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Flocking, Formation Control and Path Following for

a Group of Mobile Robots
Luis Valbuena R and Herbert G. Tanner

Abstract

The paper presents a multi-functional control law for a group of mobile robots. The controller concurrently integrates flocking,

formation control and path following, as basic components in a navigation framework for mobile sensor networks tasked with

searching and harvesting information. The convergence of the closed loop system is ensured using Ryan’s invariance principle;

the particular tool being necessary due to the use of a nonsmooth artificial potential field for formation control. Simulations and

experiments corroborate the theoretical convergence results.

Index Terms
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I. INTRODUCTION

In the spring of 2011 an Autonomous Underwater Vehicle (AUV) from the CSHEL lab of the University of Delaware conducted

sea bed surveys for habitat mapping in the Conch Reef, Florida. The vehicle used an on-board camera to create a mosaic of

the ocean floor, for the purpose of—among other science objectives—characterizing coral growth. Figure 1 shows a Google

Earth view of the location of that dive, and a more detailed aspect of the path that the underwater vehicle followed during

this 4-hour survey. From the perspective of this paper, what is interesting in this figure is (a) the scale of the overall area

coverage achieved with a single AUV, and (b) the particular pattern that oceanographers use to map the ocean floor using

robotic vehicles.

Area coverage depends on many parameters—for example, field of sensor view and vehicle speed—but with operational

limitations on sensors and speed, battery life is the main constraint. The number of vehicles deployed therefore matters. As

this number increases, either the size of the surveyed area increases or the time to mission completion decreases. For the

particular application, mission time is also of essence, because the the surface vessel and associated personnel necessary to

transport and deploy the robotic vehicle itself come with significant financial overhead. For a 50 feet surface support vessel, it

makes little difference if one or ten robots are being deployed. For certain applications, therefore, currently served by single
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Fig. 1. Views of coverage of a marine survey mission using an autonomous underwater vehicle in Conch Reef, Florida. X marks the location of the initial
robot deployment. (Courtesy of Dr. Art Trembanis)

autonomous robotic vehicles—like searching for plane wreckage and black boxes—scaling up to small groups makes sense in

terms of satisfying the objectives of the mission and managing its cost.

The choice of the coverage pattern, on the other hand, is mainly empirical. From Fig. 1(b) it appears that AUV practitioners

prefer a heuristic “lawn-mower’s problem” solution [1]—which is in general NP-hard [2]— for their mission planning. In the

particular case of the AUV participating in the mission of Fig. 1, path planning is done by defining way-points. Irrespectively

of how the pattern to be followed is generated, if multiple vehicles are to be used in a mission, planning is simpler if the

collection of vehicles moves as a coherent stable formation, compared to having each vehicle assigned its own individual lot

(fewer waypoints). Thus, formation control algorithms that enable groupsof autonomous vehicles to follow designated paths

can be useful in mission planning and execution, both in the particular motivating application, as well as in a variety of

other problem domains where robots are used for search and mapping: space exploration, search and rescue, environmental

monitoring, surveillance, etc.

This paper aims at addressing this need. It presents a control architecture that coordinates a group of vehicles to fall into

formation of specified shape, flock, and follow a predefined path, all at the same time through coexisting controllers that are

implemented by concurrently evolving software processes. While centralized in principle, the architecture can be implemented

in a decentralized way, depending on the nature of the graph that captures the communication topology between the vehicles.

The controllers reported in this paper take into account the nonholonomic constraints that vehicles can be subject to, based on

standard input-output feedback linearization techniques [3], [4]. The theoretical convergence analysis of the formation controller

builds on results from non-smooth analysis, since the potential function used for formation control is nondifferentiable. In this

context, one of the paper’s technical contributions is the first formal proof of stability for a combined flocking and a provably

convergent formation controller for second-order discontinuous dynamical systems. The path following controller sits at a higher

level, and drives the whole group, without switching, along paths composed of straight line segments and Bézier curves, taking
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advantage of the stability properties provided by the flocking and formation controllers. The three controllers are integrated

seamlessly and work concurrently in a way that no leaders (actual or artificial) need to be used.

Individually, the problems of formation control, path following and flocking have been studied extensively. We can also

find work addressing instances that combine two of the three. In formation control there is a multitude of different working

assumptions about the capabilities of the agents, the range of the sensors, and the information structure used to embed the

formation specification. For instance, in some work [4]–[8], it is not entirely clear if particular cases such as non-degenerate

equilibrium formations can be addressed. Other approaches [4], [5], [9]–[11] avoid switching or deliberatively smoothen it. In

a significant amount of work on formation control [4], [5], [8], [9], [11]–[20] vehicles are assumed holonomic or their final

orientation is ignored. The implication of this is that if the group attempts to move as a rigid body from the final configuration,

the formation will temporarilly dissolve.

Not all nonholonomic formation controllers explicitly guarantee collision avoidance, but some do [21]–[23]. At steady

state, control designs in the aforementioned work may in principle allow the group to move as a cohesive unit along a

given direction, although the time-varying nature of the formation’s destination points can introduce steady-state errors. When

formation controllers for nonholonomic vehicles are explicitly designed so that the formation is steered along a desired path

or trajectory, two general approaches are followed. Either a specific point on the formation—this could be an actual leading

vehicle, a virtual vehicle, or an arbitrary reference point such as the centroid [24]—is made to track a designated trajectory

[7], [25]–[30], or the path specification is broken down to individual reference trajectories in the spirit of virtual structures [1],

[18], [31], [32]. In some sense, these two alternatives represent the two ends of the spectrum, the former giving some vehicles

authority over the rest imposing a hierarchy, and the latter implementing a flat organization where everyone has their own

motion specification. These motion specifications involve velocity directives.Yet, there may not necessarily be a need to match

a particular speed reference, like in the motivating underwater survey application mentioned earlier.

Although some links between provably convergent formation control and flocking have been identified [33], the two behaviors

have not been integrated into a single control design. Among the different flocking control approaches that exist, there are

some [34], [35] that do not offer a formal proof that formation stabilization will indeed occur. Out of many others that do

(e.g., [36]–[39]) few consider switching [40] or nonholonomic constraints [41]–[43]. And although switching and kinematic

constraints may not constitute insurmountable obstacles in implementing flocking controllers, these controllers in general cannot

guarantee that any desired and oriented shape will be achieved (cf. [18], [24]).

