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Abstract

This paper discusses the interplay between networks and control systems. As we
gain more understanding about the structure and dynamics of physical networks,
their effects on the performance of closed-loop control systems, as well as the ability
to control such networks, provide fertile areas of research. The paper reviews such
research with special emphasis on the connectivity and delays in the information
transfer across networks.
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1 Introduction

Networks are a powerful metaphor for understanding the organization of sys-
tems from disciplines as diverse as biology, computer science, physics, and
social science. In control systems, communication networks are becoming in-
creasingly pervasive, forcing control engineers to expand their application do-
main by incorporating the communication infrastructure into their designs,
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and by considering the impact of link capacity, latency, and packet loss on con-
trol systems Zhang et al. (2001); Walsh et al. (2002); Verriest and Egerstedt
(2002). Insight is sought to better understand how systems can be controlled
across networks, how to design distributed, multi-agent control systems, or to
predict when the network’s structure gives rise to undesirable network behav-
iors such as congestion.

Fig. 1. Controlling across a network. Control signals, measurements of the plant
state, and external inputs travel from their source to their destination through the
links of a communication network.

Consider for example the system depicted in Figure 1, where a plant is being
controlled across a network shared by various systems, computers, and com-
munication devices. From a control perspective, the communication links of
Figure 1 are a means of information exchange, which is generally assumed to
be instantaneous. The impact of the network’s connectivity on the closed-loop
system performance is discussed in Jadbabaie et al. (2002); Moreau (2005);
Ren and Beard (2005); Olfati-Saber and Murray (2004); Tanner et al. (2003b).
Note that this paper focuses on controlling systems across a network, rather
than controlling a network (such as congestion or access control). As such, we
do not review the vast recent work in Kelly (2001) and elaborated upon in
Srikant (2004); Tarbouriech et al. (2004).

The need for new paradigms for control design is evident in large-scale inter-
connected multi-agent systems. In this class of systems, signals need to flow
quickly and efficiently, but interconnected components may not be able to store
and manipulate the complete state of the system. While complexity barriers
make the design of controllers for high-dimensional systems extremely difficult,
the ability to reason about global network properties based on locally available
information enables the design of decentralized control laws. When scaled to
networked systems with hundreds of thousands of components, decentralized
control laws allow us to deal with unrealistic computation, communication,
and storage requirements.



In control design, a network model such as a graph is used to enable con-
trol, while, in network theory, models of network dynamics and growth are
constructed to simulate physical or engineering processes. Despite the use of
different analysis tools, network properties such as connectivity, efficiency, and
robustness are common to both control and network theory. A question that
arises is whether pervasive ideas in network theory can suggest new control
design directions.

Network theory provides tools that characterize the growth and topology of
distributed networks Faloutsos et al. (1999) in relation to their navigability,
congestion, clustering, and robustness to failure Bollobds (1985). For some
systems, such as social networks and the World Wide Web, not only do short
paths exist between every pair of nodes, but such paths can be found un-
der certain conditions using only local information Milgram (1967); Kleinberg
(2000); Clauset and Moore (2003). In this article we review analysis tools used
to study complex networks Newman (2003); Dorogovtsev and Mendes (2003);
Watts and Strogatz (1998); Albert and Barabasi (2002); Kleinberg (1999), and
discuss the possibility of using them to facilitate control design.

This article presents an overview of problems at the intersection of control
theory and complex network research. After a brief introduction of the rele-
vant aspects of complex network theory and its methodological differences and
similarities to control engineering, we discuss the potential benefits of knowl-
edge transfer between the two fields. Within a brief review of recent results in
cooperative control, we show how topological network properties affect control
performance and that:

(1) Increased network connectivity does not necessarily yield robustly con-
nected networks with respect to node failures;

(2) The structure of sensor networks and their algebraic graph properties
determine the performance of distributed estimation;

(3) Properly interleaving communication and control can protect against the
effect of delayed information.

2 Network-theoretic Issues

By considering the network as a communication service, we identify three
properties that critically impact the flow of information:

(1) Connectedness, which expresses the existence of a path between the in-
formation transmitter and the information receiver.

