm ∈ L has a prefix
k-factor oσ1...σk−1 along with other k-factors (interiors
and suffix) in it. Three kinds of transitions construct a run
in which the DFA recognizes the parts of a string own:
type 1 transitions till the end of the prefix part (applicable
if k > 2), type 2 transition ends the prefix (if k ≥ 2), and
type 3 transitions for the rest of k-factors (k arbitrary). This
run ends in accepting states, F .

I

{
〈λ ,{o}〉 k = 1
〈o,{o}〉 k > 1

F
{
〈w, g〉 ∈ Q|g ∈ GkLT

}
An accepting state is a state with a sub-grammar of
GkLT in it

Objective of learning is that the trajectory followed by learner
should satisfy the constraints encoded in L(GkLT)/ DFA A s.t.
L(A) = L(GkLT). Formulate a PbD method using which the
learner generalizes the task over whole state space of the
system M\R. The method is expected to control the system
evolution, completing task A.

For IIM φ created for the problem above, let the hypoth-
esis about L(GkLT) after nth demonstration txtL[n] (sequence
of first (n+1) strings) be the grammar φ(txtL[n]),n ∈ N.
The true hypothesis is GkLT. A learning algorithm using φ

completely identifies the language L(GkLT) = L, iff for a
demonstration txtL[n],n ∈ N in presentation pr, it converges
to φ(txtL[n]), such that φ(txtL[n]) = GkLT.

IV. PBD-LTk

A. LTk Task

A LTk task L(GkLT) is represented as DFA A =
(Q,ΣΣΣ,T, I,F) (Table I). The symbols {σ ∈ Σ = SAP repre-
sent task specific constraints (sentences) satisfied by states.
Therefore, a sub-grammar of GkLT (in states F) represents a
set of constraints. Each sub-grammar embodies an option to
meet the desired specification because a solution (LTk string)
can be constituted of the k-factors from any sub-grammar.

2Sfn(w) is length n suffix of w. Σt−1 refers to the set of all strings of
length t−1.

TABLE II
COMPONENTS OF Mp

Sp

{{
sp = (s,q)| LM(s) = S f 1(w) ∈ Σ,q = 〈w,g〉

}
k > 1{

sp = (s,q)| LM(s) ∈ g
}

k = 1
Lp Lp(sp) = LM(s) ∈ SAP
Tp Sp×A → 2Sp

Tp(sp1 ,a) = {sp2 = (s2,q2)| s2 = TM(s1,a),q2 =
T (q1,σ),σ ∈ Σ},∀sp1 = (s1,q1) ∈ Sp,a ∈H (s1)
Transition from current product state sp1 on input action
a of M\R leads to the product state sp2 which has both
its components reachable from respective components
of sp1 .

Pp Pp(sp2 |sp1 ,a) = PM(s2|s1,a)
Ip {(s,q) ∈ Sp| s ∈ IS}
Fp
{
(s,q) ∈ Sp| T (q,n) ∈ F

}
A terminal state is a product state sp which has its DFA
component with a transition defined to an accepting
state.

B. Learning

A string extension learner (SEL) learns a language as the
corresponding grammar, by iteratively combining the sets of
k-factors mapped by a (language-specific) string extension
function, completely converging to the target in the limit
(Theorem 5 in [11]).

The SEL φ se
kLT is an IIM identifying a LTk language,

φ se
kLT(txtL[i]) =
φ se

kLT(txtL[i−1])
∪{fsek

(
txtL(i)

)
}, {fsek

(
txtL(i)

)
}* φ se

kLT(txtL[i−1])
φ se

kLT(txtL[i−1]) , otherwise
for i ∈ N; with convention φ se

kLT(txtL[−1]) = /0.
An extension of φ se

kLT is created to identify the language’s
DFA A instead of only its grammar. The learning starts with
a construction of a ‘graph without accepting states’. With
each input txtL[i], it marks the accepting states 〈w,g〉 ∈ Q
which has its set g of k-factors same as k-factors of the
string ({fsek

(
txtL(i)

)
}). The marking process results in F on

the graph, completing the inference of A. This learner of task
L(GkLT) = L(A) is implemented as the algorithm of Figure 5
(Appendix) followed by an extended φ se

kLT in Figure 6.

C. Constraining the System Behavior

A product enforces the constraints encoded in A on the
behavior of M\R, resulting in a new MDP expressed as Mp =
M\R

⊗
A = (Sp,A ,Tp,{Pp},γ,D(Ip),Lp,Fp) (see Table II).