In terms of cooperative path following, part of the existing work involves control specifications that include velocity references

[32], [44]–[46], and thus falls into the same category as those formation controllers that are based on virtual structures and

virtual leaders. Other approaches do not [47], [48], but may not always be accompanied with convergence proofs [49] (cf.

[50]). What is interesting in path following approaches based on vector fields in particular [48], [51], [52] is that the method

may not be limited to paths of a certain geometry, (cf. [46], [47]). This vector-field approach resorts to a switching mechanism

when it comes to selecting a field specific to the closest path segment, in order to avoid sinks, dead zones and singularities.

Switching also appears in solutions that involve triangular decompositions of a polygonal “corridor” around the desired path

[53], [54], (cf. [55], [56]) although this switching is limited to the corridor’s boundaries. Related approaches [51] alleviate the



4

switching problem but they do not appear to be applicable to paths that are not closed curves.

At this time, there exist enough control technology know-how to offer a multitude of solutions to the problem of driving

a formation of nonholonomic vehicles along given geometric paths. Strictly on an application front, therefore, this paper’s

contribution is in the context of specialized methodological improvements. However, the true value of the reported analysis

is on the theoretical side, because it shows that provably convergent flocking, formation control, and path following can be

integrated in a single control architecture, and that all the component behaviors can coexist, run at the same time, and be

active concurrently without adversely interfering with each other. In fact, the component behaviors exhibit a synergy which

has not been observed before: flocking, formation, and path following controllers work together by reducing near-collision

instances, destabilizing the singularities of the formation controller, and enhancing the cohesion of the group. What is more,

the combination increases robustness even if one of the three controller components goes off-line at steady state, the other two

can be sufficient in keeping the system within its control specification.

This paper is organized as follows: Section II describes formally the problem addressed in this paper. Section III describes the

development of the first component of the control architecture, which is the formation controller, while Section IV is devoted

to path following. Then, Section V shows how formation control and flocking can be integrated. In Section VI simulation and

experimental results from the implementation of this architecture on a group of wheeled mobile robots are reported. Section VII

summarizes the paper. To make the paper more accessible, some of the more technical discussions have been collected in an

Appendix.

II. PROBLEM STATEMENT

A group of robots, initialized at random positions and orientations, is required to fall into a specified formation without

colliding, and continue moving together as a rigid body following a prescribed path while maintaining the formation they have

fallen into. We assume that the robots move in an obstacle-free environment.

Denoting xi and yi the position coordinates of robot i, and ϕi its orientation, we assume that its kinematics is captured by

the equations of the unicycle:1

ẋi = vi cosϕi (1a)

ẏi = vi sinϕi (1b)

ϕ̇i = ωi . (1c)

Given a small parameter L > 0, this kinematics can be input-output feedback linearized using as output the vector

x2i ,

xi + L cos θi

yi + L sin θi

 ,

1Slightly different models for ground mobile robots have appeared in the literature [57]–[59].
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leading to a feedback linearized dynamical system of a double integrator with a state formed by stacking x2i on x1i = (vᵀi , ω
ᵀ
i )ᵀ,

ẋ2i = x1i , ẋ1i =

Γi

Ωi

 , (2)

and with x1i driven by Γi, Ωi, which are the transformed inputs of the feedback-linearized system. Let d0 be the distance

between two robot centers at which the robots come in contact with each other. Then to avoid collisions between the robots,

one must ensure that ‖x2i − x2j‖ ≥ d0 for all i 6= j as i and j range in {1, . . . , N}. Stack now all robot outputs in the form

of a combined vector

x , [xᵀ1 xᵀ2 ]ᵀ; x1 , [x11 · · · x1i · · · x1n]ᵀ , x2 , [x21 · · · x2i · · · x2n]ᵀ ,

and let the desired formation for this group of robots be described in terms of their feedback linearized coordinates x by

means of a labeled directed graph called the formation graph G = {V,E,C}:

Definition 1 ([60]). G = {V,E,C} is a labeled directed graph consisted of:

• A set of vertices V = {v1 . . . vn}, with each vertex associated to one robot in the group.

• a set of edges E = {(i, j) : {1 . . . n}×{1 . . . n}} containing ordered pairs of nodes that denote the existence of pairwise

position specifications between robots, and

• a set of labels C = [cij ] for (i, j) ∈ E, that explicitly express quantitatively the relative position specification for each

pair of robots.

The formation graph G = {V,E,C} expresses the pairwise relative position requirements between the robots in the set E,

and codifies these requirements in an array C of desired relative position vectors qd.

Assume the formation graph G is connected, and consider the incidence matrix2 B of the complete graph associated with

the nodes of G, As heads and tails of the edges are marked with 1 and −1 respectively, we can multiply the concatenated

vector of robots position x2 to get relative positioning (cf. [40])

q = Bx2 . (3)

Thus q is the stack vector of all relative position vectors between the robots in the group. Since the formation graph G is

connected, not all the elements of q need to be actively controlled; it suffices to concentrate on a subset of the elements of q

that correspond to edges in a spanning tree of G. For once the relative position vectors associated with edges in a spanning

tree of G are fixed, all the remaining position vectors are uniquely determined.

Let us thus assume that G is a spanning tree, and that the stack vector c formed by the elements of array C (basically

converting the array into a vector), after possibly some renumbering of nodes, is

c = [qᵀd1 qᵀd2 · · · qd(n−1) qᵀd(n−1)]
ᵀ .

2The incidence matrix B of a directed graph is a m×n matrix with m =|V | and m =|E| such that bij = 1 if edge j arrive to node i, bij = −1 if edge
j leaves node i, and bij = 0 if node i is not associated with edge j.
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Then the problem addressed in this paper can be formulated as follows:

Problem Statement. For a group of n points in R2 with double integrator dynamics (2) the states of which are stacked in

a vector x, we seek a global control law that makes all these moving points fall into a formation codified in vector c, while

ensuring that for all i 6= j and t > 0, ‖x1i(t) − x1j(t)‖ ≥ d0, that the formation shape is maintained, and that the group

moves along a prescribed path composed by straight line segments and Bézier curves.