(2) Navigability, quantified by the difficulty of finding a connecting path.
Typically, this difficulty depends on whether the path is predetermined,



or whether it is discovered in an ad hoc fashion.

(3) Efficiency, as represented by the latency of each utilized path. This la-
tency, usually a function of the number of hops and the individual link
latencies, must be sufficiently small so that bounds on the end-to-end
communication delays are respected.

All three properties affect the robustness of a network with respect to node
or link failures, as well as the reliability of network protocols with respect to
corruption.

2.1 Connectedness

Connectedness is mathematically identified with notion of percolation Bol-
lobéds (1985). Percolation theory characterizes how connected clusters in a
random graph aggregate as a function of the edge probability. Given this fixed
probability p, percolation can be illustrated as a wildfire, initiated at a source
node that spreads across an edge connected to the burning node with probabil-
ity p. By locating the nodes reached by the process, it is possible to determine
whether a path connecting a given pair of nodes exists Bollobds (1985).

In network theory, percolation is typically analyzed in two ways. The con-
structive approach determines the number of random edges that must be suc-
cessively added to a collection of disconnected nodes before the vast majority
of nodes, termed the giant component, are connected. In the destructive ap-
proach, edges or nodes are successively removed until the giant component
vanishes and most pairs of nodes are no longer connected. Surprisingly, the
appearance and disappearance of the giant component can be quite sudden,
and is often a genuine phase transition Stanley (1983).

One feature of many real world networks is a power-law degree distribution,
in which the probability of a randomly chosen node having k neighbors scales
as P(k) oc k=%, where « is the scaling exponent Newman (2003). The ubiquity
of the power-law degree distribution motivates the study of graph models that
exhibit this feature, but whose topological structure is otherwise random. A
network with many redundant paths between all pairs of nodes is obviously
very robust to node and edge failures. However, if a minimal fraction of nodes
pe is removed, the giant component vanishes. This disappearance shatters the
network.

Consider a random graph with a power-law degree distribution where a node
fail or is removed with probability p. The after-failure degree distribution P’(k)



is given by N
P = 3 Pl ()0 - )
ko=k

where kg is the degree of a node before failure, k is its degree after failure,
and p is the probability of failure. When the scaling exponent « for P(kg)
is larger than 3, (1) is used in Cohen et al. (2000) to show that the critical
threshold of p for maintaining the giant component of the network is p. ~ 0.99.
In other words, more than 99% of the nodes must fail or be removed before
the network shatters. Hence, large random structures are robust to random
failures. For finite-size networks, the exact value of p,. is related to the number
of nodes n, and approaches 1 as the number of nodes n increases. A recent
study shows, however, that the value of p. can be significantly smaller than
1 for a specific subclass of these graphs Link et al. (2005). In such networks,
removing nodes according to the probability p. << 1, shatters the network.
Therefore, random graphs with a power-law degree distribution exhibit various
degrees of robustness to random failures.

Unfortunately, the random removal of nodes is not the only kind of failure
that networks can suffer. For instance, when nodes in a random graph are
preferentially removed according to a specified rule, for example removing the
10% of nodes with the highest degree, the network quickly shatters Gallos
et al. (2005), Guillaume et al. (2004). More subtle forms of failure, in which
some fraction of nodes disobey the network communication protocols, possibly
in a malicious way, are considered in the context of peer-to-peer networks
Engle and Khan (2006). These Byzantine faults have been extensively studied,
and continue to drive much of the research in developing secure distributed
communication protocols Pease et al. (1980), Ben-Or et al. (1993).

2.2 Nawvigability

In a connected network, several paths may link a transmitter to a receiver.
The navigability of a network is determined by how easily a connecting path
can be found, as well as by how many links or edges such a path contains. The
navigability problem may be solved in one of two ways:

(1) using central authorities, in which the communication path between two
nodes is determined by an external source then communicated to the
network’s routers, and

(2) using decentralized techniques, in which routing decisions are made in-
dependently by network routers, possibly in an ad hoc fashion.