The process introduces terminal states to the dynamics of
M\R. It is inspired by synchronous products in the field
of model checking [18]. The desired specification is the
membership in task (language L(GkLT) as A). F in A and
Fp in Mp include the sub-grammars symbolizing the desired
specification. Thus, a trajectory from Ip to Fp will completely
meet it. In summary, specification (membership in L) was a
reachability objective in A, and is consequently expressed as
the reachability in Mp after product.

1) Task Implementation: After inferring A, the learner
computes Mp using algorithm in Figure 7. Figure 1 shows



Fig. 1. PbD-LTk or PbD of a LTk task

Fig. 2. The agent (circle) moves in cells of four colors. A trajectory is
shown as a succession of cell locations (starting with a light-colored circle).
A trainer inputs a physical demonstration in a vertical array of boxes. The
demonstration shown here begins at (1,1) ∈ S following partition sequence
A→B→D, and is perceived as the string txtL(i)=‘aabbbdd’ of labels. The
bottom right text box is meant for indicating the output of PbD-LTk .

the steps for PbD-LTk. After product, a solution can be found
either using a simple graph search on Mp or using dynamic
programming with a fixed negative reward.

V. COMPARATIVE STUDY OF GENERALIZATION

This section compares the extent of task generalization
by IRL with that by PbD-LTk when the available training
sample is not large.
Example (Navigating a Grid-world): Consider a Grid-world
with a simulated navigating agent inside it. A state s ∈ S is
a grid of 4× 5 cells with the agent inside a specific cell
(inspired from Grid-world in [12]). s is expressed using
Cartesian position (x,y) of that cell. Some of the states
are not navigable. S has 4 partitions B = {A,B,C,D}.
A = {l (left),r (right),u(up),d (down)}. ∀s ∈ S,a ∈ H (s),

TM(s,a) =

{
s′ with probability PM(s′|s,a) = 0.8
s with probability 1−PM(s′|s,a)

We take γ = 0.95 and assume D(·) to be a uniform
distribution over IS = A∪B∪C∪D.

The learner (navigating agent) in Grid-world is required
to be programmed by demonstration for the task from any
initial configuration s ∈ I ⊂ S, visit partition D avoiding
transitions from A to C and from C to A, stopping at D.
Both IRL and PbD-LTk are implemented for the purpose,
using a Python based GUI (figure 2). The trainer provides
same demonstrations in each of the cases. Assuming a
worst case scenario (a sufficiently abundant and diverse
training is unachievable), she demonstrates a small set of
physical trajectories {(si

0,a
i
0),(s

i
1,a

i
1), ...}e

i=1,e = 5 ending in
a particular subset of the states, {(3,4),(4,4)} ⊂ D ⊂ S.

Each one of these trajectories starts from IS and ends up in
{(3,4),(4,4)}. A→ B→ D, B→ D, C→ D are the sequences
of partitions that are visited in these demonstrations.

A. IRL

The learner in IRL converges to a task (expressed as a
policy π̃) by imitating the policy πE of demonstrator [12]. In
IRL framework, M\R includes features ψ : (S×A ) 7→ [0,1]b

and a bounded reward R(s,a) = ωT ψ(s,a), ω ∈ Rb (‖ω‖ ≤
1). We make the value of πE (feature counts [12]) represent
the task above. R(s,a) = ωT ψ(s,a)< 0. Features are binary
predicates ψ : (S×A ) 7→ {0,1}16 (b = 16). A feature for
pair ( j1, j2) ∈B×B is a logic predicate: 〈after taking an
action a in a state s of space partition j1, system transitions
to a state in partition j2〉. The component ω j1, j2 denotes the
weight corresponding to ( j1, j2) ∈ B×B. ∀( j1, j2) ∈ B×
B\{(A,C),(C,A)}, ω j1, j2 =ωc =−0.5. ωA,C = ωC,A =−2<
ωc. Consequently, the reward for prohibited transitions, A
to C and C to A, is lower as compared to that for others.

The learner acquires the terminal states of system MDP
from demonstrations, making the MDP episodic after train-
ing. M\R is a continuing MDP before training. The agent
learns the terminal states FS = {(3,4),(4,4)} during training
by observing the last state of each demonstration, thereby
making M\R episodic after learning the task (figure 3). The
learning algorithm converges to policy π̃ . Starting in s0 ∈ IS =
A∪B∪C, following π̃ , the navigating agent reaches FS ⊂ D
while meeting the task specification.