III. FORMATION CONTROLLER DESIGN

The solution to formation control given in this paper follows the lines of a particular multi-agent navigation function approach

[60], that applies to coordinating a group of N disc-shaped robots into an arbitrary geometric formation. If we define γ(q)

to be a positive definite function that encodes the proximity of the system to its desired configuration, and let β(q) be be

another scalar positive semidefinite function which vanishes only when any robots come in contact with each other. Then the

multi-agent navigation function takes the form

ϕ(q) =
γ(q)

β(q)
. (4)

Taking κ to be a positive tuning parameter, and recalling that c is the desired formation specification encoded in the definition

of the formation graph (Definition 1), we can express function γ(q) in the form

γ(q) = γκd (q) , with γd(q) ,
∑

(i,j)∈E

‖q − c‖2 . (5)

Similarly, once we introduce tuning parameters r, µ and a that relate to the center distance between the disc-shaped robots at

which collision occurs, and determine the derivative of function β at that location, we can express β analytically. In doing so

we use qi to denote the ith element of the stack vector q:

β(d) = log
(
µ− ae−(−r+d+d2)2

)
, for d(q) = min(‖qi‖) . (6)

The term min(‖qi‖) identifies the distance between those two robots that are closer to each other, and allows function β to

encode proximity to collision without multiplying pair-wise proximity metrics. Avoiding the introduction of such a product

enables a complete proof of the properties of the critical points of function ϕ [60]; the price for this is that now the potential

function that coordinates the robots into formation is non-differentiable. Tools from nonsmooth analysis that can be brought

to bear for this case are reviewed briefly in Appendix A.

If the dynamics of q, the latter defined in (3), become of the form

q̇ = −∇ϕ(q) ,

in the regions where ϕ(q) is differentiable—the general treatment for both differentiable and non-smooth cases is in Section V—

then the desired formation is guaranteed to be reached asymptotically [60]. Dynamics (2) is, however, of second order. The

nontrivial extension of this control strategy from first to second order systems, and its integration with flocking controllers is

postponed until Section V.
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IV. FORMATION PATH FOLLOWING

We make use of windowing functions [61, Chapter 7] to avoid kinematic singularities and additional switching. The latter

could be otherwise be introduced by path following approaches rooted in artificial potential fields constructed based on geometric

primitives such as straight lines and curved segments. For the case of straight line reference paths—for extensions to Bézier

curves see Appendix C—and with an appropriate selection of tuning parameters a0 and r0, we can define the windowing

functions as follows (see also Fig. 2):

wa(s) =
1

2

[
tanh(a0s)− tanh

(
a0(s− ‖~v‖)

)]
wR(qs) =

1

2

[
tanh

(
a0(qs + r0)

)
− tanh

(
a0(qs − r0)

)]
θ(qs) =

π

2
e−a0q

2
s .

Function wa(s) is a windowing function acting along a path parameterized by s ∈ R. The function is essentially the length of

the projection on the path, of the vector ~P from the initial path point P0 to the spatial position of interest p (see Fig. 2). Vector

~v extends from the initial point P0 to the final point P1 on the reference path, and v̂ is the unit vector along the direction of

~v. All these vectors are on the plane of motion, however they are considered embedded in R3 because of our need to take

cross products. Windowing function wR(qs) acts in a direction perpendicular to the path at distance qs from it, and θ(qs) is a

function that will regulate the constructed vector field’s orientation depending on the distance from the reference path.

Fig. 2. Definition of windowing function parameters in the case of straight line segment reference paths

Vector ~m that appears in Fig. 2 is defined as ~m = v̂ × (v̂ × ~P ), and a rotation matrix M is constructed as follows:

M =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 . (7)

The windowing functions allow a smooth blending of vector fields designed for different segments of the desired path (Fig. 3).

Figures 3(a) – 3(c) show a pulse and tooth-shaped signal and their corresponding windowing functions. The windowing functions

essentially select a region of interest out of the whole domain of the signal, and attenuate it smoothly at the boundaries. Figure

3(c) shows the results of filtering these signals through their windowing functions and superimposing the outputs.
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Fig. 3. Use of windowing functions to merge signals without introducing discontinuities. The purpose of windowing functions in signal processing is to
mask the discontinuity in frequency both at the beginning and end of the recorded signal; on this work, windowing functions are used to merge straight line
segments with Bézier curves so a smooth path is constructed without using switching approaches. In (a) and (b) the windowing function displayed in magenta
and red respectively multiplies the original signals in blue and green to obtain the processed signal by adding up the latter products, as displayed in (c). Note
that the windowing function tends to zero at the end points of the signal attenuating the effect of the discontinuity.

Through the use of appropriate windowing functions, we produce a single, smooth vector field up capable of steering the

system (2) along the entire reference path. The input given to the system for path following consists of two components, which

are superimposed. If we assume that the desired path is composed of n straight line segments, and m Bézier curve segments,

we can think of the control input component up as formed by superposing the straight line path segment signal us and a Bézier

curve segment signal ub:

up = us + ub =

n∑
i=1

us,i +

m∑
j=1

ub,j . (8)

The following theorem establishes the convergence along straight line segments (see Fig. 2), of the a reference point in

the (assumed rigid) formation. The proof can be found in Appendix B and centers around an application of the invariance

principle.

Theorem 1. Assume that the geometric center of the formation, pcm has dynamics of the form

ṗcm =

n∑
i=1

us,i ,

us,i = wai
(
~P · v̂

)
wRi(qs)

Mi ~m

‖Mi ~m‖
.

(9)

Then, in set D = {pcm ∈ R3 : 0 ≤ ~v · pcm ≤ 1}, the system (2) converges to set A = {k~v : 0 ≤ k ≤ 1} for some fixed ~v.

We can then show (see Appendix C) that Bézier curves can be diffeomorphically mapped to straight line segments, and

thus the vector field that is developed for convergence to line segments can be adapted through the push back map to allow

convergence to curved reference paths.

Assuming that robots fall into formation and maintain it, one would only need to steer the geometric center of this formation,

denoted pcm along the designated path. This is done by applying in (2) an input component up, uniformly to all vehicles.
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V. FLOCKING WITH FORMATION CONTROL

This section presents the extension of the formation control approach outlined in Section III to the case of the second order

dynamics (2), also ensuring that the formation flocks, i.e., synchronizes its individual vehicle velocity vectors, as it achieves

the desired shape. Flocking provides damping and facilitates asymptotic stability for formation control, while the formation

stabilization pushes the limit sets of the dynamics to regions of the state space where velocities are synchronized. How this

synergy is achieved is shown in the proof of the following theorem, found in Appendix D.