For a static network, namely one for which the number of nodes and the
topology are fixed, a central authority is easy to construct. A decentralized



navigation approach however, is called for when routers are added or removed
from the network. Current standards for routing on Internet-like networks,
such as the Internet protocol (IP), the open shortest path first (OSPF) Force
(7777a) protocol, and the border gateway protocol (BGP) Force (7777b), are
a mixture of both centralized and decentralized techniques. Each protocol
involves an initial consensus phase among the nodes of the network that allows
local connectivity information to propagate, until each router constructs its
own map of the network for routing packets in the future. After the consensus
phase is completed, the routers’ maps remain fixed until the local topology
changes sufficiently to trigger a new consensus phase.

Fig. 2. A small-world graph, after Kleinberg Kleinberg (1999). The nodes inside the
shaded diamonds have the same Manhattan distance to the node in the center. This
simple lattice network is conceptually related to the small-world model of Watts and
Strogatz (1998). Nodes in area 1 are bi-directionally connected to the center node,
which is also uni-directionally connected to one node in area 3.

While standard protocols, such as IP, OSFP, and BGP, perform well for net-
works that change only occasionally, dynamic networks pose a more chal-
lenging problem, since the overhead of reaching consensus must be balanced
against the efficiency of the network as a communication medium. An alterna-
tive approach is to use decentralized or ad hoc routing strategies, where rout-
ing decisions are made on the fly based on the relative position of the current
router, the packet’s destination, and possibly the current local connectivity.
Navigability of the resulting network requires that short paths between source
and destination nodes be easily found in a decentralized way. A network is
efficiently navigable if the average length of a path T' grows sublinearly with
the number of nodes in the network, and preferably as a polylogarithm such
as O(log?n). Theoretical work in Clauset and Moore (2003) indicates that
such decentralized protocols can be developed under reasonable assumptions.
A brief description of these results, along with their implications for control
systems follows.

Consider the network of Figure 2, which is a lattice with nodes having bidi-
rectional local connections to their nearest neighbors, as well as a single, uni-
directional nonlocal connection to specified node. The distance between nodes



u and v is evaluated using the Manhattan metric or [; metric denoted by
d(u,v), and the dimensionality of the lattice is denoted by D (in this ex-
ample, D = 2). The diamonds in Figure 2 define the set of nodes at a fixed
distance from the node at the center. If each node (router) forwards packets to
its neighbor with the smallest remaining distance to the packet’s destination,
then this decentralized routing protocol, for this particular topology, guaran-
tees packet delivery in an average of O(log®n) steps Kleinberg (1999). The
receiving neighbor is found as follows: first we choose a distance ¢ from the
distribution P(¢) ~ £=P. The distance ell is the distance from the destination
node to all potential neighbors of the sending node. Then, out of all the nodes
at distance ell from the destination node, we choose uniformly at random a
receiving node.

To verify the average number of steps required for delivery, we assume that a
packet travels in phases and that a phase ends when the remaining distance
is halved. Thus, there are at most log, n phases in a network of n nodes. If
the distribution of lengths for the nonlocal links is a power law with exponent
D, the packet visits a router with a non-local neighbor that is roughly half as
distant from the destination after O(logn) trials. Thus, the expected routing
time is O(log®n).

The algorithm presented in Clauset and Moore (2003) constructs the Kleinberg-
routable network through a dynamic, decentralized rewiring process. The al-
gorithm assumes that local connections are fixed. Given a source-destination
pair (z,y), a packet is routed according to the current topology, and a time
threshold ¢ is chosen uniformly from the interval [1, d(z, y)]. If the routing time
of the packet T, exceeds the threshold ¢ at a node z that is not the destina-
tion, x “rewires” its non-local link so that it terminates at z. In Clauset and
Moore (2003), it is empirically shown that this rewiring algorithm produces
the power-law link-length distribution P(¢) ~ £=P. This then guarantees fast
ad-hoc routing over the entire network 7' = O(log®n), after a modest number
of rewiring actions R ~ n'77.

With the availability of global positioning (GPS) systems that provide simple
distance measurements, these results may be adapted as a routing protocol
for packets on a wireless array of devices. In such cases, local links are either
physical connections or low-power broadcast transmissions, and non-local links
are occasional high-power broadcast transmissions or unidirectional long-range
transmissions.