Fig. 3. Top right text box shows output from IRL. Cells with ‘P’ show
the terminal states of system MDP marked by IRL (FS = {(3,4),(4,4)}).
Trajectory sampled from the learned policy π̃ starts from (1,0) ∈ IS and
ends in (3,4) ∈FS.

B. PbD-LTk

Grid-world state labels are interpreted by making each
sentence as a single literal (location-based proposition), α j =
r j ∈ SAP, j ∈ B (e.g. if s = (0,0), LM(s) = αA = rA, i.e.
the agent is in the cell corresponding to partition A). When
the task is modeled as language L(G2LT), it comprises the
strings expressing symbolic form of trajectories. They follow
LT2 patterns while avoiding the 2-factors corresponding
to the prohibited behavior. The task grammar is G2LT =
{{oαA,αAαA, αAαB,αBαB, αBαD, αDαD, αDn}, {oαB,



Fig. 4. Complete generalization. Cells with ‘S’ show the terminal states
marked by PbD-LTk . The task grammar G2LT (o is 0 and n is 1) and a
path computed from MP are shown.

αBαB, αBαD, αDαD,αDn}, {oαC, αCαC, αCαD,αDαD,
αDn}} over the extended alphabet ΣΣΣ = {αA,αB,αC,αD}∪
{o,n} 3. During PbD, a training demonstration is perceived
as corresponding string txtL(i) of labels (Figures 1 and 2)4.
PbD of L(G2LT) results in Mp with terminal states Fp =
{(s,q) ∈ Sp|s ∈ D} (corresponding cells are marked ‘S’ in
Figure 4).

C. Discussion

In a PbD problem, it is troublesome for a trainer to give the
demonstrations abundant enough to ensure the generalization
to all possible options for accomplishing (or terminating) the
task being taught. The condition of providing a sufficiently
‘diverse and extensive training’ gets impracticable with an
increase in the size of underlying state space. A worst
case situation was replicated in previous sub-sections for
an example with a small state space, where a trainer can
demonstrate five trajectories ending in a particular subset
of possible terminal states FS. The situation is conceptually
extrapolatable to a problem with large underlying state space.
If the terminal states for satisfying the desired specification
are not completely observed in demonstration, IRL will
learn a limited options to terminate while meeting the task
specification. As evident from figure 3, IRL converges to a
solution path unique to FS. Consider the terminal states IRL
could not converge to, D\FS = {(2,5),(3,5), (4,4),(4,3)}
(see Figure 4 for cells in partition D without mark ‘P’). These
states will not contribute to the computation of the learned
solution (π̃), thereby compromising its extent of application,
especially regarding task termination.

PbD-LTk can generalize completely. It happens due to
the structure introduced (to the learning framework) by a
task model with a guaranteed convergence of learning and
that introduced by the symbolic abstraction. The labels
(sentences) divide the state space into groups of equivalent

3The task patterns are oαA(αA)
l(αB)

m(αD)
nαDn,

oαB(αB)
m(αD)

nαDn, oαC(αC)
m(αD)

nαDn (l,m,n > 0)
4Symbols shown in the string in Gridworld figure correspond to sentences,

αA = a,αB = b, αC = c,αD = d ∈ SAP. As no sub-grammar has αA and αC
together, no txtL(i) contains the prohibited sequences “αAαC” or “αCαA”
(A to C, C to A).

states satisfying them. For each such group of states, the
information learned about the task is extrapolated to the
whole group. In Gridworld example, the labels comprise of
location based atomic propositions only (but the outlined
approach applies to other propositions as well). Therefore,
the groups of equivalent states are the partitions themselves.
The sequences of partitions that accomplish the task are
A → B→ D, B→ D, and C→ D. If demonstrations
has at least one physical trajectory from each of these
representative sequences, the symbolic counterpart (text,
Figure 1) maps to the sets of k-factors that are enough to
converge to complete task language (Lemma 2 & Theorem
5 in [11]), and thereby DFA with all its accepting states.
In product operation, the computation of terminal states
Fp in Mp uses the complete state spaces S, Q, and F . The
procedure includes the states the learner could not observe in
training trajectories. Therefore, PbD-LTk does not lose any
option for finishing the task (all cells marked ’S’ in figure
4). The sampled path ends in the state (3,5) ∈ S (as sp =
((3,5),〈αA,(oαA,αAαA,αAαB,αBαB,αBαD,αDαD,αDn)〉)∈
Fp) which is not an option for solution by IRL (figure 4).
PbD-LTk achieves a complete generalization to all the ways
to accomplish learned task, which is difficult for IRL.