Recall the vehicle dynamics as expressed in (2), with x1 and x2 being the relative velocity and position stack vectors,

respectively, living in a set

Q = RnN(N−1)/2 × RnN(N−1)/2 \ {(x1, x2) : ‖x2,i‖ < d0,∀(i, j) ∈ N ×N} . (10)

Letting Ln denote the generalized gradient vector field [62], we make the following statement.

Theorem 2. Consider a group of N robots with dynamics as (2). If the control input in (2) is chosen as[
Γᵀ

1 Ωᵀ
1 · · · Γᵀ

N Ωᵀ
N

]
= uᵀf (11)

where

uf = −Ln(∇(ϕ(x2)))− x1 , ϕ(x2) =
γ(x2)

β(d(x2))
, d(x2) = min{‖x2,i‖} , (12)

then collisions between robots are avoided, all robot velocity vectors become asymptotically the same, and the robots’ relative

position vectors x2,i converge to desired constants defined by the formation graph specifications.

Now since (2), augmented with the orientation dynamics (1c), is diffeomorphic to (1), any convergent trajectory of the former

is mapped to a convergent trajectory of the latter. To account for the introduction of parameter L involved in the mapping of

the state of (1) to that of (2), one can conservatively set d0 to twice the sum of the robot’s radius plus L.

VI. INTEGRATION, TESTING AND PERFORMANCE EVALUATION

All the components needed to implement the entire methodology are interfaced as shown in Fig. 4. We identify two major

layers: a physical hardware and a cyber / software layer. The connection between the blocks of the physical layer in Fig. 4 is

enabled by a wireless communication network, having links that do not depend on robot distances.

In our experimental assessment of the reported controllers, we use a type of mobile robot which is a skid-steering differentially

driven platform, localized by a motion capture system (Fig. 5). Each robot has a Mini-ITX Motherboard with VIA C7 1.5GHz

Processor, 1 GB of RAM memory, a wireless communication card and a hard disc of 60 GB that allow each robot to run

Ubuntu Maverick Meerkat. Our client programs make the robots move by communicating with PLAYER 3.02. Although (1)

does not strictly describes kinematics of skid-steering vehicles [58], it may still be considered a good approximation, especially

when the origin of the body frame lies very close to the axis of the instantaneous radius of curvature.
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(a) (b)

Fig. 4. (a) Layer hierarchy of the framework. (b) Implementation schematics.

Fig. 5. Corobot. Differential robot manufactured by CoroWare. The metallic frame is custom made by us for the purpose of data collection.

A. Integration

Denoting inv(B) denote the Moore-Penrose generalized inverse of matrix B, and letting up be the path following control

signal, uf the formation control signal, and −x1 the flocking signal from the consensus controller, we can piece together the

the complete control law that integrates path following, formation control, and flocking as

uglobal = up + inv(B)(−Ln(∇(ϕ(x2)))− x1) . (13)

With reference to Fig. 4(b), we can read the complete control signal on the right of the summing junction of the block

diagram. This signal is mapped to linear and angular acceleration inputs for each differential mobile robot using the input-

output linearization transformation. All controllers work concurrently: their input signals are superimposed, and key to being

able to mesh seemlessly with each other is that the path following signal, being uniform over all vehicles, has no effect on

flocking and formation controllers which work on relative positions (and velocities). Transformation (3) works like a noise

cancellation circuit based on operational amplifiers:3 it rejects the common component.

3See [63].
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Fig. 6. Vector field to drive the formation along the desired path used in the simulation tests. The blue solid line is the path composed by straight line
segments and the red solid line are the Bézier line segments.

B. Simulation

To test the closed loop system in simulation, we designed the path of in Fig. 6. It is composed of three straight lines and two

Bézier curves. It can be verified that the vector field resulting from (8) for these five path segments is continuous everywhere

and converges to the desired path.

The results of this simulation are presented in Fig. 7. Initially the five robots are scattered around the workspace. The

formation specification calls for the robots to be in a diamond formation, with one of the robots enclosed in the middle. To

reach this desired formation, the robots on the right have to switch positions. As seen in the snapshot of Fig. 7(h), the robot

paths cross without them colliding with each other. After the configuration indicated by the snapshot in Fig. 7(g), we can

verify that robots have achieved the formation specification and move as a rigid body along the desired path.

The time history of the key terms in the different control signals that are superimposed to produce the final control law is

displayed in Fig. 8. The first part of this figure, Fig. 8(a) shows the time history of the numerator γ of ϕ(x2), which is a metric

of the difference between the current configuration of the group of robots and the desired formation specification. The square

markers in the trajectory of γ signify the time instances where γ passes over a nonsmooth cusp. Figure 8(b) displays how the

distance between the center of mass of the group of robots and the reference path decreases with time. Here, color-coding in the

segments of this trajectory refers to transitions between Bézier path segments (red/lighter) and straight lines (blue/darker). After

the robots have traversed the second Bézier curve and attained the desired formation (at about t = 675 simulation seconds),

this distance is practically zero. Figure 8(c) shows the time evolution of the velocity differences between the members of the

flock. For this particular simulation, the desired formation was attained at around t = 675 simulation seconds, the flocking

behavior manifested itself at around t = 800 simulation seconds, and accurate path following was practically exhibited just

after the 350th simulation second.

C. Experimental results

The objective of the experimental tests we conducted was to map a designated area in a fashion similar to that indicated in

Fig. 1(b): steer robots along a meandering path, but instead of having one, as in the case of the mission in Fig. 1(b), have a line
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Simulation results of a group of fie robots falling into formation a following the desired path. (a) t = 0. (b) t = 250. (c) t = 300. (d) t = 350. (e)
t = 480. (f) t = 550. (g) t = 650. (h) t = 720. (i) t = 1000.

formation of robots—in this case, there are just two robots (Fig. 9(a)), due to space and motion capture envelope limitations.

The robots are using two webcams each, and take successive pictures of the floor, which they subsequently combine into a

mosaic like the one shown in Fig. 9(b).