The development of dynamic and decentralized routing algorithms that guar-
antee efficient navigability under a variety of assumptions is an active topic
of research in network theory. In the ad-hoc routing algorithm presented
in Jimgek and Jensen (2005), packets are routed under assumptions about
the connectivity of nodes with similar properties (homophily), and the as-



sumption that higher degree nodes are likely to be closer to the target. In the
model used in Simgek and Jensen (2005), it is assumed that each node has
a set of attributes, and that nodes are linked to others that are similar to
themselves. Thus, a homophily-sensitive algorithm adjusts the routing based
on the assumption that a node close to the destination node in their attribute
space, is in fact geographically closer to the destination.

2.3 Efficiency

In network theory, efficiency is quantified by the cost of a network property
as a function of the number of nodes n in this network. Thus in this con-
text, efficiency is related to that of scalability, and the bounds on the related
cost are expressed using asymptotic O-notation. Generally, for a property to
have a small cost, it should scale sub-linearly, and ideally as a poly-logarithm
O(log® n). For example, the decentralized routing algorithm Kleinberg (1999)
described in the previous section, guarantees that the average number of inter-
mediate nodes that a message passes through is O(log®n). On the other hand,
if a property needs to be true for the largest possible portion of the network,
then it must scale as a constant fraction of the nodes O(1), and ideally to
be 1 — o(1). For connectedness, the question of efficiency boils down to de-
termining what fraction of the network remains connected, after a fraction of
the nodes is removed. In this context, Gallos et al. (2005) shows that random
networks with a power-law degree distribution, are increasingly more efficient
at guaranteeing connectedness under random failures as the network grows.

These definitions of efficiency are highly applicable to random graph models
used in network theory. Efficiency, however, is being understood quite differ-
ently in control. Depending on optimality criteria in a given control appli-
cation, efficiency may be related to the input signal strength, or the output
rise and settling times. Bridging this gap, and producing network theoretic
results for control performance specifications may be a fertile area of cross-
collaboration between the two fields.

3 The Control Designer’s Point of View

Networked control system (NCS) applications such as teleoperation and robot
formation control, require measurement and control signals to travel across
communication networks. Even when the distance traveled is short (as in the
case of a modern car or a smart house), a general purpose communication
network introduces new issues into the feedback loop, such as time-varying
delays, and the potential loss of information. While some communication ap-



plications may suffer from the same limitations, a feedback control system is
especially vulnerable, not only to the unavailability of sensory information and
control signals, but also to their timing. In particular, in a NCS, the issues
of connectedness, navigability, and efficiency of message propagation manifest
themselves as described in the following sections.

3.1 Connectivity, dropped packets, and lost links

. From the perspective of control design for networked control systems, con-
nectedness (or connectivity) expresses the ability of two systems to commu-
nicate information and actuation signals over the network connecting them.
Connectivity is therefore related to the existence of a network path from any
node u to any other node v. In recent studies linking the dynamics of the net-
worked systems to the connectivity properties of the network, certain graph
algebraic properties of the latter seem to be pervasive. In Jadbabaie et al.
(2002), the dynamics of the networked system is formally related to the Lapla-
cian matrix of the graph representing the network of interconnections between
the system components.The researchers in Jadbabaie et al. (2002) established
algebraic conditions for the matrices related to the graph, to guarantee that all
interconnected subsystems asymptotically reach consensus over a quantity of
interest. The consensus is reached by when each subsystem replaces the value
of its quantity of interest by the average value of its network’s neighbors. For
this consensus update algorithm to to be asymptotically stable, i.e. for all in-
dividual quantities of interest to asymptotically converge to the same value,
the communication network should be connected. In algebraic graph theoretic
terms, connectivity is quantified by means of the second smallest Laplacian
eigenvalue, also known as the algebraic connectivity of the graph. In Tanner
et al. (2003a) it was shown that if connectivity were permanently lost, sta-
bility can no longer be guaranteed. If connectivity is however regained across
a sequence of compact intervals [t;,t;41), reference Jadbabaie et al. (2002)
demonstrates that consensus stability may still be reached.