The reward (expressing πE ) in IRL is linear to make
PbD problem solvable by linear programming [7], which
makes the problem designer choose and prioritize the fea-
tures. Similarly, PbD-LTk necessitates the selection of atomic
propositions to create labels suitable for task. The choice of
compensation depends on the nature of the PbD target.

A reason for the difference in the results above for PbD-
LTk and IRL is that the desired specification in former is
membership in a language, whereas that in latter is a max-
imum expected cumulative state value [12]. Consequently,
there is a difference in the nature of respective tasks -
a language comprising symbolically abstracted trajectories
and a control law minimizing a cost. The characteristic
qualities of set-theoretic grammatical inference can be ported
to former but not latter.

D. Limitations of PbD-LTk

The time complexity of PbD of LTk task is exponential,
O(|Q|+ |F |+ |Q|×|S|), where |Q|= x· (2|f

se
k ({o}·Σ∗·{n})|−1)

= x(2(y+2z) − 1), x = (|Σ| + 2)k−1, y = |Σ|k, z = |Σ|k−1,
and |F | = |GkLT|. Fortunately, the LT class of languages
follow hierarchy: L(GkLT) ⊂ L(G(k−1)LT)... ⊂ L(G2LT), i.e.
LT2 includes each LTk with k > 2 (Theorem 98 in [19]).
Therefore, the learner can use the demonstration for any task
to learn it in LT2 (k = 2) form, which bounds |Q|. PbD-
LTk assumes prior knowledge. The existing methods have
also used similar assumptions to improve learning [20]. In
active learning, a privilege for asking on-line queries helps in
reducing the sample complexity [10]. Reported method can
bridge the gaps in prevalent PbD methods (lack of guaranteed
generalization and need for linear reward). On these grounds,
the level of restriction imposed in PbD-LTk is defendable.



VI. CONCLUSIONS
Some tasks can be modeled as LTk languages (e.g. Pick

large and small cups, place them on shelves avoiding large
cups from going on small shelf, and small ones from going on
the large shelf, eventually putting more large than small is
a LT2 task ). The method of PbD-LTk learns such a task
exactly correctly without losing potential solutions (com-
pletely generalized). This paper is a step toward application
of grammatical inference in PbD. Potential future directions
include using the languages capable of modeling everyday
tasks and are identifiable in the limit (context-free language
classes [1], [21]), or using a noisy demonstration [1].

VII. APPENDIX
function GRAPH-WITHOUT-F(Σ)

q
′
=NEXT-STATE(q,σ ,k)

Q = Q∪q
′

end function
function NEXT-STATE(〈w,g〉,σ ,k)

w
′
= S f (k−2)(w) ·σ

if |g|== 1 then
if 1≤ t < (k−1) then

g
′
= {S f (k−2)(w) ·σ}

else
g
′
= {w ·σ}

end if
else

g
′
= g∪{w ·σ}

end if
return 〈w′ ,g′〉

end function
Fig. 5. Learning (part 1): Computes Q for constructing graph w/o F

Given (Q,ΣΣΣ,T, I, /0) Output A = (Q,ΣΣΣ,T, I,F), n
function EXTENDED-SEL(txtL(n))

n← n+1
if (fsek )�(txtL(n)) /∈ φse

kLT(txtL[n−1]) then
φse

kLT(txtL[n])← φse
kLT(txtL[n−1])∪ (fsek )�(txtL(n))

for all q ∈ Q, do
if g = (fsek )�(txtL(n)) then

F = F ∪{q}
end if

end for
else

φse
kLT(txtL[n])← φse

kLT(txtL[n−1])
end if

end function
Fig. 6. Learning (part 2): Hypothesizing task (DFA) by marking F
function PRODUCT(A,M\R)

for all s ∈ S,q = 〈w,g〉 ∈ Q do
if LM(s) = S f 1(w) then . for k > 1

Sp = Sp∪{(s,q)}
if T (q,n) ∈ F then

Fp = Fp∪ sp
end if

end if
end for
for all sp1 = (s1,q1) ∈ Sp,a ∈H (s1) do

if ∃s2 = TM(s1,a),q2 = T (q1,σ),σ ∈ Σ then
sp2 = (s2,q2)
if sp2 ∈ Sp then

Tp(sp1 ,a) = Tp(sp1 ,a)∪ sp2

end if
end if

end for
end function Fig. 7. Computing product Mp
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