The desired shape for the group of robots is a line formation, motivated by the need to cover as much ground as possible

in each straight path segment of the meander. Thus, the line formation follows the path while keeping the robots aligned

perpendicular to the desired path. It is important that the formation is kept compact with fairly tight tolerances, otherwise there

can be gaps left between the images that neighboring robots take, compromising coverage and making mosaicking difficult.

Our control laws require position feedback which is provided by our motion capture system at a rate of 100 Hz. Figure 10
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Fig. 8. (a) Evolution of formation control among the group of robots. (b) Evolution of path following control of the group of robot’s center of mass. (c)
Evolution of flocking control.

(a) (b)

Fig. 9. (a) The two robots in the experiment; (b) A mosaic created by a robot taking pictures while executing a meandering maneuver—courtesy of Prasanna
Kannappan

shows the paths of the two robots while executing the required maneuver. The desired (oriented) path is shown in Fig. 10(i).

Each robot is color-coded in the figure, and is surrounded by a matching (in color) circle that represents its “personal space”

(of radius d0). The actual robot shape is outlined by a polygon that shows where the main body part of the robot is, and where

the booms holding its down-facing cameras are pointing.

In Fig. 10(a) the red (lighter) robot starts needs to move to the left to fall into formation with the blue (darker) robot.

Figure 10(a) shows the paths of the two robots as they maneuver into formation. After the the initial maneuvering of Fig. 10(a),

we see in Fig. 10(b) that the desired formation shape has been achieved, although the final orientation is not condusive to the

robots moving together as a rigid body. It is there that the path following and flocking controller signals take the initiative

to steer the pair south and along the first segment of the desired path as shown in Fig. 10(c). At the end of that segment,

the formation changes orientation and turns right as it follows a Beziér curve that links that first line segment to the one on

the right of the leftmost vertical segment. In Fig. 10(d) we see the group climbing north that straight line segment, before

turning sharply left to follow the leftmost straight line segment south. The formation completes this maneuver in Fig. 10(e)

and Fig. 10(f), before turning left again to follow the last portion of the desired path heading north, as shown in Figs. 10(g)

and 10(h).



14

(a) (b) (c)

(d) (e) (f)

(g) (h)

(c)(d)

(e–g) (h)

(i)

Fig. 10. Progression of the experimental trial with the two robots following a meandering curve. Thick dots mark the vehicles’ initial positions, and the
short trail behind each robot show the recent portion of the path it has traversed so far.

VII. CONCLUSION

A homogeneous group of mobile robotic sensor platforms can be effectively coordinated to perform maneuvers required for

search, coverage, and mapping missions, as if they were a single, much larger, rigid structure. Composing such a structure

out of identical modular components, has advantages related to cost and robustness, since reconfiguration through relatively

small software adjustments allows the deployment of such a group even when a few of its members become inoperable.

The particular motion control methodology outlined in this paper brings together three distinct controlled mobility behaviors,

namely, formation control, path following and flocking, into a single framework where all of them act concurrently but in
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concert with each other. The mobility behaviors integrated here draw from existing work, but in order for the confluence of

control action described above to occur, several specialized innovations had to be implemented in the constituent technologies.

The overall architecture has proven effective both in numerical simulations as well as in experimental implementation on a

small group of wheeled mobile robots.

APPENDIX A

NONSMOOTH ANALYSIS

A. Generalized directional derivatives and gradients

Take a function f : Rn × R→ Rn, and consider the vector differential equation

ẋ = f(x, t) . (14)

Take co denotes the convex hull4 and let N and Nf be any sets of zero i.e., µN = 0. The operator µ is the Lebesgue measure5

and Nf is a set in which f(x, t) is not defined; see [64].

When the right hand side of (14) is discontinuous, the solution can be expressed in the form of a differential inclusion:

ẋ(t) ∈ F (t, x(t))

F (t, x(t)) = co{lim f(xi)|xi → x, xi /∈ Nf ∪N} .
(15)

A Filippov solution of (14) on [0, t1] ⊂ R is an absolutely continuous map x : [0, t1]→ Rn that satisfies (15) for almost all

t ∈ [0, t1] [62].

Definition 2 ([65]). Let f be Lipschitz near a given point x in X ⊂ Rn, y be any other point near x, v an arbitrary vector

and t a positive scalar. The generalized directional derivative of f at x in the direction of v, denoted f◦(x, v), is defined as

f◦(x, v) = lim sup
y→x
t↓0

f(y + tv)− f(y)

t
. (16)

The generalized directional derivative expresses the rate of change of an non-smooth function at a point of non-differentiability.

The generalized gradient is the analog of the regular gradient for the case where functions are not differentiable. Let X∗ be the

dual space of X , where the open unit ball is denoted B∗ and for the norm ‖ζ‖∗ we write ‖ζ‖∗ , sup{〈ζ, v〉 : v ∈ X, ‖v‖ ≤ 1}.

The generalized gradient of f at x, denoted ∂f(x), is the subset of X∗ given by

{
ζ ∈ X∗ : f◦(x, v) ≥ 〈ζ, ξ〉 for all v in X

}
.

If we allow set Ωf to contain all point in x+ εB for which f is not differentiable, and S be any set of measure zero, then in

4The convex hull co of a set C is the set of all convex combinations of points in C:

conv(C) =
{
θ1c1 + . . .+ θkck | ci ∈ C, θi ≥ 0, i = 1, . . . , k,

k∑
i=1

θi = 1
}
.

5It is a standard way to assign a measure to a subset contained in a n-dimensional Euclidean space; if n = i, with i = 1, 2, 3, the Lebesgue measure
correspond to length, area and volume respectively.
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finite-dimensional spaces, the generalized gradient, defined over a ball εB centered at x, can take the form

∂f(x) = co
{

lim
i→∞

∇f(xi) : xi /∈ S ∪ Ωf

}
.

The generalized gradient ∂f(x) is the convex hull of all points of the form lim∇ fi, where {xi} is any sequence which

converges to x while avoiding S ∪ Ωf .

While the gradient is a vector, the generalized gradient is a convex set. A set C is convex if the line segment between any

two points in C lies in C, it means that for any c1 and c2 ∈ C and any 0 ≤ θ ≤ 1, we have θc1 + (1− θ)c2 ∈ C [66].