A network may not have a constant topology when communication links
are dynamically established and lost Tanner et al. (2003b),Jadbabaie et al.
(2002),0lfati-Saber and Murray (2004). Physical ad-hoc networks are typi-
cally modeled by nearest-neighbor type graphs, where nodes are distributed
uniformly at random over a certain area, and are assumed connected if nodes
are within a certain distance r from each other. Thus nodes u, and v, are con-
nected if |u — v| < rg, where |u — v| denotes the Euclidean distance between
them. The question of whether such an ad-hoc network is connected or not
does not have a deterministic answer, especially when the number of nodes
grows very large. Results in this area are typically asymptotic and probabilis-
tic in nature. Whether the network is connected is thus given with a certain



probability, which usually relates to the minimum degree of the nodes in the
network, as exemplified in Xue and Kumar (2004), or to the minimum com-
munication range ry Bettstetter (2002), Santi and Blough (2003). In Xue and
Kumar (2004) it is shown that if each node is connected to less than 0.074 logn
other nodes, the network is disconnected with probability one, as the total
number of nodes n increases. If, on the other hand, each node has more than
5.17741log n neighbors, the network is asymptotically connected with proba-
bility one when n tends to infinity. In Bettstetter (2002) it is shown that if
the network is required to be connected with probability p, the transmission

—In(1—p'/m)

- , where p is the node density in nodes
p

range 1o must satisfy ro >

per unit area.

In networks where information flows in a unidirectional manner, directed
graphs are used to capture the network topology. For directed graphs we dif-
ferentiate between strong and weak connectivity, with the former property
guaranteeing that a message originating from one node can reach any other
node, following paths in the graph that respect the orientation of all edges. The
existence of a (directed) spanning tree over the union of the graphs that de-
scribe the evolution of the network over time Ren and Beard (2005) however,
may be sufficient to ensure asymptotic consensus in the network, provided
that the graph switching frequency is bounded, on average. This condition
is definitely weaker than strong connectivity, though still stronger than weak
connectivity (expressed again by the second smallest eigenvalue) for which
edge orientation is irrelevant. The gap between these conditions seems to be
the missing piece in a uniform characterization of stability in terms of network
topology. Of course, another approach for ensuring stability is to restrict the
dynamics, as described in Moreau (2005), Angeli and Bliman (2005).

In most practical models connectivity is binary, that is, two nodes are either
connected at a particular time instant, or disconnected. In the former case the
second smallest eigenvalue is positive, in the latter it is zero. In order to capture
the quality of a communication link, or the cost of broadcasting information
from one node to another, weighted graph models may be used. The edge
weights quantify the energy required for a message to be sent over an edge
(u,v), usually expressed as |u—v|¢, where e > 2 is a constant. Weighted graphs
are not as well understood as their unweighed counterparts, but connectivity
analysis using the second smallest eigenvalue of the (weighted) Laplacian can
be extended to this situation as well.

The effect of network topology and connectivity on the performance of coop-
erative localization algorithms is pointed out in Hidaka et al. (2005), in which
a genetic algorithm is used. The genetic algorithm selects network topologies
that result in smaller traces of the covariance matrix for the extended Kalman
filter (EKF) constructed for the whole networked system. The analysis in Hi-
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daka et al. (2005) suggests that increased connectivity may be beneficial for lo-
calization accuracy. Intuitively, “the more sensor links between robotic nodes,
the better.” Define the sensor graph as one in which nodes are mapped to
mobile robots and environment landmarks, and where directed edges denote
relative position measurements. While a genetic algorithm favors complete
sensor graphs, other approaches may suggest “cheaper” solutions. In the spe-
cial case where a landmark’s location is accurately known, the expression of
the upper right submatrix F,,__ in the steady-state value for the EKF covari-
ance matrix Hidaka et al. (2005),Mourikis and Roumeliotis (2005) contains the
eigenvalues of a minor of the sensor graph Laplacian weighted by the variances
of the relative distance measurements. Specifically,

1 /1 1Nz
Py, = QY*Udiag {2 +(3+5) } Uy, e

where @), is a diagonal matrix with entries that depends on the characteristics
of the mobile sensors and their speed, U, is the matrix of eigenvectors, and \;
is the 7th eigenvalue of the matrix

C=Q)*HI'R,'H,QL”, (3)

in which R, is a diagonal matrix of the noise covariance, and H, relates to the
incidence matrix of the sensor graph. Suppose for example that the location of
a single landmark is accurately known and three robots can measure distances
and bearings to each other or the landmark. In this case, H, contains a block
of zeros that eliminates the graph node corresponding to the landmark, and
HIR;'H, turns out to be a minor of a weighted Laplacian.