For the distance function, in particular, there are interesting properties that its generalized gradient enjoys. One of them is

the following [65, Theorem 2.5.6]:

Theorem 3 ([65]). Let x belong to cl(Υ). Then ∂dΥ(x) equals the convex hull of the origin and the set
{
w = lim wi

‖wi‖ :

wi⊥Υ at xi → x,wi → 0
}

.

B. Ryan’s invariance principle

Ryan’s invariance theorem allows us to conclude the weak convergence of the solutions of a differential inclusion to a set

[67]. To this end, consider the non-autonomous initial-value problem

ẋ(t) ∈ F (t, x(t)), x(t) ∈ G, x(t0) = x0, (17)

where G ⊂ RN . We need the following definitions:

Definition 3 ([67]). A solution x of the differential inclusion (17) is said to be maximal, if it does not have a proper right

extension which is also a solution of (17).

Definition 4 ([67]). Every solution of (17) can be extended to a maximal solution.

Definition 5 ([67]). A solution x ∈ AC([t0, ω;G]) of (17) is precompact if it is maximal and the closure cl(x([t0, ω))) of its

trajectory is a compact subset of G.

Definition 6 ([68]). Let x(t) be a bounded solution of (17). If xt defined by xt(0) = x(t+ 0) has no positive limit points on

the boundary of X , then x(t) is precompact.

Theorem 4 ([67]). Let V : G→ R be locallly Lipschitz. Define

u : G→ R, z → u(z) , max{V ◦(z, φ) | φ ∈ X(z)}

Suppose that U ⊂ G is non-empty and that u(z) ≤ 0 for all z ∈ U . If x is a precompact solution of (17) with trajectory

in U , then, for some constant c ∈ V (cl(U) ∩ G), x approaches the largest weakly-invariant set in Σ ∩ V −1(c), where

Σ = {z ∈ cl(U) ∩G | u(z) ≥ 0}.



17

APPENDIX B

PROOF OF THEOREM 1: CONVERGENCE TO STRAIGHT-LINE SEGMENTS

Without loss of generality take the x̂ axis of the reference frame along the reference path A (see Fig. 2)—this is a translation-

rotation of the original problem where we put the origin at P0 and ~v = P1 − P0.

Letting I be the (2× 2) identity matrix, write

~m = v̂ × (v̂ × ~P ) = (v̂ v̂ᵀ − I)~P .

Consider a weak-Lyapunov candidate function (for planar motion)

V (~P ) =
1

2
‖~P‖2 =

1

2

(
p2
x + p2

y

)
.

Taking the derivative of this function with respect to time along (9) yields

V̇ (~P ) =
wa(~P · v̂)wR(qs)

‖M(v̂ v̂ᵀ − I)~P ‖
[
M(v̂ v̂ᵀ − I)~P

]ᵀ ~P (18)

The numerator of the scalar factor is composed of windowing functions that take values between zero and one, and the

denominator merely scales the vector on the right to unitary length. Therefore the sign of the right-hand side of (18) is

determined by [
M(v̂ v̂ᵀ − I)~P

]ᵀ ~P =
[
M
(
(v̂ v̂ᵀ)~P − ~P

)]ᵀ ~P ,

(see [69]) and since v̂ = [1 0 0]ᵀ and ~P = [px py 0]ᵀ, we have (v̂ v̂ᵀ)~P − ~P = [0 − py 0]ᵀ. Recalling the expression (7) of

the rotation matrix M , we have

M
(
(v̂ v̂ᵀ)~P − ~P

)
=

[
0

−py cos θ
−py sin θ

]
,

and computing its inner product with ~P ,

[ 0 −py cos θ −py sin θ ] ·
[ px
py
0

]
= −p2

y cos θ ,

from which it follows that V̇ (~P ) ≤ 0, since |θ| < π
2 .6 Note now that as V (~P ) is radially unbounded and continuous, the set

Ωc = {(px, py) : V (~P ) ≤ c}, Ωc ⊂ D

is a compact, positively invariant set. If we define E , {(px, py) ∈ Ωc : V̇ (~P ) = 0}, and evaluate vector field (9) there, we

see that E is an invariant set. The set E is essentially the line that passes from points P0 and P1 (Fig. 2). From [70, Theorem

4.4] it follows that every trajectory starting in Ωc approaches E as t→∞.

6This follows from the construction of the vector field: points enabled by the windowing functions are assigned a vector that is initially normal to vector
~P , before rotated based on θ(qs) as illustrated in Fig. 2.
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APPENDIX C

CONVERGENCE TO BÉZIER SEGMENTS

For the convergence analysis, we show there is a diffeomorphism that can map the curved Bézier line into a straight line. In

principle, the pull-back map of this diffeomorphism can translate the straight line controller so that it is used for convergence

to Bézier curves. A diffeomorphism is merely a coordinate transformation; it does not affect the convergence properties of a

vector field. The structure of the two controllers is the same, it is merely the scaling that changes; vector ~m always points

toward the reference curve along the normal vector to the curve.

Fig. 11. Mapping to simplify the analysis for Bézier line segments

First, we start by translating and rotating the locus of the Bézier curve defined by points aP0, aP1, and aP2, in order to

simplify like the expressions of the Bézier curve and the roots of some polynomials involved in the required derivations. We

denote the initial frame as Ir and the frame of analysis as Ia, indicated in Fig. 11.

Let atan2d(·, ·) be a customized arc tangent function defined as

atan2d(y, x) =



arccos
(

x√
x2+y2

)
arcsin

(
y√

x2+y2

)
√

arctan
(
y
x

)2 , x 6= 0, y 6= 0

π/2 , x = 0, y > 0

−π/2 , x = 0, y < 0

π , y = 0, x < 0

0 , y = 0, x > 0

0 , x = 0, y = 0

.

and define ϑ = atan2d(rP2y − rP0y, rP2x − rP0x). Then a point from frame Ir translated to frame Ia as follows

r
ap =

 cosϑ sinϑ

− sinϑ cosϑ

(rp− rP0

)
.
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The diffeomorphism sending (ax, ay) to (z1, z2) according toz1

z2

 =
d0d1

d2

ax− armin x

ay − armin y

 , (19)

transforms the Bézier curve of Fig. 11 into a straight line interval P0, P2. The point armin is located at the intersection of the

normals to the Beziér at points aP0 and aP2 on the plane of motion (see Fig. 11). The other parameters involved in this (ray)

scaling are expressed (with reference again to Fig. 11) as

d2 =
√
rmin x

2 + rmin x
2

α = |atan2d(armin y, armin x)|

ζ = |atan2d(ay − armin y, ax− armin x)|

d0 =
sinα

sin ζ
d2

d =
√

(ax− armin x)2 + (ay − armin y)2 .

If we denote ts ∈ [0, 1] the admissible solution of the polynomial in parameter t

− [2(ax− arminx) aP1y − 2(ay − arminy) aP1x + aP2x(ay − arminy)]t2

+ [2(ax− arminx) aP1y − 2(ay − arminy) aP1x]t

+ arminx(ay − arminy)− arminy(ax− arminx) = 0 ,

and define aBxs , 2 ts(1− ts) aP1x + aP2xt
2
s, aBys , 2 ts(1− ts) aP1y . then we define the remaining parameter d1 as

d1 =
√

(aBxs − armin x)2 + (aBys − armin y)2

APPENDIX D

PROOF OF THEOREM 2

The equilibria of the system appear at configurations where

x1 = 0 , ∂ ϕ(x2) = 0 .

(∂ denotes generalized gradient; see Appendix A.) Thus the system is at equilibrium when all robots are either at their desired

relative configurations, or at a saddle point of ϕ. The set of the latter can be shown to consist of isolated configurations which

are unstable [60], and the attraction region of these unstable equilibria is of measure zero. For this reason, the only practically

attainable equilibrium is x1 = 0, x2 = c. Our weak-Lyapunov function candidate is defined as

V (x1, x2) =
1

2
‖x1‖22 + ϕ(x2)



20

which is positive definite because ϕ(x2) is positive definite with respect to x2.7 At configurations where the minimum relative

distance function d(x2) is nondifferentiable, ẋ belongs to a Filippov set [64]

ẋ ∈ F (x) . (20)

Specifically, first compute

∂ϕ(x2) =
1

β2

(
κβ(γd)

κ−1∇(γd)− γκd
(∂β
∂d

)
λ

)
, λ ∈ ∂d ,

and then write the differential inclusion as ẋ1

ẋ2

 ∈
−∂ϕ(x2)− x1

x1

 = F (x) .

Once you express the generalized gradient of V in the form

∂V (x) =

 x1

∂ϕ(x2)


then you can find the generalized derivative of V along a vector in F (x) as [65, Proposition 2.1.2]

V ◦(x, ξ) = max{ pᵀ · ξ, p ∈ ∂V (x), ξ ∈ F (x)} .

Expanding the generalized directional derivative gives a long expression

V ◦(x, ζ) = max

{
− xT1
β2

(
κβ(γd)

κ−1∇(γd)
T − γκd

(∂β
∂d

)
ζ

)
− ‖x1‖22

+
xT1
β2

(
κβ(γd)

κ−1∇(γd)
T − γκd

(∂β
∂d

)
ξ

)∣∣∣ ζ, ξ ∈ ∂d}

which eventually simplifies to

V ◦(x, ζ) = max

{
− ‖x1‖22 +

(
γκd
β2

(∂β
∂d

)
‖x1‖ ‖ζ − ξ‖

)∣∣∣ ζ, ξ ∈ ∂d} .

The maximum value for the norm ‖ζ − ξ‖ is achieved when the unit vectors ζ and ξ, which are members of ∂d, are along

different, orthogonal coordinate directions. If Kζ is an upper bound on ∂β
∂d [60], it then follows that

V ◦(x, ζ) ≤ −‖x1‖22 +
√

2
Kζ

β
‖x1‖ϕ . (21)

Now depending on whether ϕ is differentiable at the given configuration x2, we consider two cases.

a) Case I: suppose ϕ is differentiable at x2; then ζ = ξ, V ◦(x, ζ) = V̇ (x), and consequently

V̇ (x1, x2) = −‖x1‖2 ≤ 0 .

7ϕ might depend on a subset of the components of x2 but because of the N − 1 connectivity (graph) constrains between the agents, fixing the specific
componets, determines all the elements in x2.
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Since V (x1, x2) is radially unbounded, the set

Ω = {(x1, x2) ∈ RnN(N−1)|V (x1, x2) ≤ V
(
x1(0), x2(0)

)
}

is a positive invariant set that is closed by continuity and bounded due to radial unboundedness of V . Therefore, solutions that

start in Ω cannot escape Ω, which implies that robots cannot collide since collision configurations send V →∞.

Let c be a constant vector and define E ⊂ Ω as follows:

E = {(x1, x2) ∈ RnN(N−1)| V̇ (x1, x2) = 0} ⇐⇒ E = {(x1, x2) ∈ RnN(N−1)| x1 = 0, x2 = c} ,

The dynamics on E is

0 = ẋ1 = −∇(ϕ(c))− x1

and the biggest invariant set M ⊂ E is thus (x1, x2) = (0, c). The trivial solution is the only one which can stay in E.

Invoking LaSalle’s principle [70] we conclude that every solution starting in Ω will approach M as t → ∞, and by [70,

Corollary 4.1] we see that trajectories asymptotically converge to (0, c).

b) Case II: suppose now that ϕ is nondifferentiable at x2, i.e., ζ 6= ξ. Then, there are regions of the state space where

V ◦(x, ζ) is positive (Fig. 12). However, the solutions for (11) still have to be bounded: if they were not, then, for every constant

C ≥ 0, there would be some t ≥ 0 such that V (x(t)) > C. There would be initial conditions x(0) where V ◦
(
x(0), ζ

)
≥ 0,

implying

‖x1‖ <
ϕ

β
‖ξ − ζ‖Kζ . (22)

This happens in the region on the upper left hand side in both parts of Fig. 12. If x were to grow without bound, then its

trajectory x(t) would eventually hit the boundary of the workspace, the latter marked by those points where ϕ blows up. It is

ensured [60] that −∇ϕ is unbounded, there, pointing in the direction which x2 decreases. Thus x2 cannot grow unbounded. If

x2 is to remain bounded, then the only option left for V (x) to increase is if x1 increases; but that contradicts (22). Therefore

neither x1 nor x2 can grow without bound. Since x(t) is a bounded solution, and it has no positive limit point on the boundary

of the workspace [60], then x(t) must be precompact [68, Lemma 4.8].