A problem that arises in this cases how to select a new observation (add a new
edge in the graph) that can most improve the accuracy of position estimates.
In view of (2) and (3), and using eigenvalue interlacing theorems, it can be
shown that the trace of P, is related to the nonzero eigenvalues of the
(weighted) sensor graph Laplacian L, as follows

C(n—=1)* n—1
\/trace{L,} ; \/_ VAL

Thus, forming a complete sensing graph minimizes the localization error, but
comes at a cost of obtaining and processing the maximum number of obser-
vations.

Network connectivity appears to be a catalyst since nothing useful can hap-
pen without it. Messages cannot reach their destination, consensus among
the network nodes over a certain quantity cannot be achieved using only
nearest-neighbor communicated information, and estimation errors may grow
unbounded. Nonetheless, in Byrne et al. (2005) it is shown that high algebraic
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connectivity does not necessarily imply high robustness in terms of maintain-
ing connectedness in the presense of randomly failing links. In other words,
while the network connectivity is certainly improved as the second smallest
eigenvalue increases thus decreasing the diameter of the network, the network
remains vulnerable to targeted attacks at edges. In particular, there may be
few nodes or links that guarantee the connectivity of the newtork, and the
removal of as few as one or two such nodes may shatter the network.

Fig. 3. Random ring lattice graph G = C(n, k) with n = 20, k = 4, and different
edge probabilities. For p = 0 a node is only connected to its two closest neighbors
along the perimeter. As the probability increases, a larger number of these links are
rewired and connect the node to other remote nodes.

Consider a network represented by a graph G. The algebraic connectivity of
G, X2(G), satisfies (Fiedler’s inequality Fiedler (1973))

Xa(G) < v(G) < n(G), (4)
where v(G) measures the nodes connectivity, and 7(G) denotes the edges
connectivity. While increasing the algebraic connectivity increases the lower
bound on node-connectivity v(G), it was shown in Byrne et al. (2005), that for
circular and mesh lattice graphs, an increase in algebraic connectivity often
corresponds to a decrease in node-connectivity v(G) and edge-connectivity

n(G).

In fact, let us consider first the small-world network introduced in Watts and
Strogatz (1998). This network is based on an n-nodes one-dimensional lattice
on a ring where each node is connected to its k nearest neighbors. In Watts
and Strogatz (1998) it is shown that the random rewiring of nodes according
to a small probability p greatly reduces the characteristic path length, and
results in a small-world network. Figure 3 shows the effects of random rewiring
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for a network with 20 nodes, and k = 4. In Olfati-Saber (2005), the author
shows that this random rewiring also results in a large increase in algebraic
connectivity for ring lattices, and the author then concludes that the network
becomes more robust to node and link failures.

T T
Algebraic Connectivity
Node Connectivity
Edge Connectivity
Mean Path Length

* <4 0<

AC( p=0.9)/AC( p=0) = 29.493058

a5 * *
* * * * *
2 v v o o o o o o v
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ol : 9 9 4 ¢ ¢ ‘ ‘
0 0.1 02 03 0.4 05 06 0.7 08 09

Probability p

Fig. 4. Results for a ring lattice random graph, N = 100, k£ = 4. Although algebraic
connectivity increases, node and edge connectivity decreases monotonically with
mean path length. AC' stands for algebraic connectivity and the ratio appearing
on the Figure expresses how much algebraic connectivity increases in the range of
probabilities tested.

For certain types of networks however, large increases in algebraic connectiv-
ity often correspond to a decrease in node-connectivity and edge-connectivity.
For example, let us start with a ring lattice of n = 100 nodes, and k = 4
edges per node (Figure 4), then rewire each edge at random with a probabil-
ity p. As p increases from 0 to 0.9, the graph algebraic connectivity increases
sharply, and the mean path length of the network decreases. However, the
node-connectivity and edge-connectivity of the network decrease as the prob-
ability p increases. Similar results were obtained for a regular mesh lattice of
100 nodes (Figure 5), with each node having a communication radius R = 1.
As p becomes larger, the edges connecting nearest neighbors are increasingly
rewired, and link nodes in remote locations are directly connected. As shown
here however, this does not necessarily improve the node or edge connectivi-
ties.

In a system where nodes are redundant or dispensable, improving algebraic
connectivity does indeed improve the overall robustness of the network in
terms of link failures, by reducing the characteristic path length. In systems
where each node is critical however, node-connectivity and edge-connectivity
are the truly important parameters for assessing robustness of connectivity
with respect to randomly failing links. Evaluating node-connectivity or edge-
connectivity for large networks is unfortunately much more costly than com-
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Fig. 5. Results for a mesh lattice graph, N = 100, R = 1. Although algebraic
connectivity increases, node and edge connectivity decreases monotonically with
mean path length.

puting the graph’s algebraic connectivity.

3.2 Nauvigability: path lengths and hops

When designing controllers for a networked system, it is typically assumed
that paths exist between arbitrary node pairs of the communication network.
The problem of determining these paths is usually ignored, or assumed solved
by the routers that direct the flow of information through the network.

Standard routing protocols make use of assumptions that may not be generally
favorable to control system design. For instance, Ethernet is a broadcast pro-
tocol, and thus only a limited number of participants can communicate over
a given portion of a network. The open shortest path first (OSPF), as well
as the border gateway (BGP) protocols, are susceptible to the propagation of
corrupt or maliciously faulty information Nordstrom and Dovrolis (2004).

To provide the most basic packet delivery service, such as on the Internet at
the IP-level, protocols like Ethernet, OSPF and BGP, combined with the com-
modity network hardware do well enough when most nodes are connected, the
network is navigable, paths are relatively short, and service is fairly reliable.
Such is the case on the Internet, where the average hop-count at the IP-level
is at most a few dozens, despite there being potentially billions of routable IP
addresses. Notably however, deviations from ideal conditions result in several
serious interruptions in global Internet service. For applications such as sensor
networks or ad-hoc networks among mobile devices (such as cell phones), all
of these issues are active areas of research in both the control systems and
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network theory communities.

Even if determining paths from source to destination is not an issue, the
lengths of such paths matter, especially when information is processed as it
propagates through the nodes of the network. One such example is the case
of leader-follower control architectures. When the leading vehicle in a platoon
suddenly decelerates, the more vehicles are between a follower and the leader,
the faster this follower must decelerate. Depending on the size of the platoon
and the dynamics of the vehicles, there comes a point where actuators reach
their physical limits, control signals saturate, and collisions between vehicles
occur.

String stability Swaroop (2002) is a theoretical framework that addresses this
issue by treating propagating destabilizing information as a disturbance. By
appropriate control design, these disturbance signals are attenuated as they
propagate through the string of interconnected systems, and stability is pre-
served. Mesh stability Pant et al. (2002) generalizes this idea to multiple (phys-
ical) dimensions.

When the propagated information is not regulated in terms of its effect on the
receiving nodes, it is shown in Tanner et al. (2004) that the network distance
of a follower from the source of the signals (the leader), has an adverse effect
on the ability of the follower to track its desired position in the formation.
In such cases, routing the information signals through shorter paths improves
stability Tanner et al. (2004). Thus, in network control system design, two
options seem to be available: either regulate the system dynamics so that it
can cope with information traveling over long paths, or make sure that short
paths (up to a certain length) can be found. Regarding the latter, ad-hoc
routing algorithms that improve the navigability of the network are needed.