Fig. 12. Sketch for V ◦(x, ζ). V ◦(x, ζ) has three important regions, V ◦(x, ζ) ≥ 0, V ◦(x, ζ) ≤ 0 and V ◦(x, ζ) = 0.

In this case, define (see [67, Theorem 2.11])

ν : G→ R , x→ ν(x) , max{V ◦(x, ζ) | ζ ∈ F (x)} ≤ −‖x1‖2 +
√

2
Kζ

β
‖x1‖ϕ .
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Letting µ be the navigation function constant parameter, it follows that is a nonempty set U ⊂ Q where ν(x) ≤ 0. Such a set

can be defined as

U =

{
‖x1‖ ≥

ϕ

log(µ)
‖ξ − ζ‖Kζ

}
. (23)

To complete this proof, let cl denote closure and define

Σ , {x ∈ cl(U) ∩Q | ν(x) ≥ 0} .

Then invoke Ryan’s integral invariance principle—Theorem 4, quoted in Appendix A—to conclude that x(t) converges to

largest weakly-invariant set within

Σ ∩ V −1(c) .

It can actually be shown that once on Σ ∩ V −1(c), the trajectories of (11) remain tangent to Σ, and the vector field is non

vanishing anywhere except for (x1, x2) = (0, c), that is, {x|x1 = 0, ϕ(c) = 0}. What this implies is that the largest weakly

invariant set in Σ ∩ V −1(c) is (x1, x2) = (0, c).

The Filippov set (20) along Σ \ {x|x1 = 0, ϕ(c) = 0}, see Fig. 13, is given by

F (x) =

− 1
β2

(
κβ(γd)

κ−1∇(γd)− γκd
(
∂β
∂d

)
λ

)
− x1

x1

 ,

and we can verify that 0 /∈ F (x), so there can be no equilibrium anywhere but at (x1, x2) = (0, c). To see that, note that

since λ ∈ ∂d(‖x2‖), and the latter is the convex hull of some unit vectors ei, the former can be written as λ = Σiaiei where

Σiai = 1; thus λ cannot be zero. On the other hand, the only place where both x1 and γd are zero, and therefore F (x) = 0,

is only at x1 = ϕ(c) = 0, by construction of ϕ(x2). For ϕ(x2) to vanish one needs either x2 = 0, or ∂β
∂d = 0, the latter

implying that agents are so far away from each other that there is no interaction between them; this happens when d → ∞,

as (6) suggests.

Fig. 13. Filippov set along Σ \ {x|x1 = 0, ϕ(c) = 0}

Since F (x) contains a tangent direction to the set Σ \ {x|x1 = 0, ϕ(c) = 0}, the set Σ \ {x|x1 = 0, ϕ(c) = 0} cannot

be weakly-invariant; rather, there is a solution that escapes any bounded proper subset of Σ \ {x|x1 = 0, ϕ(c) = 0}. Let
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dΣ(x) = inf{‖x− σ‖ | σ ∈ Σ}. The tangent cone TΣ to cl(Σ) at a point x is then

TΣ(x) = {ζ : d◦(x, ζ) = 0} .

Algebraically, the fact that some v ∈ F (x) belongs to this tangent cone can be expressed as

∃ v ∈ F (x) : max
{
〈ζ, v〉 | ζ ∈ dΣ(x)

}
= 0 ⇐⇒ ∃ v ∈ F (x) | 〈ζ, v〉 ≤ 0 . (24)

Note that computing dΣ(x) requires knowledge of the point σ in the closure of Σ that is closest to x, which is in general

unknown. Theorem 3 provides an alternative expression for the normal of Σ, which we will be using presently.

Note however, that the direction of inequality (24) is determined by direction of ζ and v, and not their magnitude. It will

prove convenient to scale both factors in 〈ζ, v〉 by ‖x1‖. Then for an arbitrary element v ∈ F (x), the first factor would appear

as

v

‖x1‖
=

− 1
β‖x1‖

(
2κ(γd)

κ−1(x2 − c)− β√
2
‖x1‖

(∑
i aiξi

))
− x1

‖x1‖

x1

‖x1‖

 .

On the other hand, since

Σ =

{
x = (x1, x2) : Ψ(x) , ‖x1‖2 −

2

β2
K2
ζϕ(x2)2 = 0

}
,

then for x ∈ Σ, by Theorem 3 the scaled second factor would be of the form

ζ

‖x1‖
=
∂Ψ(x)

‖x1‖
=

 2 x1

‖x1‖

−2‖x1‖
βKζ

(∑
i aiξi

)
.


Therefore, vector ζ in (24), being in ∂dΣ(x) will be parallel to ∂Ψ(x)

‖x1‖ . The scaled inner product of (24) is now expanded as〈
ζ

‖x1‖
,

v

‖x1‖

〉
= −

4κ(γκ−1
d )

β‖x1‖2
xᵀ1 · (x2 − c)− 2

Kξβ
xᵀ1 ·

(∑
i

aiξi

)
+

√
2

‖x1‖
xᵀ1 ·

(∑
i

aiξi

)
− 2 (25)

Note now that we just need a single element v in F (x) to guarantee (24). recall that F (x) is a subset of TΣ(x) and write

When (x1, x2) → (0, c) =⇒ γd → 0 and with an appropriately large exponent κ (γκ−1 still dominates over κ) we can

make the first two terms of (25) arbitrarily small. Thus〈
ζ

‖x1‖
,

v

‖x1‖

〉
→
√

2

‖x1‖
xᵀ1 ·

(∑
i

aiξi

)
− 2

from below as (x1, x2)→ (0, c). For that limit we can write

√
2

‖x1‖
xᵀ1 ·

(∑
i

aiξi

)
− 2 ≤

√
2− 2 < 0

because ξi is a unit vector and
∑
i ai = 1. Thus, not only do trajectories exists that once they hit Σ∩ V −1(c) stay in that set,

but these trajectories will have to evolve until they reach (x1, x2) → (0, c). By continuity of the right hand side of (25) and

Ψ, the largest invariant set in Σ, where Ψ = 0 can only be where x1 = 0, ϕ(c) = 0.
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