3.3 Efficiency: capacity, link quality, and delays

As far as control design is concerned, a communication channel is merely a
medium for obtaining or sending information (measurement signals, or control
commands). From this perspective, what seems to be important is: (i) how
much information can be carried, and (ii) how fast can it be transferred.

The first question is related to the channel’s capacity as studied in Information
theory, and results linking information theory to control have recently been
reported Wong and Brockett (1997, 1999); Nair and Evans (2000); Ballieul
(2002); Brockett and Liberzon (2000). While information theory models the
communication channel as an information transmitting medium that corrupts
portions of the signal, the main issue for control-based applications are the
delays (as well as corruption) suffered by the signals as they are carried across
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the channel. In the case of noiseless channels, a necessary condition for asymp-
totic observability and stabilizability for linear, time-invariant, discrete-time
systems, is that the rate of communication R (which must be less than the ca-
pacity C' of the channel) is bounded below as R > 3=, (4) max{0, log|A,(A4)|},
where A, (A) are the unstable eigenvalues of the system matrix A. In some
cases, this condition is also sufficient. Similar results hold in the case of
noisy channels, as described in Tatikonda and Elia (2005). Article Martins
and Dahleh (2005) investigates the fundamental limitation of performance for
networked feedback systems, in which the feedback loop is comprised of a
discrete-time, linear, time-invariant plant, a channel, as well as an encoder
and a decoder. The disturbance rejection ability is found to be bounded from
below by ), (4 max{0,log [\,(A)|} — C. This particular result shows that
the excess capacity C' — Y-, 4y max{0,log|\,(A)[} is all that is available for
disturbance rejection.

The speed at which information travels from source to destination is usually
measured by a ”communication delay,” the time elapsed between transmission
and reception. Depending on where the network is included in the feedback
loop of the network control system, such communication delays can cause
actuation delays, measurement delays, or both. It is generally recognized that
the delays degrade the performance of control systems. It is natural to expect,
therefore, that communication delays will adversely impact the performance
of a networked control system, possibly even causing instabilities.

Initial investigation seemed to support this claim. In Olfati-Saber and Murray
(2004), stability analysis in the frequency domain suggests the existence of an
upper limit in the (uniform) communication delays that a continuous, near-
est neighbor interconnected system can tolerate before becoming unstable.
However, more recent analysis of state space, discrete-time models of inter-
connected systems, have led to different conclusions: in some (not so special)
cases, arbitrary (but bounded) communication delays may be tolerated at the
expense of convergence speed. Moreau Moreau (2005) was among the first to
address the consensus problem in the presence of time delays, giving convexity
conditions on the set of admissible control inputs that ensure asymptotic ve-
locity synchronization. In Angeli and Bliman (2005), the approach of Moreau
(2005) is extended, showing that if the agents dynamics are appropriately re-
stricted, stability can still be maintained. A different approach in Tanner and
Christodoulakis (2005) focuses on the communication protocol, and shows that
velocity synchronization in a connected group of autonomous mobile agents,
may still be achieved when the agent controllers use delayed information, re-
gardless of the size of this delay, if control and communication are properly
interleaved. In Morse (2006) the composition properties of graphs are used to
show that under certain assumptions on the communication topology, delays
have no effect on the stability of the system. In fact, in a somehow counter-
intuitive situation, it turns out that longer delays (if used judiciously) can
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improve the stability of some systems Abdallah et al. (1993).

4 Conclusion

Any conceptual links between networked control systems, cooperative control,
and complex networks through graph theoretic analysis, provide opportunities
for control theory to reach out and exploit the arsenal available in complex
network research and computer science. This article offers such a suggestion by
highlighting the recently revealed power of randomized algorithms in routing,
network design, resource allocation, and game theory.

Mechanism design, as recently developed in the area of computer science, seeks
to allow selfish individuals to interact in a networked environment in such a
way that no outcome is particularly disadvantageous to any of the nodes.
Such approaches yield results for routing, network design, and resource allo-
cation Tardos (2004), and seem directly applicable to open networked control
systems in which the control engineer must ensure that corrupt or mishehaving
nodes do not negatively affect the functionality of the system.

With this brief review of a small selection of intriguing ideas, we hope to
establish further links between network theory, physics, and control systems.
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